Commit a4b1b03a authored by Kevin Modzelewski's avatar Kevin Modzelewski

Merge commit 'bd3611' into refcounting

parents 0f93e554 bd361100
...@@ -36,6 +36,7 @@ file(GLOB_RECURSE STDMODULE_SRCS Modules ...@@ -36,6 +36,7 @@ file(GLOB_RECURSE STDMODULE_SRCS Modules
bufferedio.c bufferedio.c
bytesio.c bytesio.c
cache.c cache.c
cmathmodule.c
connection.c connection.c
cStringIO.c cStringIO.c
cursor.c cursor.c
...@@ -84,6 +85,7 @@ file(GLOB_RECURSE STDOBJECT_SRCS Objects ...@@ -84,6 +85,7 @@ file(GLOB_RECURSE STDOBJECT_SRCS Objects
bytes_methods.c bytes_methods.c
capsule.c capsule.c
cobject.c cobject.c
complexobject.c
dictproxy.c dictproxy.c
exceptions.c exceptions.c
floatobject.c floatobject.c
......
# expected: fail
from test.test_support import run_unittest from test.test_support import run_unittest
from test.test_math import parse_testfile, test_file from test.test_math import parse_testfile
import unittest import unittest
import os, sys
import cmath, math import cmath, math
from cmath import phase, polar, rect, pi from cmath import phase, polar, rect, pi
INF = float('inf') INF = float('inf')
NAN = float('nan') NAN = float('nan')
# Pyston change: pull testcases file from source directory
# locate file with test values
if __name__ == '__main__':
file = sys.argv[0]
else:
file = __file__
test_dir = os.path.dirname(file) or os.curdir
test_file = os.path.join(test_dir, 'cmath_testcases.txt')
complex_zeros = [complex(x, y) for x in [0.0, -0.0] for y in [0.0, -0.0]] complex_zeros = [complex(x, y) for x in [0.0, -0.0] for y in [0.0, -0.0]]
complex_infinities = [complex(x, y) for x, y in [ complex_infinities = [complex(x, y) for x, y in [
(INF, 0.0), # 1st quadrant (INF, 0.0), # 1st quadrant
......
/* Complex object implementation */
/* Borrows heavily from floatobject.c */
/* Submitted by Jim Hugunin */
#include "Python.h"
#include "structmember.h"
#ifndef WITHOUT_COMPLEX
/* Precisions used by repr() and str(), respectively.
The repr() precision (17 significant decimal digits) is the minimal number
that is guaranteed to have enough precision so that if the number is read
back in the exact same binary value is recreated. This is true for IEEE
floating point by design, and also happens to work for all other modern
hardware.
The str() precision is chosen so that in most cases, the rounding noise
created by various operations is suppressed, while giving plenty of
precision for practical use.
*/
#define PREC_REPR 17
#define PREC_STR 12
/* elementary operations on complex numbers */
static Py_complex c_1 = {1., 0.};
Py_complex
c_sum(Py_complex a, Py_complex b)
{
Py_complex r;
r.real = a.real + b.real;
r.imag = a.imag + b.imag;
return r;
}
Py_complex
c_diff(Py_complex a, Py_complex b)
{
Py_complex r;
r.real = a.real - b.real;
r.imag = a.imag - b.imag;
return r;
}
Py_complex
c_neg(Py_complex a)
{
Py_complex r;
r.real = -a.real;
r.imag = -a.imag;
return r;
}
Py_complex
c_prod(Py_complex a, Py_complex b)
{
Py_complex r;
r.real = a.real*b.real - a.imag*b.imag;
r.imag = a.real*b.imag + a.imag*b.real;
return r;
}
Py_complex
c_quot(Py_complex a, Py_complex b)
{
/******************************************************************
This was the original algorithm. It's grossly prone to spurious
overflow and underflow errors. It also merrily divides by 0 despite
checking for that(!). The code still serves a doc purpose here, as
the algorithm following is a simple by-cases transformation of this
one:
Py_complex r;
double d = b.real*b.real + b.imag*b.imag;
if (d == 0.)
errno = EDOM;
r.real = (a.real*b.real + a.imag*b.imag)/d;
r.imag = (a.imag*b.real - a.real*b.imag)/d;
return r;
******************************************************************/
/* This algorithm is better, and is pretty obvious: first divide the
* numerators and denominator by whichever of {b.real, b.imag} has
* larger magnitude. The earliest reference I found was to CACM
* Algorithm 116 (Complex Division, Robert L. Smith, Stanford
* University). As usual, though, we're still ignoring all IEEE
* endcases.
*/
Py_complex r; /* the result */
const double abs_breal = b.real < 0 ? -b.real : b.real;
const double abs_bimag = b.imag < 0 ? -b.imag : b.imag;
if (abs_breal >= abs_bimag) {
/* divide tops and bottom by b.real */
if (abs_breal == 0.0) {
errno = EDOM;
r.real = r.imag = 0.0;
}
else {
const double ratio = b.imag / b.real;
const double denom = b.real + b.imag * ratio;
r.real = (a.real + a.imag * ratio) / denom;
r.imag = (a.imag - a.real * ratio) / denom;
}
}
else {
/* divide tops and bottom by b.imag */
const double ratio = b.real / b.imag;
const double denom = b.real * ratio + b.imag;
assert(b.imag != 0.0);
r.real = (a.real * ratio + a.imag) / denom;
r.imag = (a.imag * ratio - a.real) / denom;
}
return r;
}
Py_complex
c_pow(Py_complex a, Py_complex b)
{
Py_complex r;
double vabs,len,at,phase;
if (b.real == 0. && b.imag == 0.) {
r.real = 1.;
r.imag = 0.;
}
else if (a.real == 0. && a.imag == 0.) {
if (b.imag != 0. || b.real < 0.)
errno = EDOM;
r.real = 0.;
r.imag = 0.;
}
else {
vabs = hypot(a.real,a.imag);
len = pow(vabs,b.real);
at = atan2(a.imag, a.real);
phase = at*b.real;
if (b.imag != 0.0) {
len /= exp(at*b.imag);
phase += b.imag*log(vabs);
}
r.real = len*cos(phase);
r.imag = len*sin(phase);
}
return r;
}
static Py_complex
c_powu(Py_complex x, long n)
{
Py_complex r, p;
long mask = 1;
r = c_1;
p = x;
while (mask > 0 && n >= mask) {
if (n & mask)
r = c_prod(r,p);
mask <<= 1;
p = c_prod(p,p);
}
return r;
}
static Py_complex
c_powi(Py_complex x, long n)
{
Py_complex cn;
if (n > 100 || n < -100) {
cn.real = (double) n;
cn.imag = 0.;
return c_pow(x,cn);
}
else if (n > 0)
return c_powu(x,n);
else
return c_quot(c_1,c_powu(x,-n));
}
double
c_abs(Py_complex z)
{
/* sets errno = ERANGE on overflow; otherwise errno = 0 */
double result;
if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
/* C99 rules: if either the real or the imaginary part is an
infinity, return infinity, even if the other part is a
NaN. */
if (Py_IS_INFINITY(z.real)) {
result = fabs(z.real);
errno = 0;
return result;
}
if (Py_IS_INFINITY(z.imag)) {
result = fabs(z.imag);
errno = 0;
return result;
}
/* either the real or imaginary part is a NaN,
and neither is infinite. Result should be NaN. */
return Py_NAN;
}
result = hypot(z.real, z.imag);
if (!Py_IS_FINITE(result))
errno = ERANGE;
else
errno = 0;
return result;
}
// Pyston changes: comment this out
#if 0
static PyObject *
complex_subtype_from_c_complex(PyTypeObject *type, Py_complex cval)
{
PyObject *op;
op = type->tp_alloc(type, 0);
if (op != NULL)
((PyComplexObject *)op)->cval = cval;
return op;
}
PyObject *
PyComplex_FromCComplex(Py_complex cval)
{
register PyComplexObject *op;
/* Inline PyObject_New */
op = (PyComplexObject *) PyObject_MALLOC(sizeof(PyComplexObject));
if (op == NULL)
return PyErr_NoMemory();
PyObject_INIT(op, &PyComplex_Type);
op->cval = cval;
return (PyObject *) op;
}
static PyObject *
complex_subtype_from_doubles(PyTypeObject *type, double real, double imag)
{
Py_complex c;
c.real = real;
c.imag = imag;
return complex_subtype_from_c_complex(type, c);
}
PyObject *
PyComplex_FromDoubles(double real, double imag)
{
Py_complex c;
c.real = real;
c.imag = imag;
return PyComplex_FromCComplex(c);
}
double
PyComplex_RealAsDouble(PyObject *op)
{
if (PyComplex_Check(op)) {
return ((PyComplexObject *)op)->cval.real;
}
else {
return PyFloat_AsDouble(op);
}
}
double
PyComplex_ImagAsDouble(PyObject *op)
{
if (PyComplex_Check(op)) {
return ((PyComplexObject *)op)->cval.imag;
}
else {
return 0.0;
}
}
static PyObject *
try_complex_special_method(PyObject *op) {
PyObject *f;
static PyObject *complexstr;
if (complexstr == NULL) {
complexstr = PyString_InternFromString("__complex__");
if (complexstr == NULL)
return NULL;
}
if (PyInstance_Check(op)) {
f = PyObject_GetAttr(op, complexstr);
if (f == NULL) {
if (PyErr_ExceptionMatches(PyExc_AttributeError))
PyErr_Clear();
else
return NULL;
}
}
else {
f = _PyObject_LookupSpecial(op, "__complex__", &complexstr);
if (f == NULL && PyErr_Occurred())
return NULL;
}
if (f != NULL) {
PyObject *res = PyObject_CallFunctionObjArgs(f, NULL);
Py_DECREF(f);
return res;
}
return NULL;
}
Py_complex
PyComplex_AsCComplex(PyObject *op)
{
Py_complex cv;
PyObject *newop = NULL;
assert(op);
/* If op is already of type PyComplex_Type, return its value */
if (PyComplex_Check(op)) {
return ((PyComplexObject *)op)->cval;
}
/* If not, use op's __complex__ method, if it exists */
/* return -1 on failure */
cv.real = -1.;
cv.imag = 0.;
newop = try_complex_special_method(op);
if (newop) {
if (!PyComplex_Check(newop)) {
PyErr_SetString(PyExc_TypeError,
"__complex__ should return a complex object");
Py_DECREF(newop);
return cv;
}
cv = ((PyComplexObject *)newop)->cval;
Py_DECREF(newop);
return cv;
}
else if (PyErr_Occurred()) {
return cv;
}
/* If neither of the above works, interpret op as a float giving the
real part of the result, and fill in the imaginary part as 0. */
else {
/* PyFloat_AsDouble will return -1 on failure */
cv.real = PyFloat_AsDouble(op);
return cv;
}
}
static void
complex_dealloc(PyObject *op)
{
op->ob_type->tp_free(op);
}
static PyObject *
complex_format(PyComplexObject *v, int precision, char format_code)
{
PyObject *result = NULL;
Py_ssize_t len;
/* If these are non-NULL, they'll need to be freed. */
char *pre = NULL;
char *im = NULL;
char *buf = NULL;
/* These do not need to be freed. re is either an alias
for pre or a pointer to a constant. lead and tail
are pointers to constants. */
char *re = NULL;
char *lead = "";
char *tail = "";
if (v->cval.real == 0. && copysign(1.0, v->cval.real)==1.0) {
re = "";
im = PyOS_double_to_string(v->cval.imag, format_code,
precision, 0, NULL);
if (!im) {
PyErr_NoMemory();
goto done;
}
} else {
/* Format imaginary part with sign, real part without */
pre = PyOS_double_to_string(v->cval.real, format_code,
precision, 0, NULL);
if (!pre) {
PyErr_NoMemory();
goto done;
}
re = pre;
im = PyOS_double_to_string(v->cval.imag, format_code,
precision, Py_DTSF_SIGN, NULL);
if (!im) {
PyErr_NoMemory();
goto done;
}
lead = "(";
tail = ")";
}
/* Alloc the final buffer. Add one for the "j" in the format string,
and one for the trailing zero. */
len = strlen(lead) + strlen(re) + strlen(im) + strlen(tail) + 2;
buf = PyMem_Malloc(len);
if (!buf) {
PyErr_NoMemory();
goto done;
}
PyOS_snprintf(buf, len, "%s%s%sj%s", lead, re, im, tail);
result = PyString_FromString(buf);
done:
PyMem_Free(im);
PyMem_Free(pre);
PyMem_Free(buf);
return result;
}
static int
complex_print(PyComplexObject *v, FILE *fp, int flags)
{
PyObject *formatv;
char *buf;
if (flags & Py_PRINT_RAW)
formatv = complex_format(v, PyFloat_STR_PRECISION, 'g');
else
formatv = complex_format(v, 0, 'r');
if (formatv == NULL)
return -1;
buf = PyString_AS_STRING(formatv);
Py_BEGIN_ALLOW_THREADS
fputs(buf, fp);
Py_END_ALLOW_THREADS
Py_DECREF(formatv);
return 0;
}
static PyObject *
complex_repr(PyComplexObject *v)
{
return complex_format(v, 0, 'r');
}
static PyObject *
complex_str(PyComplexObject *v)
{
return complex_format(v, PyFloat_STR_PRECISION, 'g');
}
static long
complex_hash(PyComplexObject *v)
{
long hashreal, hashimag, combined;
hashreal = _Py_HashDouble(v->cval.real);
if (hashreal == -1)
return -1;
hashimag = _Py_HashDouble(v->cval.imag);
if (hashimag == -1)
return -1;
/* Note: if the imaginary part is 0, hashimag is 0 now,
* so the following returns hashreal unchanged. This is
* important because numbers of different types that
* compare equal must have the same hash value, so that
* hash(x + 0*j) must equal hash(x).
*/
combined = hashreal + 1000003 * hashimag;
if (combined == -1)
combined = -2;
return combined;
}
#endif
/* This macro may return! */
#define TO_COMPLEX(obj, c) \
if (PyComplex_Check(obj)) \
c = PyComplex_AsCComplex(obj); \
else if (to_complex(&(obj), &(c)) < 0) \
return (obj)
static int
to_complex(PyObject **pobj, Py_complex *pc)
{
PyObject *obj = *pobj;
pc->real = pc->imag = 0.0;
if (PyInt_Check(obj)) {
pc->real = PyInt_AS_LONG(obj);
return 0;
}
if (PyLong_Check(obj)) {
pc->real = PyLong_AsDouble(obj);
if (pc->real == -1.0 && PyErr_Occurred()) {
*pobj = NULL;
return -1;
}
return 0;
}
if (PyFloat_Check(obj)) {
pc->real = PyFloat_AsDouble(obj);
return 0;
}
Py_INCREF(Py_NotImplemented);
*pobj = Py_NotImplemented;
return -1;
}
// Pyston change: comment this out
#if 0
static PyObject *
complex_add(PyObject *v, PyObject *w)
{
Py_complex result;
Py_complex a, b;
TO_COMPLEX(v, a);
TO_COMPLEX(w, b);
PyFPE_START_PROTECT("complex_add", return 0)
result = c_sum(a, b);
PyFPE_END_PROTECT(result)
return PyComplex_FromCComplex(result);
}
static PyObject *
complex_sub(PyObject *v, PyObject *w)
{
Py_complex result;
Py_complex a, b;
TO_COMPLEX(v, a);
TO_COMPLEX(w, b);;
PyFPE_START_PROTECT("complex_sub", return 0)
result = c_diff(a, b);
PyFPE_END_PROTECT(result)
return PyComplex_FromCComplex(result);
}
static PyObject *
complex_mul(PyObject *v, PyObject *w)
{
Py_complex result;
Py_complex a, b;
TO_COMPLEX(v, a);
TO_COMPLEX(w, b);
PyFPE_START_PROTECT("complex_mul", return 0)
result = c_prod(a, b);
PyFPE_END_PROTECT(result)
return PyComplex_FromCComplex(result);
}
static PyObject *
complex_div(PyObject *v, PyObject *w)
{
Py_complex quot;
Py_complex a, b;
TO_COMPLEX(v, a);
TO_COMPLEX(w, b);
PyFPE_START_PROTECT("complex_div", return 0)
errno = 0;
quot = c_quot(a, b);
PyFPE_END_PROTECT(quot)
if (errno == EDOM) {
PyErr_SetString(PyExc_ZeroDivisionError, "complex division by zero");
return NULL;
}
return PyComplex_FromCComplex(quot);
}
static PyObject *
complex_classic_div(PyObject *v, PyObject *w)
{
Py_complex quot;
Py_complex a, b;
TO_COMPLEX(v, a);
TO_COMPLEX(w, b);
if (Py_DivisionWarningFlag >= 2 &&
PyErr_Warn(PyExc_DeprecationWarning,
"classic complex division") < 0)
return NULL;
PyFPE_START_PROTECT("complex_classic_div", return 0)
errno = 0;
quot = c_quot(a, b);
PyFPE_END_PROTECT(quot)
if (errno == EDOM) {
PyErr_SetString(PyExc_ZeroDivisionError, "complex division by zero");
return NULL;
}
return PyComplex_FromCComplex(quot);
}
static PyObject *
complex_remainder(PyObject *v, PyObject *w)
{
Py_complex div, mod;
Py_complex a, b;
TO_COMPLEX(v, a);
TO_COMPLEX(w, b);
if (PyErr_Warn(PyExc_DeprecationWarning,
"complex divmod(), // and % are deprecated") < 0)
return NULL;
errno = 0;
div = c_quot(a, b); /* The raw divisor value. */
if (errno == EDOM) {
PyErr_SetString(PyExc_ZeroDivisionError, "complex remainder");
return NULL;
}
div.real = floor(div.real); /* Use the floor of the real part. */
div.imag = 0.0;
mod = c_diff(a, c_prod(b, div));
return PyComplex_FromCComplex(mod);
}
static PyObject *
complex_divmod(PyObject *v, PyObject *w)
{
Py_complex div, mod;
PyObject *d, *m, *z;
Py_complex a, b;
TO_COMPLEX(v, a);
TO_COMPLEX(w, b);
if (PyErr_Warn(PyExc_DeprecationWarning,
"complex divmod(), // and % are deprecated") < 0)
return NULL;
errno = 0;
div = c_quot(a, b); /* The raw divisor value. */
if (errno == EDOM) {
PyErr_SetString(PyExc_ZeroDivisionError, "complex divmod()");
return NULL;
}
div.real = floor(div.real); /* Use the floor of the real part. */
div.imag = 0.0;
mod = c_diff(a, c_prod(b, div));
d = PyComplex_FromCComplex(div);
m = PyComplex_FromCComplex(mod);
z = PyTuple_Pack(2, d, m);
Py_XDECREF(d);
Py_XDECREF(m);
return z;
}
#endif
// Pyston change: make no static
PyObject *
complex_pow(PyObject *v, PyObject *w, PyObject *z)
{
Py_complex p;
Py_complex exponent;
long int_exponent;
Py_complex a, b;
TO_COMPLEX(v, a);
TO_COMPLEX(w, b);
if (z!=Py_None) {
PyErr_SetString(PyExc_ValueError, "complex modulo");
return NULL;
}
PyFPE_START_PROTECT("complex_pow", return 0)
errno = 0;
exponent = b;
int_exponent = (long)exponent.real;
if (exponent.imag == 0. && exponent.real == int_exponent)
p = c_powi(a,int_exponent);
else
p = c_pow(a,exponent);
PyFPE_END_PROTECT(p)
Py_ADJUST_ERANGE2(p.real, p.imag);
if (errno == EDOM) {
PyErr_SetString(PyExc_ZeroDivisionError,
"0.0 to a negative or complex power");
return NULL;
}
else if (errno == ERANGE) {
PyErr_SetString(PyExc_OverflowError,
"complex exponentiation");
return NULL;
}
return PyComplex_FromCComplex(p);
}
// Pyston changes: comment this out
#if 0
static PyObject *
complex_int_div(PyObject *v, PyObject *w)
{
PyObject *t, *r;
Py_complex a, b;
TO_COMPLEX(v, a);
TO_COMPLEX(w, b);
if (PyErr_Warn(PyExc_DeprecationWarning,
"complex divmod(), // and % are deprecated") < 0)
return NULL;
t = complex_divmod(v, w);
if (t != NULL) {
r = PyTuple_GET_ITEM(t, 0);
Py_INCREF(r);
Py_DECREF(t);
return r;
}
return NULL;
}
static PyObject *
complex_neg(PyComplexObject *v)
{
Py_complex neg;
neg.real = -v->cval.real;
neg.imag = -v->cval.imag;
return PyComplex_FromCComplex(neg);
}
static PyObject *
complex_pos(PyComplexObject *v)
{
if (PyComplex_CheckExact(v)) {
Py_INCREF(v);
return (PyObject *)v;
}
else
return PyComplex_FromCComplex(v->cval);
}
static PyObject *
complex_abs(PyComplexObject *v)
{
double result;
PyFPE_START_PROTECT("complex_abs", return 0)
result = c_abs(v->cval);
PyFPE_END_PROTECT(result)
if (errno == ERANGE) {
PyErr_SetString(PyExc_OverflowError,
"absolute value too large");
return NULL;
}
return PyFloat_FromDouble(result);
}
static int
complex_nonzero(PyComplexObject *v)
{
return v->cval.real != 0.0 || v->cval.imag != 0.0;
}
static int
complex_coerce(PyObject **pv, PyObject **pw)
{
Py_complex cval;
cval.imag = 0.;
if (PyInt_Check(*pw)) {
cval.real = (double)PyInt_AsLong(*pw);
*pw = PyComplex_FromCComplex(cval);
Py_INCREF(*pv);
return 0;
}
else if (PyLong_Check(*pw)) {
cval.real = PyLong_AsDouble(*pw);
if (cval.real == -1.0 && PyErr_Occurred())
return -1;
*pw = PyComplex_FromCComplex(cval);
Py_INCREF(*pv);
return 0;
}
else if (PyFloat_Check(*pw)) {
cval.real = PyFloat_AsDouble(*pw);
*pw = PyComplex_FromCComplex(cval);
Py_INCREF(*pv);
return 0;
}
else if (PyComplex_Check(*pw)) {
Py_INCREF(*pv);
Py_INCREF(*pw);
return 0;
}
return 1; /* Can't do it */
}
static PyObject *
complex_richcompare(PyObject *v, PyObject *w, int op)
{
PyObject *res;
Py_complex i;
int equal;
if (op != Py_EQ && op != Py_NE) {
/* for backwards compatibility, comparisons with non-numbers return
* NotImplemented. Only comparisons with core numeric types raise
* TypeError.
*/
if (PyInt_Check(w) || PyLong_Check(w) ||
PyFloat_Check(w) || PyComplex_Check(w)) {
PyErr_SetString(PyExc_TypeError,
"no ordering relation is defined "
"for complex numbers");
return NULL;
}
goto Unimplemented;
}
assert(PyComplex_Check(v));
TO_COMPLEX(v, i);
if (PyInt_Check(w) || PyLong_Check(w)) {
/* Check for 0.0 imaginary part first to avoid the rich
* comparison when possible.
*/
if (i.imag == 0.0) {
PyObject *j, *sub_res;
j = PyFloat_FromDouble(i.real);
if (j == NULL)
return NULL;
sub_res = PyObject_RichCompare(j, w, op);
Py_DECREF(j);
return sub_res;
}
else {
equal = 0;
}
}
else if (PyFloat_Check(w)) {
equal = (i.real == PyFloat_AsDouble(w) && i.imag == 0.0);
}
else if (PyComplex_Check(w)) {
Py_complex j;
TO_COMPLEX(w, j);
equal = (i.real == j.real && i.imag == j.imag);
}
else {
goto Unimplemented;
}
if (equal == (op == Py_EQ))
res = Py_True;
else
res = Py_False;
Py_INCREF(res);
return res;
Unimplemented:
Py_INCREF(Py_NotImplemented);
return Py_NotImplemented;
}
static PyObject *
complex_int(PyObject *v)
{
PyErr_SetString(PyExc_TypeError,
"can't convert complex to int");
return NULL;
}
static PyObject *
complex_long(PyObject *v)
{
PyErr_SetString(PyExc_TypeError,
"can't convert complex to long");
return NULL;
}
static PyObject *
complex_float(PyObject *v)
{
PyErr_SetString(PyExc_TypeError,
"can't convert complex to float");
return NULL;
}
static PyObject *
complex_conjugate(PyObject *self)
{
Py_complex c;
c = ((PyComplexObject *)self)->cval;
c.imag = -c.imag;
return PyComplex_FromCComplex(c);
}
PyDoc_STRVAR(complex_conjugate_doc,
"complex.conjugate() -> complex\n"
"\n"
"Return the complex conjugate of its argument. (3-4j).conjugate() == 3+4j.");
static PyObject *
complex_getnewargs(PyComplexObject *v)
{
Py_complex c = v->cval;
return Py_BuildValue("(dd)", c.real, c.imag);
}
PyDoc_STRVAR(complex__format__doc,
"complex.__format__() -> str\n"
"\n"
"Convert to a string according to format_spec.");
static PyObject *
complex__format__(PyObject* self, PyObject* args)
{
PyObject *format_spec;
if (!PyArg_ParseTuple(args, "O:__format__", &format_spec))
return NULL;
if (PyBytes_Check(format_spec))
return _PyComplex_FormatAdvanced(self,
PyBytes_AS_STRING(format_spec),
PyBytes_GET_SIZE(format_spec));
if (PyUnicode_Check(format_spec)) {
/* Convert format_spec to a str */
PyObject *result;
PyObject *str_spec = PyObject_Str(format_spec);
if (str_spec == NULL)
return NULL;
result = _PyComplex_FormatAdvanced(self,
PyBytes_AS_STRING(str_spec),
PyBytes_GET_SIZE(str_spec));
Py_DECREF(str_spec);
return result;
}
PyErr_SetString(PyExc_TypeError, "__format__ requires str or unicode");
return NULL;
}
#if 0
static PyObject *
complex_is_finite(PyObject *self)
{
Py_complex c;
c = ((PyComplexObject *)self)->cval;
return PyBool_FromLong((long)(Py_IS_FINITE(c.real) &&
Py_IS_FINITE(c.imag)));
}
PyDoc_STRVAR(complex_is_finite_doc,
"complex.is_finite() -> bool\n"
"\n"
"Returns True if the real and the imaginary part is finite.");
#endif
static PyMethodDef complex_methods[] = {
{"conjugate", (PyCFunction)complex_conjugate, METH_NOARGS,
complex_conjugate_doc},
#if 0
{"is_finite", (PyCFunction)complex_is_finite, METH_NOARGS,
complex_is_finite_doc},
#endif
{"__getnewargs__", (PyCFunction)complex_getnewargs, METH_NOARGS},
{"__format__", (PyCFunction)complex__format__,
METH_VARARGS, complex__format__doc},
{NULL, NULL} /* sentinel */
};
static PyMemberDef complex_members[] = {
{"real", T_DOUBLE, offsetof(PyComplexObject, cval.real), READONLY,
"the real part of a complex number"},
{"imag", T_DOUBLE, offsetof(PyComplexObject, cval.imag), READONLY,
"the imaginary part of a complex number"},
{0},
};
static PyObject *
complex_subtype_from_string(PyTypeObject *type, PyObject *v)
{
const char *s, *start;
char *end;
double x=0.0, y=0.0, z;
int got_bracket=0;
#ifdef Py_USING_UNICODE
char *s_buffer = NULL;
#endif
Py_ssize_t len;
if (PyString_Check(v)) {
s = PyString_AS_STRING(v);
len = PyString_GET_SIZE(v);
}
#ifdef Py_USING_UNICODE
else if (PyUnicode_Check(v)) {
s_buffer = (char *)PyMem_MALLOC(PyUnicode_GET_SIZE(v)+1);
if (s_buffer == NULL)
return PyErr_NoMemory();
if (PyUnicode_EncodeDecimal(PyUnicode_AS_UNICODE(v),
PyUnicode_GET_SIZE(v),
s_buffer,
NULL))
goto error;
s = s_buffer;
len = strlen(s);
}
#endif
else if (PyObject_AsCharBuffer(v, &s, &len)) {
PyErr_SetString(PyExc_TypeError,
"complex() arg is not a string");
return NULL;
}
/* position on first nonblank */
start = s;
while (Py_ISSPACE(*s))
s++;
if (*s == '(') {
/* Skip over possible bracket from repr(). */
got_bracket = 1;
s++;
while (Py_ISSPACE(*s))
s++;
}
/* a valid complex string usually takes one of the three forms:
<float> - real part only
<float>j - imaginary part only
<float><signed-float>j - real and imaginary parts
where <float> represents any numeric string that's accepted by the
float constructor (including 'nan', 'inf', 'infinity', etc.), and
<signed-float> is any string of the form <float> whose first
character is '+' or '-'.
For backwards compatibility, the extra forms
<float><sign>j
<sign>j
j
are also accepted, though support for these forms may be removed from
a future version of Python.
*/
/* first look for forms starting with <float> */
z = PyOS_string_to_double(s, &end, NULL);
if (z == -1.0 && PyErr_Occurred()) {
if (PyErr_ExceptionMatches(PyExc_ValueError))
PyErr_Clear();
else
goto error;
}
if (end != s) {
/* all 4 forms starting with <float> land here */
s = end;
if (*s == '+' || *s == '-') {
/* <float><signed-float>j | <float><sign>j */
x = z;
y = PyOS_string_to_double(s, &end, NULL);
if (y == -1.0 && PyErr_Occurred()) {
if (PyErr_ExceptionMatches(PyExc_ValueError))
PyErr_Clear();
else
goto error;
}
if (end != s)
/* <float><signed-float>j */
s = end;
else {
/* <float><sign>j */
y = *s == '+' ? 1.0 : -1.0;
s++;
}
if (!(*s == 'j' || *s == 'J'))
goto parse_error;
s++;
}
else if (*s == 'j' || *s == 'J') {
/* <float>j */
s++;
y = z;
}
else
/* <float> */
x = z;
}
else {
/* not starting with <float>; must be <sign>j or j */
if (*s == '+' || *s == '-') {
/* <sign>j */
y = *s == '+' ? 1.0 : -1.0;
s++;
}
else
/* j */
y = 1.0;
if (!(*s == 'j' || *s == 'J'))
goto parse_error;
s++;
}
/* trailing whitespace and closing bracket */
while (Py_ISSPACE(*s))
s++;
if (got_bracket) {
/* if there was an opening parenthesis, then the corresponding
closing parenthesis should be right here */
if (*s != ')')
goto parse_error;
s++;
while (Py_ISSPACE(*s))
s++;
}
/* we should now be at the end of the string */
if (s-start != len)
goto parse_error;
#ifdef Py_USING_UNICODE
if (s_buffer)
PyMem_FREE(s_buffer);
#endif
return complex_subtype_from_doubles(type, x, y);
parse_error:
PyErr_SetString(PyExc_ValueError,
"complex() arg is a malformed string");
error:
#ifdef Py_USING_UNICODE
if (s_buffer)
PyMem_FREE(s_buffer);
#endif
return NULL;
}
static PyObject *
complex_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
PyObject *r, *i, *tmp;
PyNumberMethods *nbr, *nbi = NULL;
Py_complex cr, ci;
int own_r = 0;
int cr_is_complex = 0;
int ci_is_complex = 0;
static char *kwlist[] = {"real", "imag", 0};
r = Py_False;
i = NULL;
if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OO:complex", kwlist,
&r, &i))
return NULL;
/* Special-case for a single argument when type(arg) is complex. */
if (PyComplex_CheckExact(r) && i == NULL &&
type == &PyComplex_Type) {
/* Note that we can't know whether it's safe to return
a complex *subclass* instance as-is, hence the restriction
to exact complexes here. If either the input or the
output is a complex subclass, it will be handled below
as a non-orthogonal vector. */
Py_INCREF(r);
return r;
}
if (PyString_Check(r) || PyUnicode_Check(r)) {
if (i != NULL) {
PyErr_SetString(PyExc_TypeError,
"complex() can't take second arg"
" if first is a string");
return NULL;
}
return complex_subtype_from_string(type, r);
}
if (i != NULL && (PyString_Check(i) || PyUnicode_Check(i))) {
PyErr_SetString(PyExc_TypeError,
"complex() second arg can't be a string");
return NULL;
}
tmp = try_complex_special_method(r);
if (tmp) {
r = tmp;
own_r = 1;
}
else if (PyErr_Occurred()) {
return NULL;
}
nbr = r->ob_type->tp_as_number;
if (i != NULL)
nbi = i->ob_type->tp_as_number;
if (nbr == NULL || nbr->nb_float == NULL ||
((i != NULL) && (nbi == NULL || nbi->nb_float == NULL))) {
PyErr_SetString(PyExc_TypeError,
"complex() argument must be a string or a number");
if (own_r) {
Py_DECREF(r);
}
return NULL;
}
/* If we get this far, then the "real" and "imag" parts should
both be treated as numbers, and the constructor should return a
complex number equal to (real + imag*1j).
Note that we do NOT assume the input to already be in canonical
form; the "real" and "imag" parts might themselves be complex
numbers, which slightly complicates the code below. */
if (PyComplex_Check(r)) {
/* Note that if r is of a complex subtype, we're only
retaining its real & imag parts here, and the return
value is (properly) of the builtin complex type. */
cr = ((PyComplexObject*)r)->cval;
cr_is_complex = 1;
if (own_r) {
Py_DECREF(r);
}
}
else {
/* The "real" part really is entirely real, and contributes
nothing in the imaginary direction.
Just treat it as a double. */
tmp = PyNumber_Float(r);
if (own_r) {
/* r was a newly created complex number, rather
than the original "real" argument. */
Py_DECREF(r);
}
if (tmp == NULL)
return NULL;
if (!PyFloat_Check(tmp)) {
PyErr_SetString(PyExc_TypeError,
"float(r) didn't return a float");
Py_DECREF(tmp);
return NULL;
}
cr.real = PyFloat_AsDouble(tmp);
cr.imag = 0.0; /* Shut up compiler warning */
Py_DECREF(tmp);
}
if (i == NULL) {
ci.real = 0.0;
}
else if (PyComplex_Check(i)) {
ci = ((PyComplexObject*)i)->cval;
ci_is_complex = 1;
} else {
/* The "imag" part really is entirely imaginary, and
contributes nothing in the real direction.
Just treat it as a double. */
tmp = (*nbi->nb_float)(i);
if (tmp == NULL)
return NULL;
ci.real = PyFloat_AsDouble(tmp);
Py_DECREF(tmp);
}
/* If the input was in canonical form, then the "real" and "imag"
parts are real numbers, so that ci.imag and cr.imag are zero.
We need this correction in case they were not real numbers. */
if (ci_is_complex) {
cr.real -= ci.imag;
}
if (cr_is_complex) {
ci.real += cr.imag;
}
return complex_subtype_from_doubles(type, cr.real, ci.real);
}
PyDoc_STRVAR(complex_doc,
"complex(real[, imag]) -> complex number\n"
"\n"
"Create a complex number from a real part and an optional imaginary part.\n"
"This is equivalent to (real + imag*1j) where imag defaults to 0.");
static PyNumberMethods complex_as_number = {
(binaryfunc)complex_add, /* nb_add */
(binaryfunc)complex_sub, /* nb_subtract */
(binaryfunc)complex_mul, /* nb_multiply */
(binaryfunc)complex_classic_div, /* nb_divide */
(binaryfunc)complex_remainder, /* nb_remainder */
(binaryfunc)complex_divmod, /* nb_divmod */
(ternaryfunc)complex_pow, /* nb_power */
(unaryfunc)complex_neg, /* nb_negative */
(unaryfunc)complex_pos, /* nb_positive */
(unaryfunc)complex_abs, /* nb_absolute */
(inquiry)complex_nonzero, /* nb_nonzero */
0, /* nb_invert */
0, /* nb_lshift */
0, /* nb_rshift */
0, /* nb_and */
0, /* nb_xor */
0, /* nb_or */
complex_coerce, /* nb_coerce */
complex_int, /* nb_int */
complex_long, /* nb_long */
complex_float, /* nb_float */
0, /* nb_oct */
0, /* nb_hex */
0, /* nb_inplace_add */
0, /* nb_inplace_subtract */
0, /* nb_inplace_multiply*/
0, /* nb_inplace_divide */
0, /* nb_inplace_remainder */
0, /* nb_inplace_power */
0, /* nb_inplace_lshift */
0, /* nb_inplace_rshift */
0, /* nb_inplace_and */
0, /* nb_inplace_xor */
0, /* nb_inplace_or */
(binaryfunc)complex_int_div, /* nb_floor_divide */
(binaryfunc)complex_div, /* nb_true_divide */
0, /* nb_inplace_floor_divide */
0, /* nb_inplace_true_divide */
};
PyTypeObject PyComplex_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"complex",
sizeof(PyComplexObject),
0,
complex_dealloc, /* tp_dealloc */
(printfunc)complex_print, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_compare */
(reprfunc)complex_repr, /* tp_repr */
&complex_as_number, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
(hashfunc)complex_hash, /* tp_hash */
0, /* tp_call */
(reprfunc)complex_str, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES |
Py_TPFLAGS_BASETYPE, /* tp_flags */
complex_doc, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
complex_richcompare, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
complex_methods, /* tp_methods */
complex_members, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
0, /* tp_init */
PyType_GenericAlloc, /* tp_alloc */
complex_new, /* tp_new */
PyObject_Del, /* tp_free */
};
#endif
#endif
...@@ -39,6 +39,13 @@ def bz2_ext(): ...@@ -39,6 +39,13 @@ def bz2_ext():
"Modules/bz2module.c", "Modules/bz2module.c",
]), libraries = ['bz2']) ]), libraries = ['bz2'])
@unique
def cmath_ext():
return Extension("cmath", sources = map(relpath, [
"Modules/cmathmodule.c",
]))
@unique @unique
def ctypes_ext(): def ctypes_ext():
ext = Extension("_ctypes", sources = map(relpath, [ ext = Extension("_ctypes", sources = map(relpath, [
...@@ -144,6 +151,7 @@ ext_modules = [future_builtins_ext(), ...@@ -144,6 +151,7 @@ ext_modules = [future_builtins_ext(),
pyexpat_ext(), pyexpat_ext(),
elementtree_ext(), elementtree_ext(),
bz2_ext(), bz2_ext(),
cmath_ext(),
ctypes_ext(), ctypes_ext(),
ctypes_test_ext(), ctypes_test_ext(),
grp_ext(), grp_ext(),
......
...@@ -95,7 +95,7 @@ extern "C" Box* abs_(Box* x) { ...@@ -95,7 +95,7 @@ extern "C" Box* abs_(Box* x) {
return boxInt(n >= 0 ? n : -n); return boxInt(n >= 0 ? n : -n);
} else if (x->cls == float_cls) { } else if (x->cls == float_cls) {
double d = static_cast<BoxedFloat*>(x)->d; double d = static_cast<BoxedFloat*>(x)->d;
return boxFloat(d >= 0 ? d : -d); return boxFloat(std::abs(d));
} else if (x->cls == long_cls) { } else if (x->cls == long_cls) {
return longAbs(static_cast<BoxedLong*>(x)); return longAbs(static_cast<BoxedLong*>(x));
} else { } else {
......
...@@ -21,6 +21,8 @@ ...@@ -21,6 +21,8 @@
#include "runtime/objmodel.h" #include "runtime/objmodel.h"
#include "runtime/types.h" #include "runtime/types.h"
extern "C" PyObject* complex_pow(PyObject* v, PyObject* w, PyObject* z) noexcept;
namespace pyston { namespace pyston {
static inline void raiseDivZeroExc() { static inline void raiseDivZeroExc() {
...@@ -398,147 +400,15 @@ static void _addFunc(const char* name, ConcreteCompilerType* rtn_type, void* com ...@@ -398,147 +400,15 @@ static void _addFunc(const char* name, ConcreteCompilerType* rtn_type, void* com
complex_cls->giveAttr(name, new BoxedFunction(md)); complex_cls->giveAttr(name, new BoxedFunction(md));
} }
static Py_complex c_1 = { 1., 0. };
extern "C" Py_complex c_prod(Py_complex a, Py_complex b) noexcept {
Py_complex r;
r.real = a.real * b.real - a.imag * b.imag;
r.imag = a.real * b.imag + a.imag * b.real;
return r;
}
extern "C" Py_complex c_quot(Py_complex a, Py_complex b) noexcept {
/******************************************************************
This was the original algorithm. It's grossly prone to spurious
overflow and underflow errors. It also merrily divides by 0 despite
checking for that(!). The code still serves a doc purpose here, as
the algorithm following is a simple by-cases transformation of this
one:
Py_complex r;
double d = b.real*b.real + b.imag*b.imag;
if (d == 0.)
errno = EDOM;
r.real = (a.real*b.real + a.imag*b.imag)/d;
r.imag = (a.imag*b.real - a.real*b.imag)/d;
return r;
******************************************************************/
/* This algorithm is better, and is pretty obvious: first divide the
* numerators and denominator by whichever of {b.real, b.imag} has
* larger magnitude. The earliest reference I found was to CACM
* Algorithm 116 (Complex Division, Robert L. Smith, Stanford
* University). As usual, though, we're still ignoring all IEEE
* endcases.
*/
Py_complex r; /* the result */
const double abs_breal = b.real < 0 ? -b.real : b.real;
const double abs_bimag = b.imag < 0 ? -b.imag : b.imag;
if (abs_breal >= abs_bimag) {
/* divide tops and bottom by b.real */
if (abs_breal == 0.0) {
errno = EDOM;
r.real = r.imag = 0.0;
} else {
const double ratio = b.imag / b.real;
const double denom = b.real + b.imag * ratio;
r.real = (a.real + a.imag * ratio) / denom;
r.imag = (a.imag - a.real * ratio) / denom;
}
} else {
/* divide tops and bottom by b.imag */
const double ratio = b.real / b.imag;
const double denom = b.real * ratio + b.imag;
assert(b.imag != 0.0);
r.real = (a.real * ratio + a.imag) / denom;
r.imag = (a.imag * ratio - a.real) / denom;
}
return r;
}
extern "C" Py_complex c_pow(Py_complex a, Py_complex b) noexcept {
Py_complex r;
double vabs, len, at, phase;
if (b.real == 0. && b.imag == 0.) {
r.real = 1.;
r.imag = 0.;
} else if (a.real == 0. && a.imag == 0.) {
if (b.imag != 0. || b.real < 0.)
errno = EDOM;
r.real = 0.;
r.imag = 0.;
} else {
vabs = hypot(a.real, a.imag);
len = pow(vabs, b.real);
at = atan2(a.imag, a.real);
phase = at * b.real;
if (b.imag != 0.0) {
len /= exp(at * b.imag);
phase += b.imag * log(vabs);
}
r.real = len * cos(phase);
r.imag = len * sin(phase);
}
return r;
}
static Py_complex c_powu(Py_complex x, long n) noexcept {
Py_complex r, p;
long mask = 1;
r = c_1;
p = x;
while (mask > 0 && n >= mask) {
if (n & mask)
r = c_prod(r, p);
mask <<= 1;
p = c_prod(p, p);
}
return r;
}
static Py_complex c_powi(Py_complex x, long n) noexcept {
Py_complex cn;
if (n > 100 || n < -100) {
cn.real = (double)n;
cn.imag = 0.;
return c_pow(x, cn);
} else if (n > 0)
return c_powu(x, n);
else
return c_quot(c_1, c_powu(x, -n));
}
Box* complexPow(BoxedComplex* lhs, Box* _rhs, Box* mod) { Box* complexPow(BoxedComplex* lhs, Box* _rhs, Box* mod) {
if (!PyComplex_Check(lhs)) if (!PyComplex_Check(lhs))
raiseExcHelper(TypeError, "descriptor '__pow__' requires a 'complex' object but received a '%s'", raiseExcHelper(TypeError, "descriptor '__pow__' requires a 'complex' object but received a '%s'",
getTypeName(lhs)); getTypeName(lhs));
Py_complex p;
Py_complex exponent;
long int_exponent;
Py_complex a, b;
a = PyComplex_AsCComplex(lhs);
b = PyComplex_AsCComplex(_rhs);
if (mod != Py_None) {
raiseExcHelper(ValueError, "complex modulo");
}
PyFPE_START_PROTECT("complex_pow", return 0) errno = 0;
exponent = b;
int_exponent = (long)exponent.real;
if (exponent.imag == 0. && exponent.real == int_exponent)
p = c_powi(a, int_exponent);
else
p = c_pow(a, exponent);
PyFPE_END_PROTECT(p) Py_ADJUST_ERANGE2(p.real, p.imag); PyObject* res = complex_pow(lhs, _rhs, mod);
if (errno == EDOM) { if (res == NULL)
raiseExcHelper(ZeroDivisionError, "0.0 to a negative or complex power"); throwCAPIException();
} else if (errno == ERANGE) { return res;
raiseExcHelper(OverflowError, "complex exponentiation");
}
return boxComplex(p.real, p.imag);
} }
Box* complexRpow(BoxedComplex* _lhs, Box* _rhs) { Box* complexRpow(BoxedComplex* _lhs, Box* _rhs) {
...@@ -613,34 +483,19 @@ Box* complexConjugate(BoxedComplex* self) { ...@@ -613,34 +483,19 @@ Box* complexConjugate(BoxedComplex* self) {
return new BoxedComplex(self->real, -self->imag); return new BoxedComplex(self->real, -self->imag);
} }
Box* complexAbs(BoxedComplex* self) { Box* complexAbs(BoxedComplex* _self) {
if (!PyComplex_Check(self)) if (!PyComplex_Check(_self))
raiseExcHelper(TypeError, "descriptor '__abs__' requires a 'complex' object but received a '%s'", raiseExcHelper(TypeError, "descriptor '__abs__' requires a 'complex' object but received a '%s'",
getTypeName(self)); getTypeName(_self));
double result; double result;
Py_complex self = PyComplex_AsCComplex(_self);
result = c_abs(self);
if (isinf(self->real) || isinf(self->imag)) { if (errno == ERANGE) {
/* C99 rules: if either the real or the imaginary part is an
infinity, return infinity, even if the other part is a
NaN. */
if (!isinf(self->real)) {
return boxFloat(fabs(self->real));
}
if (!isinf(self->imag)) {
return boxFloat(fabs(self->imag));
}
/* either the real or imaginary part is a NaN,
and neither is infinite. Result should be NaN. */
return boxFloat(Py_NAN);
}
result = sqrt(self->real * self->real + self->imag * self->imag);
if (isinf(result)) {
raiseExcHelper(OverflowError, "absolute value too large"); raiseExcHelper(OverflowError, "absolute value too large");
} }
return boxFloat(result); return PyFloat_FromDouble(result);
} }
Box* complexGetnewargs(BoxedComplex* self) { Box* complexGetnewargs(BoxedComplex* self) {
......
...@@ -760,6 +760,14 @@ Box* floatPos(BoxedFloat* self) { ...@@ -760,6 +760,14 @@ Box* floatPos(BoxedFloat* self) {
return PyFloat_FromDouble(self->d); return PyFloat_FromDouble(self->d);
} }
Box* floatAbs(BoxedFloat* self) {
if (!PyFloat_Check(self))
raiseExcHelper(TypeError, "descriptor '__abs__' requires a 'float' object but received a '%s'",
getTypeName(self));
double res = std::abs(self->d);
return boxFloat(res);
}
bool floatNonzeroUnboxed(BoxedFloat* self) { bool floatNonzeroUnboxed(BoxedFloat* self) {
assert(self->cls == float_cls); assert(self->cls == float_cls);
return self->d != 0.0; return self->d != 0.0;
...@@ -1618,6 +1626,7 @@ void setupFloat() { ...@@ -1618,6 +1626,7 @@ void setupFloat() {
float_cls->giveAttr("__gt__", new BoxedFunction(FunctionMetadata::create((void*)floatGt, UNKNOWN, 2))); float_cls->giveAttr("__gt__", new BoxedFunction(FunctionMetadata::create((void*)floatGt, UNKNOWN, 2)));
float_cls->giveAttr("__neg__", new BoxedFunction(FunctionMetadata::create((void*)floatNeg, BOXED_FLOAT, 1))); float_cls->giveAttr("__neg__", new BoxedFunction(FunctionMetadata::create((void*)floatNeg, BOXED_FLOAT, 1)));
float_cls->giveAttr("__pos__", new BoxedFunction(FunctionMetadata::create((void*)floatPos, BOXED_FLOAT, 1))); float_cls->giveAttr("__pos__", new BoxedFunction(FunctionMetadata::create((void*)floatPos, BOXED_FLOAT, 1)));
float_cls->giveAttr("__abs__", new BoxedFunction(FunctionMetadata::create((void*)floatAbs, BOXED_FLOAT, 1)));
FunctionMetadata* nonzero = FunctionMetadata::create((void*)floatNonzeroUnboxed, BOOL, 1); FunctionMetadata* nonzero = FunctionMetadata::create((void*)floatNonzeroUnboxed, BOOL, 1);
nonzero->addVersion((void*)floatNonzero, UNKNOWN); nonzero->addVersion((void*)floatNonzero, UNKNOWN);
......
...@@ -966,6 +966,14 @@ extern "C" Box* intInt(BoxedInt* self) { ...@@ -966,6 +966,14 @@ extern "C" Box* intInt(BoxedInt* self) {
return boxInt(self->n); return boxInt(self->n);
} }
Box* intFloat(BoxedInt* self) {
if (!PyInt_Check(self))
raiseExcHelper(TypeError, "descriptor '__float__' requires a 'int' object but received a '%s'",
getTypeName(self));
return boxFloat(self->n);
}
extern "C" Box* intIndex(BoxedInt* v) { extern "C" Box* intIndex(BoxedInt* v) {
if (PyInt_CheckExact(v)) if (PyInt_CheckExact(v))
return v; return v;
...@@ -1296,6 +1304,7 @@ void setupInt() { ...@@ -1296,6 +1304,7 @@ void setupInt() {
int_cls->giveAttr("__trunc__", new BoxedFunction(FunctionMetadata::create((void*)intTrunc, BOXED_INT, 1))); int_cls->giveAttr("__trunc__", new BoxedFunction(FunctionMetadata::create((void*)intTrunc, BOXED_INT, 1)));
int_cls->giveAttr("__index__", new BoxedFunction(FunctionMetadata::create((void*)intIndex, BOXED_INT, 1))); int_cls->giveAttr("__index__", new BoxedFunction(FunctionMetadata::create((void*)intIndex, BOXED_INT, 1)));
int_cls->giveAttr("__int__", new BoxedFunction(FunctionMetadata::create((void*)intInt, BOXED_INT, 1))); int_cls->giveAttr("__int__", new BoxedFunction(FunctionMetadata::create((void*)intInt, BOXED_INT, 1)));
int_cls->giveAttr("__float__", new BoxedFunction(FunctionMetadata::create((void*)intFloat, BOXED_FLOAT, 1)));
auto int_new = FunctionMetadata::create((void*)intNew<CXX>, UNKNOWN, 3, false, false, auto int_new = FunctionMetadata::create((void*)intNew<CXX>, UNKNOWN, 3, false, false,
ParamNames({ "", "x", "base" }, "", ""), CXX); ParamNames({ "", "x", "base" }, "", ""), CXX);
......
...@@ -42,7 +42,6 @@ test_cfgparser [unknown] ...@@ -42,7 +42,6 @@ test_cfgparser [unknown]
test_cgi [unknown] test_cgi [unknown]
test_class needs ellipsis test_class needs ellipsis
test_cl [unknown] test_cl [unknown]
test_cmath [unknown]
test_cmd_line_script [unknown] test_cmd_line_script [unknown]
test_cmd_line [unknown] test_cmd_line [unknown]
test_codecencodings_cn [unknown] test_codecencodings_cn [unknown]
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment