Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
P
Pyston
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
Analytics
Analytics
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Commits
Issue Boards
Open sidebar
Boxiang Sun
Pyston
Commits
d84105ff
Commit
d84105ff
authored
Jul 29, 2016
by
Boxiang Sun
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Copy listobject.c from CPython 2.7
parent
2bdc8987
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
3045 additions
and
0 deletions
+3045
-0
from_cpython/CMakeLists.txt
from_cpython/CMakeLists.txt
+1
-0
from_cpython/Objects/listobject.c
from_cpython/Objects/listobject.c
+3044
-0
No files found.
from_cpython/CMakeLists.txt
View file @
d84105ff
...
@@ -95,6 +95,7 @@ file(GLOB_RECURSE STDOBJECT_SRCS Objects
...
@@ -95,6 +95,7 @@ file(GLOB_RECURSE STDOBJECT_SRCS Objects
fileobject.c
fileobject.c
import.c
import.c
iterobject.c
iterobject.c
listobject.c
memoryobject.c
memoryobject.c
obmalloc.c
obmalloc.c
stringobject.c
stringobject.c
...
...
from_cpython/Objects/listobject.c
0 → 100644
View file @
d84105ff
/* List object implementation */
#include "Python.h"
#ifdef STDC_HEADERS
#include <stddef.h>
#else
#include <sys/types.h>
/* For size_t */
#endif
/* Ensure ob_item has room for at least newsize elements, and set
* ob_size to newsize. If newsize > ob_size on entry, the content
* of the new slots at exit is undefined heap trash; it's the caller's
* responsibility to overwrite them with sane values.
* The number of allocated elements may grow, shrink, or stay the same.
* Failure is impossible if newsize <= self.allocated on entry, although
* that partly relies on an assumption that the system realloc() never
* fails when passed a number of bytes <= the number of bytes last
* allocated (the C standard doesn't guarantee this, but it's hard to
* imagine a realloc implementation where it wouldn't be true).
* Note that self->ob_item may change, and even if newsize is less
* than ob_size on entry.
*/
static
int
list_resize
(
PyListObject
*
self
,
Py_ssize_t
newsize
)
{
PyObject
**
items
;
size_t
new_allocated
;
Py_ssize_t
allocated
=
self
->
allocated
;
/* Bypass realloc() when a previous overallocation is large enough
to accommodate the newsize. If the newsize falls lower than half
the allocated size, then proceed with the realloc() to shrink the list.
*/
if
(
allocated
>=
newsize
&&
newsize
>=
(
allocated
>>
1
))
{
assert
(
self
->
ob_item
!=
NULL
||
newsize
==
0
);
Py_SIZE
(
self
)
=
newsize
;
return
0
;
}
/* This over-allocates proportional to the list size, making room
* for additional growth. The over-allocation is mild, but is
* enough to give linear-time amortized behavior over a long
* sequence of appends() in the presence of a poorly-performing
* system realloc().
* The growth pattern is: 0, 4, 8, 16, 25, 35, 46, 58, 72, 88, ...
*/
new_allocated
=
(
newsize
>>
3
)
+
(
newsize
<
9
?
3
:
6
);
/* check for integer overflow */
if
(
new_allocated
>
PY_SIZE_MAX
-
newsize
)
{
PyErr_NoMemory
();
return
-
1
;
}
else
{
new_allocated
+=
newsize
;
}
if
(
newsize
==
0
)
new_allocated
=
0
;
items
=
self
->
ob_item
;
if
(
new_allocated
<=
(
PY_SIZE_MAX
/
sizeof
(
PyObject
*
)))
PyMem_RESIZE
(
items
,
PyObject
*
,
new_allocated
);
else
items
=
NULL
;
if
(
items
==
NULL
)
{
PyErr_NoMemory
();
return
-
1
;
}
self
->
ob_item
=
items
;
Py_SIZE
(
self
)
=
newsize
;
self
->
allocated
=
new_allocated
;
return
0
;
}
/* Debug statistic to compare allocations with reuse through the free list */
#undef SHOW_ALLOC_COUNT
#ifdef SHOW_ALLOC_COUNT
static
size_t
count_alloc
=
0
;
static
size_t
count_reuse
=
0
;
static
void
show_alloc
(
void
)
{
fprintf
(
stderr
,
"List allocations: %"
PY_FORMAT_SIZE_T
"d
\n
"
,
count_alloc
);
fprintf
(
stderr
,
"List reuse through freelist: %"
PY_FORMAT_SIZE_T
"d
\n
"
,
count_reuse
);
fprintf
(
stderr
,
"%.2f%% reuse rate
\n\n
"
,
(
100
.
0
*
count_reuse
/
(
count_alloc
+
count_reuse
)));
}
#endif
/* Empty list reuse scheme to save calls to malloc and free */
#ifndef PyList_MAXFREELIST
#define PyList_MAXFREELIST 80
#endif
static
PyListObject
*
free_list
[
PyList_MAXFREELIST
];
static
int
numfree
=
0
;
void
PyList_Fini
(
void
)
{
PyListObject
*
op
;
while
(
numfree
)
{
op
=
free_list
[
--
numfree
];
assert
(
PyList_CheckExact
(
op
));
PyObject_GC_Del
(
op
);
}
}
PyObject
*
PyList_New
(
Py_ssize_t
size
)
{
PyListObject
*
op
;
size_t
nbytes
;
#ifdef SHOW_ALLOC_COUNT
static
int
initialized
=
0
;
if
(
!
initialized
)
{
Py_AtExit
(
show_alloc
);
initialized
=
1
;
}
#endif
if
(
size
<
0
)
{
PyErr_BadInternalCall
();
return
NULL
;
}
/* Check for overflow without an actual overflow,
* which can cause compiler to optimise out */
if
((
size_t
)
size
>
PY_SIZE_MAX
/
sizeof
(
PyObject
*
))
return
PyErr_NoMemory
();
nbytes
=
size
*
sizeof
(
PyObject
*
);
if
(
numfree
)
{
numfree
--
;
op
=
free_list
[
numfree
];
_Py_NewReference
((
PyObject
*
)
op
);
#ifdef SHOW_ALLOC_COUNT
count_reuse
++
;
#endif
}
else
{
op
=
PyObject_GC_New
(
PyListObject
,
&
PyList_Type
);
if
(
op
==
NULL
)
return
NULL
;
#ifdef SHOW_ALLOC_COUNT
count_alloc
++
;
#endif
}
if
(
size
<=
0
)
op
->
ob_item
=
NULL
;
else
{
op
->
ob_item
=
(
PyObject
**
)
PyMem_MALLOC
(
nbytes
);
if
(
op
->
ob_item
==
NULL
)
{
Py_DECREF
(
op
);
return
PyErr_NoMemory
();
}
memset
(
op
->
ob_item
,
0
,
nbytes
);
}
Py_SIZE
(
op
)
=
size
;
op
->
allocated
=
size
;
_PyObject_GC_TRACK
(
op
);
return
(
PyObject
*
)
op
;
}
Py_ssize_t
PyList_Size
(
PyObject
*
op
)
{
if
(
!
PyList_Check
(
op
))
{
PyErr_BadInternalCall
();
return
-
1
;
}
else
return
Py_SIZE
(
op
);
}
static
PyObject
*
indexerr
=
NULL
;
PyObject
*
PyList_GetItem
(
PyObject
*
op
,
Py_ssize_t
i
)
{
if
(
!
PyList_Check
(
op
))
{
PyErr_BadInternalCall
();
return
NULL
;
}
if
(
i
<
0
||
i
>=
Py_SIZE
(
op
))
{
if
(
indexerr
==
NULL
)
{
indexerr
=
PyString_FromString
(
"list index out of range"
);
if
(
indexerr
==
NULL
)
return
NULL
;
}
PyErr_SetObject
(
PyExc_IndexError
,
indexerr
);
return
NULL
;
}
return
((
PyListObject
*
)
op
)
->
ob_item
[
i
];
}
int
PyList_SetItem
(
register
PyObject
*
op
,
register
Py_ssize_t
i
,
register
PyObject
*
newitem
)
{
register
PyObject
*
olditem
;
register
PyObject
**
p
;
if
(
!
PyList_Check
(
op
))
{
Py_XDECREF
(
newitem
);
PyErr_BadInternalCall
();
return
-
1
;
}
if
(
i
<
0
||
i
>=
Py_SIZE
(
op
))
{
Py_XDECREF
(
newitem
);
PyErr_SetString
(
PyExc_IndexError
,
"list assignment index out of range"
);
return
-
1
;
}
p
=
((
PyListObject
*
)
op
)
->
ob_item
+
i
;
olditem
=
*
p
;
*
p
=
newitem
;
Py_XDECREF
(
olditem
);
return
0
;
}
static
int
ins1
(
PyListObject
*
self
,
Py_ssize_t
where
,
PyObject
*
v
)
{
Py_ssize_t
i
,
n
=
Py_SIZE
(
self
);
PyObject
**
items
;
if
(
v
==
NULL
)
{
PyErr_BadInternalCall
();
return
-
1
;
}
if
(
n
==
PY_SSIZE_T_MAX
)
{
PyErr_SetString
(
PyExc_OverflowError
,
"cannot add more objects to list"
);
return
-
1
;
}
if
(
list_resize
(
self
,
n
+
1
)
==
-
1
)
return
-
1
;
if
(
where
<
0
)
{
where
+=
n
;
if
(
where
<
0
)
where
=
0
;
}
if
(
where
>
n
)
where
=
n
;
items
=
self
->
ob_item
;
for
(
i
=
n
;
--
i
>=
where
;
)
items
[
i
+
1
]
=
items
[
i
];
Py_INCREF
(
v
);
items
[
where
]
=
v
;
return
0
;
}
int
PyList_Insert
(
PyObject
*
op
,
Py_ssize_t
where
,
PyObject
*
newitem
)
{
if
(
!
PyList_Check
(
op
))
{
PyErr_BadInternalCall
();
return
-
1
;
}
return
ins1
((
PyListObject
*
)
op
,
where
,
newitem
);
}
static
int
app1
(
PyListObject
*
self
,
PyObject
*
v
)
{
Py_ssize_t
n
=
PyList_GET_SIZE
(
self
);
assert
(
v
!=
NULL
);
if
(
n
==
PY_SSIZE_T_MAX
)
{
PyErr_SetString
(
PyExc_OverflowError
,
"cannot add more objects to list"
);
return
-
1
;
}
if
(
list_resize
(
self
,
n
+
1
)
==
-
1
)
return
-
1
;
Py_INCREF
(
v
);
PyList_SET_ITEM
(
self
,
n
,
v
);
return
0
;
}
int
PyList_Append
(
PyObject
*
op
,
PyObject
*
newitem
)
{
if
(
PyList_Check
(
op
)
&&
(
newitem
!=
NULL
))
return
app1
((
PyListObject
*
)
op
,
newitem
);
PyErr_BadInternalCall
();
return
-
1
;
}
/* Methods */
static
void
list_dealloc
(
PyListObject
*
op
)
{
Py_ssize_t
i
;
PyObject_GC_UnTrack
(
op
);
Py_TRASHCAN_SAFE_BEGIN
(
op
)
if
(
op
->
ob_item
!=
NULL
)
{
/* Do it backwards, for Christian Tismer.
There's a simple test case where somehow this reduces
thrashing when a *very* large list is created and
immediately deleted. */
i
=
Py_SIZE
(
op
);
while
(
--
i
>=
0
)
{
Py_XDECREF
(
op
->
ob_item
[
i
]);
}
PyMem_FREE
(
op
->
ob_item
);
}
if
(
numfree
<
PyList_MAXFREELIST
&&
PyList_CheckExact
(
op
))
free_list
[
numfree
++
]
=
op
;
else
Py_TYPE
(
op
)
->
tp_free
((
PyObject
*
)
op
);
Py_TRASHCAN_SAFE_END
(
op
)
}
static
int
list_print
(
PyListObject
*
op
,
FILE
*
fp
,
int
flags
)
{
int
rc
;
Py_ssize_t
i
;
PyObject
*
item
;
rc
=
Py_ReprEnter
((
PyObject
*
)
op
);
if
(
rc
!=
0
)
{
if
(
rc
<
0
)
return
rc
;
Py_BEGIN_ALLOW_THREADS
fprintf
(
fp
,
"[...]"
);
Py_END_ALLOW_THREADS
return
0
;
}
Py_BEGIN_ALLOW_THREADS
fprintf
(
fp
,
"["
);
Py_END_ALLOW_THREADS
for
(
i
=
0
;
i
<
Py_SIZE
(
op
);
i
++
)
{
item
=
op
->
ob_item
[
i
];
Py_INCREF
(
item
);
if
(
i
>
0
)
{
Py_BEGIN_ALLOW_THREADS
fprintf
(
fp
,
", "
);
Py_END_ALLOW_THREADS
}
if
(
PyObject_Print
(
item
,
fp
,
0
)
!=
0
)
{
Py_DECREF
(
item
);
Py_ReprLeave
((
PyObject
*
)
op
);
return
-
1
;
}
Py_DECREF
(
item
);
}
Py_BEGIN_ALLOW_THREADS
fprintf
(
fp
,
"]"
);
Py_END_ALLOW_THREADS
Py_ReprLeave
((
PyObject
*
)
op
);
return
0
;
}
static
PyObject
*
list_repr
(
PyListObject
*
v
)
{
Py_ssize_t
i
;
PyObject
*
s
,
*
temp
;
PyObject
*
pieces
=
NULL
,
*
result
=
NULL
;
i
=
Py_ReprEnter
((
PyObject
*
)
v
);
if
(
i
!=
0
)
{
return
i
>
0
?
PyString_FromString
(
"[...]"
)
:
NULL
;
}
if
(
Py_SIZE
(
v
)
==
0
)
{
result
=
PyString_FromString
(
"[]"
);
goto
Done
;
}
pieces
=
PyList_New
(
0
);
if
(
pieces
==
NULL
)
goto
Done
;
/* Do repr() on each element. Note that this may mutate the list,
so must refetch the list size on each iteration. */
for
(
i
=
0
;
i
<
Py_SIZE
(
v
);
++
i
)
{
int
status
;
if
(
Py_EnterRecursiveCall
(
" while getting the repr of a list"
))
goto
Done
;
s
=
PyObject_Repr
(
v
->
ob_item
[
i
]);
Py_LeaveRecursiveCall
();
if
(
s
==
NULL
)
goto
Done
;
status
=
PyList_Append
(
pieces
,
s
);
Py_DECREF
(
s
);
/* append created a new ref */
if
(
status
<
0
)
goto
Done
;
}
/* Add "[]" decorations to the first and last items. */
assert
(
PyList_GET_SIZE
(
pieces
)
>
0
);
s
=
PyString_FromString
(
"["
);
if
(
s
==
NULL
)
goto
Done
;
temp
=
PyList_GET_ITEM
(
pieces
,
0
);
PyString_ConcatAndDel
(
&
s
,
temp
);
PyList_SET_ITEM
(
pieces
,
0
,
s
);
if
(
s
==
NULL
)
goto
Done
;
s
=
PyString_FromString
(
"]"
);
if
(
s
==
NULL
)
goto
Done
;
temp
=
PyList_GET_ITEM
(
pieces
,
PyList_GET_SIZE
(
pieces
)
-
1
);
PyString_ConcatAndDel
(
&
temp
,
s
);
PyList_SET_ITEM
(
pieces
,
PyList_GET_SIZE
(
pieces
)
-
1
,
temp
);
if
(
temp
==
NULL
)
goto
Done
;
/* Paste them all together with ", " between. */
s
=
PyString_FromString
(
", "
);
if
(
s
==
NULL
)
goto
Done
;
result
=
_PyString_Join
(
s
,
pieces
);
Py_DECREF
(
s
);
Done:
Py_XDECREF
(
pieces
);
Py_ReprLeave
((
PyObject
*
)
v
);
return
result
;
}
static
Py_ssize_t
list_length
(
PyListObject
*
a
)
{
return
Py_SIZE
(
a
);
}
static
int
list_contains
(
PyListObject
*
a
,
PyObject
*
el
)
{
Py_ssize_t
i
;
int
cmp
;
for
(
i
=
0
,
cmp
=
0
;
cmp
==
0
&&
i
<
Py_SIZE
(
a
);
++
i
)
cmp
=
PyObject_RichCompareBool
(
el
,
PyList_GET_ITEM
(
a
,
i
),
Py_EQ
);
return
cmp
;
}
static
PyObject
*
list_item
(
PyListObject
*
a
,
Py_ssize_t
i
)
{
if
(
i
<
0
||
i
>=
Py_SIZE
(
a
))
{
if
(
indexerr
==
NULL
)
{
indexerr
=
PyString_FromString
(
"list index out of range"
);
if
(
indexerr
==
NULL
)
return
NULL
;
}
PyErr_SetObject
(
PyExc_IndexError
,
indexerr
);
return
NULL
;
}
Py_INCREF
(
a
->
ob_item
[
i
]);
return
a
->
ob_item
[
i
];
}
static
PyObject
*
list_slice
(
PyListObject
*
a
,
Py_ssize_t
ilow
,
Py_ssize_t
ihigh
)
{
PyListObject
*
np
;
PyObject
**
src
,
**
dest
;
Py_ssize_t
i
,
len
;
if
(
ilow
<
0
)
ilow
=
0
;
else
if
(
ilow
>
Py_SIZE
(
a
))
ilow
=
Py_SIZE
(
a
);
if
(
ihigh
<
ilow
)
ihigh
=
ilow
;
else
if
(
ihigh
>
Py_SIZE
(
a
))
ihigh
=
Py_SIZE
(
a
);
len
=
ihigh
-
ilow
;
np
=
(
PyListObject
*
)
PyList_New
(
len
);
if
(
np
==
NULL
)
return
NULL
;
src
=
a
->
ob_item
+
ilow
;
dest
=
np
->
ob_item
;
for
(
i
=
0
;
i
<
len
;
i
++
)
{
PyObject
*
v
=
src
[
i
];
Py_INCREF
(
v
);
dest
[
i
]
=
v
;
}
return
(
PyObject
*
)
np
;
}
PyObject
*
PyList_GetSlice
(
PyObject
*
a
,
Py_ssize_t
ilow
,
Py_ssize_t
ihigh
)
{
if
(
!
PyList_Check
(
a
))
{
PyErr_BadInternalCall
();
return
NULL
;
}
return
list_slice
((
PyListObject
*
)
a
,
ilow
,
ihigh
);
}
static
PyObject
*
list_concat
(
PyListObject
*
a
,
PyObject
*
bb
)
{
Py_ssize_t
size
;
Py_ssize_t
i
;
PyObject
**
src
,
**
dest
;
PyListObject
*
np
;
if
(
!
PyList_Check
(
bb
))
{
PyErr_Format
(
PyExc_TypeError
,
"can only concatenate list (not
\"
%.200s
\"
) to list"
,
bb
->
ob_type
->
tp_name
);
return
NULL
;
}
#define b ((PyListObject *)bb)
size
=
Py_SIZE
(
a
)
+
Py_SIZE
(
b
);
if
(
size
<
0
)
return
PyErr_NoMemory
();
np
=
(
PyListObject
*
)
PyList_New
(
size
);
if
(
np
==
NULL
)
{
return
NULL
;
}
src
=
a
->
ob_item
;
dest
=
np
->
ob_item
;
for
(
i
=
0
;
i
<
Py_SIZE
(
a
);
i
++
)
{
PyObject
*
v
=
src
[
i
];
Py_INCREF
(
v
);
dest
[
i
]
=
v
;
}
src
=
b
->
ob_item
;
dest
=
np
->
ob_item
+
Py_SIZE
(
a
);
for
(
i
=
0
;
i
<
Py_SIZE
(
b
);
i
++
)
{
PyObject
*
v
=
src
[
i
];
Py_INCREF
(
v
);
dest
[
i
]
=
v
;
}
return
(
PyObject
*
)
np
;
#undef b
}
static
PyObject
*
list_repeat
(
PyListObject
*
a
,
Py_ssize_t
n
)
{
Py_ssize_t
i
,
j
;
Py_ssize_t
size
;
PyListObject
*
np
;
PyObject
**
p
,
**
items
;
PyObject
*
elem
;
if
(
n
<
0
)
n
=
0
;
if
(
n
>
0
&&
Py_SIZE
(
a
)
>
PY_SSIZE_T_MAX
/
n
)
return
PyErr_NoMemory
();
size
=
Py_SIZE
(
a
)
*
n
;
if
(
size
==
0
)
return
PyList_New
(
0
);
np
=
(
PyListObject
*
)
PyList_New
(
size
);
if
(
np
==
NULL
)
return
NULL
;
items
=
np
->
ob_item
;
if
(
Py_SIZE
(
a
)
==
1
)
{
elem
=
a
->
ob_item
[
0
];
for
(
i
=
0
;
i
<
n
;
i
++
)
{
items
[
i
]
=
elem
;
Py_INCREF
(
elem
);
}
return
(
PyObject
*
)
np
;
}
p
=
np
->
ob_item
;
items
=
a
->
ob_item
;
for
(
i
=
0
;
i
<
n
;
i
++
)
{
for
(
j
=
0
;
j
<
Py_SIZE
(
a
);
j
++
)
{
*
p
=
items
[
j
];
Py_INCREF
(
*
p
);
p
++
;
}
}
return
(
PyObject
*
)
np
;
}
static
int
list_clear
(
PyListObject
*
a
)
{
Py_ssize_t
i
;
PyObject
**
item
=
a
->
ob_item
;
if
(
item
!=
NULL
)
{
/* Because XDECREF can recursively invoke operations on
this list, we make it empty first. */
i
=
Py_SIZE
(
a
);
Py_SIZE
(
a
)
=
0
;
a
->
ob_item
=
NULL
;
a
->
allocated
=
0
;
while
(
--
i
>=
0
)
{
Py_XDECREF
(
item
[
i
]);
}
PyMem_FREE
(
item
);
}
/* Never fails; the return value can be ignored.
Note that there is no guarantee that the list is actually empty
at this point, because XDECREF may have populated it again! */
return
0
;
}
/* a[ilow:ihigh] = v if v != NULL.
* del a[ilow:ihigh] if v == NULL.
*
* Special speed gimmick: when v is NULL and ihigh - ilow <= 8, it's
* guaranteed the call cannot fail.
*/
static
int
list_ass_slice
(
PyListObject
*
a
,
Py_ssize_t
ilow
,
Py_ssize_t
ihigh
,
PyObject
*
v
)
{
/* Because [X]DECREF can recursively invoke list operations on
this list, we must postpone all [X]DECREF activity until
after the list is back in its canonical shape. Therefore
we must allocate an additional array, 'recycle', into which
we temporarily copy the items that are deleted from the
list. :-( */
PyObject
*
recycle_on_stack
[
8
];
PyObject
**
recycle
=
recycle_on_stack
;
/* will allocate more if needed */
PyObject
**
item
;
PyObject
**
vitem
=
NULL
;
PyObject
*
v_as_SF
=
NULL
;
/* PySequence_Fast(v) */
Py_ssize_t
n
;
/* # of elements in replacement list */
Py_ssize_t
norig
;
/* # of elements in list getting replaced */
Py_ssize_t
d
;
/* Change in size */
Py_ssize_t
k
;
size_t
s
;
int
result
=
-
1
;
/* guilty until proved innocent */
#define b ((PyListObject *)v)
if
(
v
==
NULL
)
n
=
0
;
else
{
if
(
a
==
b
)
{
/* Special case "a[i:j] = a" -- copy b first */
v
=
list_slice
(
b
,
0
,
Py_SIZE
(
b
));
if
(
v
==
NULL
)
return
result
;
result
=
list_ass_slice
(
a
,
ilow
,
ihigh
,
v
);
Py_DECREF
(
v
);
return
result
;
}
v_as_SF
=
PySequence_Fast
(
v
,
"can only assign an iterable"
);
if
(
v_as_SF
==
NULL
)
goto
Error
;
n
=
PySequence_Fast_GET_SIZE
(
v_as_SF
);
vitem
=
PySequence_Fast_ITEMS
(
v_as_SF
);
}
if
(
ilow
<
0
)
ilow
=
0
;
else
if
(
ilow
>
Py_SIZE
(
a
))
ilow
=
Py_SIZE
(
a
);
if
(
ihigh
<
ilow
)
ihigh
=
ilow
;
else
if
(
ihigh
>
Py_SIZE
(
a
))
ihigh
=
Py_SIZE
(
a
);
norig
=
ihigh
-
ilow
;
assert
(
norig
>=
0
);
d
=
n
-
norig
;
if
(
Py_SIZE
(
a
)
+
d
==
0
)
{
Py_XDECREF
(
v_as_SF
);
return
list_clear
(
a
);
}
item
=
a
->
ob_item
;
/* recycle the items that we are about to remove */
s
=
norig
*
sizeof
(
PyObject
*
);
if
(
s
>
sizeof
(
recycle_on_stack
))
{
recycle
=
(
PyObject
**
)
PyMem_MALLOC
(
s
);
if
(
recycle
==
NULL
)
{
PyErr_NoMemory
();
goto
Error
;
}
}
memcpy
(
recycle
,
&
item
[
ilow
],
s
);
if
(
d
<
0
)
{
/* Delete -d items */
memmove
(
&
item
[
ihigh
+
d
],
&
item
[
ihigh
],
(
Py_SIZE
(
a
)
-
ihigh
)
*
sizeof
(
PyObject
*
));
list_resize
(
a
,
Py_SIZE
(
a
)
+
d
);
item
=
a
->
ob_item
;
}
else
if
(
d
>
0
)
{
/* Insert d items */
k
=
Py_SIZE
(
a
);
if
(
list_resize
(
a
,
k
+
d
)
<
0
)
goto
Error
;
item
=
a
->
ob_item
;
memmove
(
&
item
[
ihigh
+
d
],
&
item
[
ihigh
],
(
k
-
ihigh
)
*
sizeof
(
PyObject
*
));
}
for
(
k
=
0
;
k
<
n
;
k
++
,
ilow
++
)
{
PyObject
*
w
=
vitem
[
k
];
Py_XINCREF
(
w
);
item
[
ilow
]
=
w
;
}
for
(
k
=
norig
-
1
;
k
>=
0
;
--
k
)
Py_XDECREF
(
recycle
[
k
]);
result
=
0
;
Error:
if
(
recycle
!=
recycle_on_stack
)
PyMem_FREE
(
recycle
);
Py_XDECREF
(
v_as_SF
);
return
result
;
#undef b
}
int
PyList_SetSlice
(
PyObject
*
a
,
Py_ssize_t
ilow
,
Py_ssize_t
ihigh
,
PyObject
*
v
)
{
if
(
!
PyList_Check
(
a
))
{
PyErr_BadInternalCall
();
return
-
1
;
}
return
list_ass_slice
((
PyListObject
*
)
a
,
ilow
,
ihigh
,
v
);
}
static
PyObject
*
list_inplace_repeat
(
PyListObject
*
self
,
Py_ssize_t
n
)
{
PyObject
**
items
;
Py_ssize_t
size
,
i
,
j
,
p
;
size
=
PyList_GET_SIZE
(
self
);
if
(
size
==
0
||
n
==
1
)
{
Py_INCREF
(
self
);
return
(
PyObject
*
)
self
;
}
if
(
n
<
1
)
{
(
void
)
list_clear
(
self
);
Py_INCREF
(
self
);
return
(
PyObject
*
)
self
;
}
if
(
size
>
PY_SSIZE_T_MAX
/
n
)
{
return
PyErr_NoMemory
();
}
if
(
list_resize
(
self
,
size
*
n
)
==
-
1
)
return
NULL
;
p
=
size
;
items
=
self
->
ob_item
;
for
(
i
=
1
;
i
<
n
;
i
++
)
{
/* Start counting at 1, not 0 */
for
(
j
=
0
;
j
<
size
;
j
++
)
{
PyObject
*
o
=
items
[
j
];
Py_INCREF
(
o
);
items
[
p
++
]
=
o
;
}
}
Py_INCREF
(
self
);
return
(
PyObject
*
)
self
;
}
static
int
list_ass_item
(
PyListObject
*
a
,
Py_ssize_t
i
,
PyObject
*
v
)
{
PyObject
*
old_value
;
if
(
i
<
0
||
i
>=
Py_SIZE
(
a
))
{
PyErr_SetString
(
PyExc_IndexError
,
"list assignment index out of range"
);
return
-
1
;
}
if
(
v
==
NULL
)
return
list_ass_slice
(
a
,
i
,
i
+
1
,
v
);
Py_INCREF
(
v
);
old_value
=
a
->
ob_item
[
i
];
a
->
ob_item
[
i
]
=
v
;
Py_DECREF
(
old_value
);
return
0
;
}
static
PyObject
*
listinsert
(
PyListObject
*
self
,
PyObject
*
args
)
{
Py_ssize_t
i
;
PyObject
*
v
;
if
(
!
PyArg_ParseTuple
(
args
,
"nO:insert"
,
&
i
,
&
v
))
return
NULL
;
if
(
ins1
(
self
,
i
,
v
)
==
0
)
Py_RETURN_NONE
;
return
NULL
;
}
static
PyObject
*
listappend
(
PyListObject
*
self
,
PyObject
*
v
)
{
if
(
app1
(
self
,
v
)
==
0
)
Py_RETURN_NONE
;
return
NULL
;
}
static
PyObject
*
listextend
(
PyListObject
*
self
,
PyObject
*
b
)
{
PyObject
*
it
;
/* iter(v) */
Py_ssize_t
m
;
/* size of self */
Py_ssize_t
n
;
/* guess for size of b */
Py_ssize_t
mn
;
/* m + n */
Py_ssize_t
i
;
PyObject
*
(
*
iternext
)(
PyObject
*
);
/* Special cases:
1) lists and tuples which can use PySequence_Fast ops
2) extending self to self requires making a copy first
*/
if
(
PyList_CheckExact
(
b
)
||
PyTuple_CheckExact
(
b
)
||
(
PyObject
*
)
self
==
b
)
{
PyObject
**
src
,
**
dest
;
b
=
PySequence_Fast
(
b
,
"argument must be iterable"
);
if
(
!
b
)
return
NULL
;
n
=
PySequence_Fast_GET_SIZE
(
b
);
if
(
n
==
0
)
{
/* short circuit when b is empty */
Py_DECREF
(
b
);
Py_RETURN_NONE
;
}
m
=
Py_SIZE
(
self
);
if
(
list_resize
(
self
,
m
+
n
)
==
-
1
)
{
Py_DECREF
(
b
);
return
NULL
;
}
/* note that we may still have self == b here for the
* situation a.extend(a), but the following code works
* in that case too. Just make sure to resize self
* before calling PySequence_Fast_ITEMS.
*/
/* populate the end of self with b's items */
src
=
PySequence_Fast_ITEMS
(
b
);
dest
=
self
->
ob_item
+
m
;
for
(
i
=
0
;
i
<
n
;
i
++
)
{
PyObject
*
o
=
src
[
i
];
Py_INCREF
(
o
);
dest
[
i
]
=
o
;
}
Py_DECREF
(
b
);
Py_RETURN_NONE
;
}
it
=
PyObject_GetIter
(
b
);
if
(
it
==
NULL
)
return
NULL
;
iternext
=
*
it
->
ob_type
->
tp_iternext
;
/* Guess a result list size. */
n
=
_PyObject_LengthHint
(
b
,
8
);
if
(
n
==
-
1
)
{
Py_DECREF
(
it
);
return
NULL
;
}
m
=
Py_SIZE
(
self
);
mn
=
m
+
n
;
if
(
mn
>=
m
)
{
/* Make room. */
if
(
list_resize
(
self
,
mn
)
==
-
1
)
goto
error
;
/* Make the list sane again. */
Py_SIZE
(
self
)
=
m
;
}
/* Else m + n overflowed; on the chance that n lied, and there really
* is enough room, ignore it. If n was telling the truth, we'll
* eventually run out of memory during the loop.
*/
/* Run iterator to exhaustion. */
for
(;;)
{
PyObject
*
item
=
iternext
(
it
);
if
(
item
==
NULL
)
{
if
(
PyErr_Occurred
())
{
if
(
PyErr_ExceptionMatches
(
PyExc_StopIteration
))
PyErr_Clear
();
else
goto
error
;
}
break
;
}
if
(
Py_SIZE
(
self
)
<
self
->
allocated
)
{
/* steals ref */
PyList_SET_ITEM
(
self
,
Py_SIZE
(
self
),
item
);
++
Py_SIZE
(
self
);
}
else
{
int
status
=
app1
(
self
,
item
);
Py_DECREF
(
item
);
/* append creates a new ref */
if
(
status
<
0
)
goto
error
;
}
}
/* Cut back result list if initial guess was too large. */
if
(
Py_SIZE
(
self
)
<
self
->
allocated
)
list_resize
(
self
,
Py_SIZE
(
self
));
/* shrinking can't fail */
Py_DECREF
(
it
);
Py_RETURN_NONE
;
error:
Py_DECREF
(
it
);
return
NULL
;
}
PyObject
*
_PyList_Extend
(
PyListObject
*
self
,
PyObject
*
b
)
{
return
listextend
(
self
,
b
);
}
static
PyObject
*
list_inplace_concat
(
PyListObject
*
self
,
PyObject
*
other
)
{
PyObject
*
result
;
result
=
listextend
(
self
,
other
);
if
(
result
==
NULL
)
return
result
;
Py_DECREF
(
result
);
Py_INCREF
(
self
);
return
(
PyObject
*
)
self
;
}
static
PyObject
*
listpop
(
PyListObject
*
self
,
PyObject
*
args
)
{
Py_ssize_t
i
=
-
1
;
PyObject
*
v
;
int
status
;
if
(
!
PyArg_ParseTuple
(
args
,
"|n:pop"
,
&
i
))
return
NULL
;
if
(
Py_SIZE
(
self
)
==
0
)
{
/* Special-case most common failure cause */
PyErr_SetString
(
PyExc_IndexError
,
"pop from empty list"
);
return
NULL
;
}
if
(
i
<
0
)
i
+=
Py_SIZE
(
self
);
if
(
i
<
0
||
i
>=
Py_SIZE
(
self
))
{
PyErr_SetString
(
PyExc_IndexError
,
"pop index out of range"
);
return
NULL
;
}
v
=
self
->
ob_item
[
i
];
if
(
i
==
Py_SIZE
(
self
)
-
1
)
{
status
=
list_resize
(
self
,
Py_SIZE
(
self
)
-
1
);
assert
(
status
>=
0
);
return
v
;
/* and v now owns the reference the list had */
}
Py_INCREF
(
v
);
status
=
list_ass_slice
(
self
,
i
,
i
+
1
,
(
PyObject
*
)
NULL
);
assert
(
status
>=
0
);
/* Use status, so that in a release build compilers don't
* complain about the unused name.
*/
(
void
)
status
;
return
v
;
}
/* Reverse a slice of a list in place, from lo up to (exclusive) hi. */
static
void
reverse_slice
(
PyObject
**
lo
,
PyObject
**
hi
)
{
assert
(
lo
&&
hi
);
--
hi
;
while
(
lo
<
hi
)
{
PyObject
*
t
=
*
lo
;
*
lo
=
*
hi
;
*
hi
=
t
;
++
lo
;
--
hi
;
}
}
/* Lots of code for an adaptive, stable, natural mergesort. There are many
* pieces to this algorithm; read listsort.txt for overviews and details.
*/
/* Comparison function. Takes care of calling a user-supplied
* comparison function (any callable Python object), which must not be
* NULL (use the ISLT macro if you don't know, or call PyObject_RichCompareBool
* with Py_LT if you know it's NULL).
* Returns -1 on error, 1 if x < y, 0 if x >= y.
*/
static
int
islt
(
PyObject
*
x
,
PyObject
*
y
,
PyObject
*
compare
)
{
PyObject
*
res
;
PyObject
*
args
;
Py_ssize_t
i
;
assert
(
compare
!=
NULL
);
/* Call the user's comparison function and translate the 3-way
* result into true or false (or error).
*/
args
=
PyTuple_New
(
2
);
if
(
args
==
NULL
)
return
-
1
;
Py_INCREF
(
x
);
Py_INCREF
(
y
);
PyTuple_SET_ITEM
(
args
,
0
,
x
);
PyTuple_SET_ITEM
(
args
,
1
,
y
);
res
=
PyObject_Call
(
compare
,
args
,
NULL
);
Py_DECREF
(
args
);
if
(
res
==
NULL
)
return
-
1
;
if
(
!
PyInt_Check
(
res
))
{
PyErr_Format
(
PyExc_TypeError
,
"comparison function must return int, not %.200s"
,
res
->
ob_type
->
tp_name
);
Py_DECREF
(
res
);
return
-
1
;
}
i
=
PyInt_AsLong
(
res
);
Py_DECREF
(
res
);
return
i
<
0
;
}
/* If COMPARE is NULL, calls PyObject_RichCompareBool with Py_LT, else calls
* islt. This avoids a layer of function call in the usual case, and
* sorting does many comparisons.
* Returns -1 on error, 1 if x < y, 0 if x >= y.
*/
#define ISLT(X, Y, COMPARE) ((COMPARE) == NULL ? \
PyObject_RichCompareBool(X, Y, Py_LT) : \
islt(X, Y, COMPARE))
/* Compare X to Y via "<". Goto "fail" if the comparison raises an
error. Else "k" is set to true iff X<Y, and an "if (k)" block is
started. It makes more sense in context <wink>. X and Y are PyObject*s.
*/
#define IFLT(X, Y) if ((k = ISLT(X, Y, compare)) < 0) goto fail; \
if (k)
/* binarysort is the best method for sorting small arrays: it does
few compares, but can do data movement quadratic in the number of
elements.
[lo, hi) is a contiguous slice of a list, and is sorted via
binary insertion. This sort is stable.
On entry, must have lo <= start <= hi, and that [lo, start) is already
sorted (pass start == lo if you don't know!).
If islt() complains return -1, else 0.
Even in case of error, the output slice will be some permutation of
the input (nothing is lost or duplicated).
*/
static
int
binarysort
(
PyObject
**
lo
,
PyObject
**
hi
,
PyObject
**
start
,
PyObject
*
compare
)
/* compare -- comparison function object, or NULL for default */
{
register
Py_ssize_t
k
;
register
PyObject
**
l
,
**
p
,
**
r
;
register
PyObject
*
pivot
;
assert
(
lo
<=
start
&&
start
<=
hi
);
/* assert [lo, start) is sorted */
if
(
lo
==
start
)
++
start
;
for
(;
start
<
hi
;
++
start
)
{
/* set l to where *start belongs */
l
=
lo
;
r
=
start
;
pivot
=
*
r
;
/* Invariants:
* pivot >= all in [lo, l).
* pivot < all in [r, start).
* The second is vacuously true at the start.
*/
assert
(
l
<
r
);
do
{
p
=
l
+
((
r
-
l
)
>>
1
);
IFLT
(
pivot
,
*
p
)
r
=
p
;
else
l
=
p
+
1
;
}
while
(
l
<
r
);
assert
(
l
==
r
);
/* The invariants still hold, so pivot >= all in [lo, l) and
pivot < all in [l, start), so pivot belongs at l. Note
that if there are elements equal to pivot, l points to the
first slot after them -- that's why this sort is stable.
Slide over to make room.
Caution: using memmove is much slower under MSVC 5;
we're not usually moving many slots. */
for
(
p
=
start
;
p
>
l
;
--
p
)
*
p
=
*
(
p
-
1
);
*
l
=
pivot
;
}
return
0
;
fail:
return
-
1
;
}
/*
Return the length of the run beginning at lo, in the slice [lo, hi). lo < hi
is required on entry. "A run" is the longest ascending sequence, with
lo[0] <= lo[1] <= lo[2] <= ...
or the longest descending sequence, with
lo[0] > lo[1] > lo[2] > ...
Boolean *descending is set to 0 in the former case, or to 1 in the latter.
For its intended use in a stable mergesort, the strictness of the defn of
"descending" is needed so that the caller can safely reverse a descending
sequence without violating stability (strict > ensures there are no equal
elements to get out of order).
Returns -1 in case of error.
*/
static
Py_ssize_t
count_run
(
PyObject
**
lo
,
PyObject
**
hi
,
PyObject
*
compare
,
int
*
descending
)
{
Py_ssize_t
k
;
Py_ssize_t
n
;
assert
(
lo
<
hi
);
*
descending
=
0
;
++
lo
;
if
(
lo
==
hi
)
return
1
;
n
=
2
;
IFLT
(
*
lo
,
*
(
lo
-
1
))
{
*
descending
=
1
;
for
(
lo
=
lo
+
1
;
lo
<
hi
;
++
lo
,
++
n
)
{
IFLT
(
*
lo
,
*
(
lo
-
1
))
;
else
break
;
}
}
else
{
for
(
lo
=
lo
+
1
;
lo
<
hi
;
++
lo
,
++
n
)
{
IFLT
(
*
lo
,
*
(
lo
-
1
))
break
;
}
}
return
n
;
fail:
return
-
1
;
}
/*
Locate the proper position of key in a sorted vector; if the vector contains
an element equal to key, return the position immediately to the left of
the leftmost equal element. [gallop_right() does the same except returns
the position to the right of the rightmost equal element (if any).]
"a" is a sorted vector with n elements, starting at a[0]. n must be > 0.
"hint" is an index at which to begin the search, 0 <= hint < n. The closer
hint is to the final result, the faster this runs.
The return value is the int k in 0..n such that
a[k-1] < key <= a[k]
pretending that *(a-1) is minus infinity and a[n] is plus infinity. IOW,
key belongs at index k; or, IOW, the first k elements of a should precede
key, and the last n-k should follow key.
Returns -1 on error. See listsort.txt for info on the method.
*/
static
Py_ssize_t
gallop_left
(
PyObject
*
key
,
PyObject
**
a
,
Py_ssize_t
n
,
Py_ssize_t
hint
,
PyObject
*
compare
)
{
Py_ssize_t
ofs
;
Py_ssize_t
lastofs
;
Py_ssize_t
k
;
assert
(
key
&&
a
&&
n
>
0
&&
hint
>=
0
&&
hint
<
n
);
a
+=
hint
;
lastofs
=
0
;
ofs
=
1
;
IFLT
(
*
a
,
key
)
{
/* a[hint] < key -- gallop right, until
* a[hint + lastofs] < key <= a[hint + ofs]
*/
const
Py_ssize_t
maxofs
=
n
-
hint
;
/* &a[n-1] is highest */
while
(
ofs
<
maxofs
)
{
IFLT
(
a
[
ofs
],
key
)
{
lastofs
=
ofs
;
ofs
=
(
ofs
<<
1
)
+
1
;
if
(
ofs
<=
0
)
/* int overflow */
ofs
=
maxofs
;
}
else
/* key <= a[hint + ofs] */
break
;
}
if
(
ofs
>
maxofs
)
ofs
=
maxofs
;
/* Translate back to offsets relative to &a[0]. */
lastofs
+=
hint
;
ofs
+=
hint
;
}
else
{
/* key <= a[hint] -- gallop left, until
* a[hint - ofs] < key <= a[hint - lastofs]
*/
const
Py_ssize_t
maxofs
=
hint
+
1
;
/* &a[0] is lowest */
while
(
ofs
<
maxofs
)
{
IFLT
(
*
(
a
-
ofs
),
key
)
break
;
/* key <= a[hint - ofs] */
lastofs
=
ofs
;
ofs
=
(
ofs
<<
1
)
+
1
;
if
(
ofs
<=
0
)
/* int overflow */
ofs
=
maxofs
;
}
if
(
ofs
>
maxofs
)
ofs
=
maxofs
;
/* Translate back to positive offsets relative to &a[0]. */
k
=
lastofs
;
lastofs
=
hint
-
ofs
;
ofs
=
hint
-
k
;
}
a
-=
hint
;
assert
(
-
1
<=
lastofs
&&
lastofs
<
ofs
&&
ofs
<=
n
);
/* Now a[lastofs] < key <= a[ofs], so key belongs somewhere to the
* right of lastofs but no farther right than ofs. Do a binary
* search, with invariant a[lastofs-1] < key <= a[ofs].
*/
++
lastofs
;
while
(
lastofs
<
ofs
)
{
Py_ssize_t
m
=
lastofs
+
((
ofs
-
lastofs
)
>>
1
);
IFLT
(
a
[
m
],
key
)
lastofs
=
m
+
1
;
/* a[m] < key */
else
ofs
=
m
;
/* key <= a[m] */
}
assert
(
lastofs
==
ofs
);
/* so a[ofs-1] < key <= a[ofs] */
return
ofs
;
fail:
return
-
1
;
}
/*
Exactly like gallop_left(), except that if key already exists in a[0:n],
finds the position immediately to the right of the rightmost equal value.
The return value is the int k in 0..n such that
a[k-1] <= key < a[k]
or -1 if error.
The code duplication is massive, but this is enough different given that
we're sticking to "<" comparisons that it's much harder to follow if
written as one routine with yet another "left or right?" flag.
*/
static
Py_ssize_t
gallop_right
(
PyObject
*
key
,
PyObject
**
a
,
Py_ssize_t
n
,
Py_ssize_t
hint
,
PyObject
*
compare
)
{
Py_ssize_t
ofs
;
Py_ssize_t
lastofs
;
Py_ssize_t
k
;
assert
(
key
&&
a
&&
n
>
0
&&
hint
>=
0
&&
hint
<
n
);
a
+=
hint
;
lastofs
=
0
;
ofs
=
1
;
IFLT
(
key
,
*
a
)
{
/* key < a[hint] -- gallop left, until
* a[hint - ofs] <= key < a[hint - lastofs]
*/
const
Py_ssize_t
maxofs
=
hint
+
1
;
/* &a[0] is lowest */
while
(
ofs
<
maxofs
)
{
IFLT
(
key
,
*
(
a
-
ofs
))
{
lastofs
=
ofs
;
ofs
=
(
ofs
<<
1
)
+
1
;
if
(
ofs
<=
0
)
/* int overflow */
ofs
=
maxofs
;
}
else
/* a[hint - ofs] <= key */
break
;
}
if
(
ofs
>
maxofs
)
ofs
=
maxofs
;
/* Translate back to positive offsets relative to &a[0]. */
k
=
lastofs
;
lastofs
=
hint
-
ofs
;
ofs
=
hint
-
k
;
}
else
{
/* a[hint] <= key -- gallop right, until
* a[hint + lastofs] <= key < a[hint + ofs]
*/
const
Py_ssize_t
maxofs
=
n
-
hint
;
/* &a[n-1] is highest */
while
(
ofs
<
maxofs
)
{
IFLT
(
key
,
a
[
ofs
])
break
;
/* a[hint + ofs] <= key */
lastofs
=
ofs
;
ofs
=
(
ofs
<<
1
)
+
1
;
if
(
ofs
<=
0
)
/* int overflow */
ofs
=
maxofs
;
}
if
(
ofs
>
maxofs
)
ofs
=
maxofs
;
/* Translate back to offsets relative to &a[0]. */
lastofs
+=
hint
;
ofs
+=
hint
;
}
a
-=
hint
;
assert
(
-
1
<=
lastofs
&&
lastofs
<
ofs
&&
ofs
<=
n
);
/* Now a[lastofs] <= key < a[ofs], so key belongs somewhere to the
* right of lastofs but no farther right than ofs. Do a binary
* search, with invariant a[lastofs-1] <= key < a[ofs].
*/
++
lastofs
;
while
(
lastofs
<
ofs
)
{
Py_ssize_t
m
=
lastofs
+
((
ofs
-
lastofs
)
>>
1
);
IFLT
(
key
,
a
[
m
])
ofs
=
m
;
/* key < a[m] */
else
lastofs
=
m
+
1
;
/* a[m] <= key */
}
assert
(
lastofs
==
ofs
);
/* so a[ofs-1] <= key < a[ofs] */
return
ofs
;
fail:
return
-
1
;
}
/* The maximum number of entries in a MergeState's pending-runs stack.
* This is enough to sort arrays of size up to about
* 32 * phi ** MAX_MERGE_PENDING
* where phi ~= 1.618. 85 is ridiculouslylarge enough, good for an array
* with 2**64 elements.
*/
#define MAX_MERGE_PENDING 85
/* When we get into galloping mode, we stay there until both runs win less
* often than MIN_GALLOP consecutive times. See listsort.txt for more info.
*/
#define MIN_GALLOP 7
/* Avoid malloc for small temp arrays. */
#define MERGESTATE_TEMP_SIZE 256
/* One MergeState exists on the stack per invocation of mergesort. It's just
* a convenient way to pass state around among the helper functions.
*/
struct
s_slice
{
PyObject
**
base
;
Py_ssize_t
len
;
};
typedef
struct
s_MergeState
{
/* The user-supplied comparison function. or NULL if none given. */
PyObject
*
compare
;
/* This controls when we get *into* galloping mode. It's initialized
* to MIN_GALLOP. merge_lo and merge_hi tend to nudge it higher for
* random data, and lower for highly structured data.
*/
Py_ssize_t
min_gallop
;
/* 'a' is temp storage to help with merges. It contains room for
* alloced entries.
*/
PyObject
**
a
;
/* may point to temparray below */
Py_ssize_t
alloced
;
/* A stack of n pending runs yet to be merged. Run #i starts at
* address base[i] and extends for len[i] elements. It's always
* true (so long as the indices are in bounds) that
*
* pending[i].base + pending[i].len == pending[i+1].base
*
* so we could cut the storage for this, but it's a minor amount,
* and keeping all the info explicit simplifies the code.
*/
int
n
;
struct
s_slice
pending
[
MAX_MERGE_PENDING
];
/* 'a' points to this when possible, rather than muck with malloc. */
PyObject
*
temparray
[
MERGESTATE_TEMP_SIZE
];
}
MergeState
;
/* Conceptually a MergeState's constructor. */
static
void
merge_init
(
MergeState
*
ms
,
PyObject
*
compare
)
{
assert
(
ms
!=
NULL
);
ms
->
compare
=
compare
;
ms
->
a
=
ms
->
temparray
;
ms
->
alloced
=
MERGESTATE_TEMP_SIZE
;
ms
->
n
=
0
;
ms
->
min_gallop
=
MIN_GALLOP
;
}
/* Free all the temp memory owned by the MergeState. This must be called
* when you're done with a MergeState, and may be called before then if
* you want to free the temp memory early.
*/
static
void
merge_freemem
(
MergeState
*
ms
)
{
assert
(
ms
!=
NULL
);
if
(
ms
->
a
!=
ms
->
temparray
)
PyMem_Free
(
ms
->
a
);
ms
->
a
=
ms
->
temparray
;
ms
->
alloced
=
MERGESTATE_TEMP_SIZE
;
}
/* Ensure enough temp memory for 'need' array slots is available.
* Returns 0 on success and -1 if the memory can't be gotten.
*/
static
int
merge_getmem
(
MergeState
*
ms
,
Py_ssize_t
need
)
{
assert
(
ms
!=
NULL
);
if
(
need
<=
ms
->
alloced
)
return
0
;
/* Don't realloc! That can cost cycles to copy the old data, but
* we don't care what's in the block.
*/
merge_freemem
(
ms
);
if
((
size_t
)
need
>
PY_SSIZE_T_MAX
/
sizeof
(
PyObject
*
))
{
PyErr_NoMemory
();
return
-
1
;
}
ms
->
a
=
(
PyObject
**
)
PyMem_Malloc
(
need
*
sizeof
(
PyObject
*
));
if
(
ms
->
a
)
{
ms
->
alloced
=
need
;
return
0
;
}
PyErr_NoMemory
();
merge_freemem
(
ms
);
/* reset to sane state */
return
-
1
;
}
#define MERGE_GETMEM(MS, NEED) ((NEED) <= (MS)->alloced ? 0 : \
merge_getmem(MS, NEED))
/* Merge the na elements starting at pa with the nb elements starting at pb
* in a stable way, in-place. na and nb must be > 0, and pa + na == pb.
* Must also have that *pb < *pa, that pa[na-1] belongs at the end of the
* merge, and should have na <= nb. See listsort.txt for more info.
* Return 0 if successful, -1 if error.
*/
static
Py_ssize_t
merge_lo
(
MergeState
*
ms
,
PyObject
**
pa
,
Py_ssize_t
na
,
PyObject
**
pb
,
Py_ssize_t
nb
)
{
Py_ssize_t
k
;
PyObject
*
compare
;
PyObject
**
dest
;
int
result
=
-
1
;
/* guilty until proved innocent */
Py_ssize_t
min_gallop
;
assert
(
ms
&&
pa
&&
pb
&&
na
>
0
&&
nb
>
0
&&
pa
+
na
==
pb
);
if
(
MERGE_GETMEM
(
ms
,
na
)
<
0
)
return
-
1
;
memcpy
(
ms
->
a
,
pa
,
na
*
sizeof
(
PyObject
*
));
dest
=
pa
;
pa
=
ms
->
a
;
*
dest
++
=
*
pb
++
;
--
nb
;
if
(
nb
==
0
)
goto
Succeed
;
if
(
na
==
1
)
goto
CopyB
;
min_gallop
=
ms
->
min_gallop
;
compare
=
ms
->
compare
;
for
(;;)
{
Py_ssize_t
acount
=
0
;
/* # of times A won in a row */
Py_ssize_t
bcount
=
0
;
/* # of times B won in a row */
/* Do the straightforward thing until (if ever) one run
* appears to win consistently.
*/
for
(;;)
{
assert
(
na
>
1
&&
nb
>
0
);
k
=
ISLT
(
*
pb
,
*
pa
,
compare
);
if
(
k
)
{
if
(
k
<
0
)
goto
Fail
;
*
dest
++
=
*
pb
++
;
++
bcount
;
acount
=
0
;
--
nb
;
if
(
nb
==
0
)
goto
Succeed
;
if
(
bcount
>=
min_gallop
)
break
;
}
else
{
*
dest
++
=
*
pa
++
;
++
acount
;
bcount
=
0
;
--
na
;
if
(
na
==
1
)
goto
CopyB
;
if
(
acount
>=
min_gallop
)
break
;
}
}
/* One run is winning so consistently that galloping may
* be a huge win. So try that, and continue galloping until
* (if ever) neither run appears to be winning consistently
* anymore.
*/
++
min_gallop
;
do
{
assert
(
na
>
1
&&
nb
>
0
);
min_gallop
-=
min_gallop
>
1
;
ms
->
min_gallop
=
min_gallop
;
k
=
gallop_right
(
*
pb
,
pa
,
na
,
0
,
compare
);
acount
=
k
;
if
(
k
)
{
if
(
k
<
0
)
goto
Fail
;
memcpy
(
dest
,
pa
,
k
*
sizeof
(
PyObject
*
));
dest
+=
k
;
pa
+=
k
;
na
-=
k
;
if
(
na
==
1
)
goto
CopyB
;
/* na==0 is impossible now if the comparison
* function is consistent, but we can't assume
* that it is.
*/
if
(
na
==
0
)
goto
Succeed
;
}
*
dest
++
=
*
pb
++
;
--
nb
;
if
(
nb
==
0
)
goto
Succeed
;
k
=
gallop_left
(
*
pa
,
pb
,
nb
,
0
,
compare
);
bcount
=
k
;
if
(
k
)
{
if
(
k
<
0
)
goto
Fail
;
memmove
(
dest
,
pb
,
k
*
sizeof
(
PyObject
*
));
dest
+=
k
;
pb
+=
k
;
nb
-=
k
;
if
(
nb
==
0
)
goto
Succeed
;
}
*
dest
++
=
*
pa
++
;
--
na
;
if
(
na
==
1
)
goto
CopyB
;
}
while
(
acount
>=
MIN_GALLOP
||
bcount
>=
MIN_GALLOP
);
++
min_gallop
;
/* penalize it for leaving galloping mode */
ms
->
min_gallop
=
min_gallop
;
}
Succeed:
result
=
0
;
Fail:
if
(
na
)
memcpy
(
dest
,
pa
,
na
*
sizeof
(
PyObject
*
));
return
result
;
CopyB:
assert
(
na
==
1
&&
nb
>
0
);
/* The last element of pa belongs at the end of the merge. */
memmove
(
dest
,
pb
,
nb
*
sizeof
(
PyObject
*
));
dest
[
nb
]
=
*
pa
;
return
0
;
}
/* Merge the na elements starting at pa with the nb elements starting at pb
* in a stable way, in-place. na and nb must be > 0, and pa + na == pb.
* Must also have that *pb < *pa, that pa[na-1] belongs at the end of the
* merge, and should have na >= nb. See listsort.txt for more info.
* Return 0 if successful, -1 if error.
*/
static
Py_ssize_t
merge_hi
(
MergeState
*
ms
,
PyObject
**
pa
,
Py_ssize_t
na
,
PyObject
**
pb
,
Py_ssize_t
nb
)
{
Py_ssize_t
k
;
PyObject
*
compare
;
PyObject
**
dest
;
int
result
=
-
1
;
/* guilty until proved innocent */
PyObject
**
basea
;
PyObject
**
baseb
;
Py_ssize_t
min_gallop
;
assert
(
ms
&&
pa
&&
pb
&&
na
>
0
&&
nb
>
0
&&
pa
+
na
==
pb
);
if
(
MERGE_GETMEM
(
ms
,
nb
)
<
0
)
return
-
1
;
dest
=
pb
+
nb
-
1
;
memcpy
(
ms
->
a
,
pb
,
nb
*
sizeof
(
PyObject
*
));
basea
=
pa
;
baseb
=
ms
->
a
;
pb
=
ms
->
a
+
nb
-
1
;
pa
+=
na
-
1
;
*
dest
--
=
*
pa
--
;
--
na
;
if
(
na
==
0
)
goto
Succeed
;
if
(
nb
==
1
)
goto
CopyA
;
min_gallop
=
ms
->
min_gallop
;
compare
=
ms
->
compare
;
for
(;;)
{
Py_ssize_t
acount
=
0
;
/* # of times A won in a row */
Py_ssize_t
bcount
=
0
;
/* # of times B won in a row */
/* Do the straightforward thing until (if ever) one run
* appears to win consistently.
*/
for
(;;)
{
assert
(
na
>
0
&&
nb
>
1
);
k
=
ISLT
(
*
pb
,
*
pa
,
compare
);
if
(
k
)
{
if
(
k
<
0
)
goto
Fail
;
*
dest
--
=
*
pa
--
;
++
acount
;
bcount
=
0
;
--
na
;
if
(
na
==
0
)
goto
Succeed
;
if
(
acount
>=
min_gallop
)
break
;
}
else
{
*
dest
--
=
*
pb
--
;
++
bcount
;
acount
=
0
;
--
nb
;
if
(
nb
==
1
)
goto
CopyA
;
if
(
bcount
>=
min_gallop
)
break
;
}
}
/* One run is winning so consistently that galloping may
* be a huge win. So try that, and continue galloping until
* (if ever) neither run appears to be winning consistently
* anymore.
*/
++
min_gallop
;
do
{
assert
(
na
>
0
&&
nb
>
1
);
min_gallop
-=
min_gallop
>
1
;
ms
->
min_gallop
=
min_gallop
;
k
=
gallop_right
(
*
pb
,
basea
,
na
,
na
-
1
,
compare
);
if
(
k
<
0
)
goto
Fail
;
k
=
na
-
k
;
acount
=
k
;
if
(
k
)
{
dest
-=
k
;
pa
-=
k
;
memmove
(
dest
+
1
,
pa
+
1
,
k
*
sizeof
(
PyObject
*
));
na
-=
k
;
if
(
na
==
0
)
goto
Succeed
;
}
*
dest
--
=
*
pb
--
;
--
nb
;
if
(
nb
==
1
)
goto
CopyA
;
k
=
gallop_left
(
*
pa
,
baseb
,
nb
,
nb
-
1
,
compare
);
if
(
k
<
0
)
goto
Fail
;
k
=
nb
-
k
;
bcount
=
k
;
if
(
k
)
{
dest
-=
k
;
pb
-=
k
;
memcpy
(
dest
+
1
,
pb
+
1
,
k
*
sizeof
(
PyObject
*
));
nb
-=
k
;
if
(
nb
==
1
)
goto
CopyA
;
/* nb==0 is impossible now if the comparison
* function is consistent, but we can't assume
* that it is.
*/
if
(
nb
==
0
)
goto
Succeed
;
}
*
dest
--
=
*
pa
--
;
--
na
;
if
(
na
==
0
)
goto
Succeed
;
}
while
(
acount
>=
MIN_GALLOP
||
bcount
>=
MIN_GALLOP
);
++
min_gallop
;
/* penalize it for leaving galloping mode */
ms
->
min_gallop
=
min_gallop
;
}
Succeed:
result
=
0
;
Fail:
if
(
nb
)
memcpy
(
dest
-
(
nb
-
1
),
baseb
,
nb
*
sizeof
(
PyObject
*
));
return
result
;
CopyA:
assert
(
nb
==
1
&&
na
>
0
);
/* The first element of pb belongs at the front of the merge. */
dest
-=
na
;
pa
-=
na
;
memmove
(
dest
+
1
,
pa
+
1
,
na
*
sizeof
(
PyObject
*
));
*
dest
=
*
pb
;
return
0
;
}
/* Merge the two runs at stack indices i and i+1.
* Returns 0 on success, -1 on error.
*/
static
Py_ssize_t
merge_at
(
MergeState
*
ms
,
Py_ssize_t
i
)
{
PyObject
**
pa
,
**
pb
;
Py_ssize_t
na
,
nb
;
Py_ssize_t
k
;
PyObject
*
compare
;
assert
(
ms
!=
NULL
);
assert
(
ms
->
n
>=
2
);
assert
(
i
>=
0
);
assert
(
i
==
ms
->
n
-
2
||
i
==
ms
->
n
-
3
);
pa
=
ms
->
pending
[
i
].
base
;
na
=
ms
->
pending
[
i
].
len
;
pb
=
ms
->
pending
[
i
+
1
].
base
;
nb
=
ms
->
pending
[
i
+
1
].
len
;
assert
(
na
>
0
&&
nb
>
0
);
assert
(
pa
+
na
==
pb
);
/* Record the length of the combined runs; if i is the 3rd-last
* run now, also slide over the last run (which isn't involved
* in this merge). The current run i+1 goes away in any case.
*/
ms
->
pending
[
i
].
len
=
na
+
nb
;
if
(
i
==
ms
->
n
-
3
)
ms
->
pending
[
i
+
1
]
=
ms
->
pending
[
i
+
2
];
--
ms
->
n
;
/* Where does b start in a? Elements in a before that can be
* ignored (already in place).
*/
compare
=
ms
->
compare
;
k
=
gallop_right
(
*
pb
,
pa
,
na
,
0
,
compare
);
if
(
k
<
0
)
return
-
1
;
pa
+=
k
;
na
-=
k
;
if
(
na
==
0
)
return
0
;
/* Where does a end in b? Elements in b after that can be
* ignored (already in place).
*/
nb
=
gallop_left
(
pa
[
na
-
1
],
pb
,
nb
,
nb
-
1
,
compare
);
if
(
nb
<=
0
)
return
nb
;
/* Merge what remains of the runs, using a temp array with
* min(na, nb) elements.
*/
if
(
na
<=
nb
)
return
merge_lo
(
ms
,
pa
,
na
,
pb
,
nb
);
else
return
merge_hi
(
ms
,
pa
,
na
,
pb
,
nb
);
}
/* Examine the stack of runs waiting to be merged, merging adjacent runs
* until the stack invariants are re-established:
*
* 1. len[-3] > len[-2] + len[-1]
* 2. len[-2] > len[-1]
*
* See listsort.txt for more info.
*
* Returns 0 on success, -1 on error.
*/
static
int
merge_collapse
(
MergeState
*
ms
)
{
struct
s_slice
*
p
=
ms
->
pending
;
assert
(
ms
);
while
(
ms
->
n
>
1
)
{
Py_ssize_t
n
=
ms
->
n
-
2
;
if
(
n
>
0
&&
p
[
n
-
1
].
len
<=
p
[
n
].
len
+
p
[
n
+
1
].
len
)
{
if
(
p
[
n
-
1
].
len
<
p
[
n
+
1
].
len
)
--
n
;
if
(
merge_at
(
ms
,
n
)
<
0
)
return
-
1
;
}
else
if
(
p
[
n
].
len
<=
p
[
n
+
1
].
len
)
{
if
(
merge_at
(
ms
,
n
)
<
0
)
return
-
1
;
}
else
break
;
}
return
0
;
}
/* Regardless of invariants, merge all runs on the stack until only one
* remains. This is used at the end of the mergesort.
*
* Returns 0 on success, -1 on error.
*/
static
int
merge_force_collapse
(
MergeState
*
ms
)
{
struct
s_slice
*
p
=
ms
->
pending
;
assert
(
ms
);
while
(
ms
->
n
>
1
)
{
Py_ssize_t
n
=
ms
->
n
-
2
;
if
(
n
>
0
&&
p
[
n
-
1
].
len
<
p
[
n
+
1
].
len
)
--
n
;
if
(
merge_at
(
ms
,
n
)
<
0
)
return
-
1
;
}
return
0
;
}
/* Compute a good value for the minimum run length; natural runs shorter
* than this are boosted artificially via binary insertion.
*
* If n < 64, return n (it's too small to bother with fancy stuff).
* Else if n is an exact power of 2, return 32.
* Else return an int k, 32 <= k <= 64, such that n/k is close to, but
* strictly less than, an exact power of 2.
*
* See listsort.txt for more info.
*/
static
Py_ssize_t
merge_compute_minrun
(
Py_ssize_t
n
)
{
Py_ssize_t
r
=
0
;
/* becomes 1 if any 1 bits are shifted off */
assert
(
n
>=
0
);
while
(
n
>=
64
)
{
r
|=
n
&
1
;
n
>>=
1
;
}
return
n
+
r
;
}
/* Special wrapper to support stable sorting using the decorate-sort-undecorate
pattern. Holds a key which is used for comparisons and the original record
which is returned during the undecorate phase. By exposing only the key
during comparisons, the underlying sort stability characteristics are left
unchanged. Also, if a custom comparison function is used, it will only see
the key instead of a full record. */
typedef
struct
{
PyObject_HEAD
PyObject
*
key
;
PyObject
*
value
;
}
sortwrapperobject
;
PyDoc_STRVAR
(
sortwrapper_doc
,
"Object wrapper with a custom sort key."
);
static
PyObject
*
sortwrapper_richcompare
(
sortwrapperobject
*
,
sortwrapperobject
*
,
int
);
static
void
sortwrapper_dealloc
(
sortwrapperobject
*
);
static
PyTypeObject
sortwrapper_type
=
{
PyVarObject_HEAD_INIT
(
&
PyType_Type
,
0
)
"sortwrapper"
,
/* tp_name */
sizeof
(
sortwrapperobject
),
/* tp_basicsize */
0
,
/* tp_itemsize */
/* methods */
(
destructor
)
sortwrapper_dealloc
,
/* tp_dealloc */
0
,
/* tp_print */
0
,
/* tp_getattr */
0
,
/* tp_setattr */
0
,
/* tp_compare */
0
,
/* tp_repr */
0
,
/* tp_as_number */
0
,
/* tp_as_sequence */
0
,
/* tp_as_mapping */
0
,
/* tp_hash */
0
,
/* tp_call */
0
,
/* tp_str */
PyObject_GenericGetAttr
,
/* tp_getattro */
0
,
/* tp_setattro */
0
,
/* tp_as_buffer */
Py_TPFLAGS_DEFAULT
|
Py_TPFLAGS_HAVE_RICHCOMPARE
,
/* tp_flags */
sortwrapper_doc
,
/* tp_doc */
0
,
/* tp_traverse */
0
,
/* tp_clear */
(
richcmpfunc
)
sortwrapper_richcompare
,
/* tp_richcompare */
};
static
PyObject
*
sortwrapper_richcompare
(
sortwrapperobject
*
a
,
sortwrapperobject
*
b
,
int
op
)
{
if
(
!
PyObject_TypeCheck
(
b
,
&
sortwrapper_type
))
{
PyErr_SetString
(
PyExc_TypeError
,
"expected a sortwrapperobject"
);
return
NULL
;
}
return
PyObject_RichCompare
(
a
->
key
,
b
->
key
,
op
);
}
static
void
sortwrapper_dealloc
(
sortwrapperobject
*
so
)
{
Py_XDECREF
(
so
->
key
);
Py_XDECREF
(
so
->
value
);
PyObject_Del
(
so
);
}
/* Returns a new reference to a sortwrapper.
Consumes the references to the two underlying objects. */
static
PyObject
*
build_sortwrapper
(
PyObject
*
key
,
PyObject
*
value
)
{
sortwrapperobject
*
so
;
so
=
PyObject_New
(
sortwrapperobject
,
&
sortwrapper_type
);
if
(
so
==
NULL
)
return
NULL
;
so
->
key
=
key
;
so
->
value
=
value
;
return
(
PyObject
*
)
so
;
}
/* Returns a new reference to the value underlying the wrapper. */
static
PyObject
*
sortwrapper_getvalue
(
PyObject
*
so
)
{
PyObject
*
value
;
if
(
!
PyObject_TypeCheck
(
so
,
&
sortwrapper_type
))
{
PyErr_SetString
(
PyExc_TypeError
,
"expected a sortwrapperobject"
);
return
NULL
;
}
value
=
((
sortwrapperobject
*
)
so
)
->
value
;
Py_INCREF
(
value
);
return
value
;
}
/* Wrapper for user specified cmp functions in combination with a
specified key function. Makes sure the cmp function is presented
with the actual key instead of the sortwrapper */
typedef
struct
{
PyObject_HEAD
PyObject
*
func
;
}
cmpwrapperobject
;
static
void
cmpwrapper_dealloc
(
cmpwrapperobject
*
co
)
{
Py_XDECREF
(
co
->
func
);
PyObject_Del
(
co
);
}
static
PyObject
*
cmpwrapper_call
(
cmpwrapperobject
*
co
,
PyObject
*
args
,
PyObject
*
kwds
)
{
PyObject
*
x
,
*
y
,
*
xx
,
*
yy
;
if
(
!
PyArg_UnpackTuple
(
args
,
""
,
2
,
2
,
&
x
,
&
y
))
return
NULL
;
if
(
!
PyObject_TypeCheck
(
x
,
&
sortwrapper_type
)
||
!
PyObject_TypeCheck
(
y
,
&
sortwrapper_type
))
{
PyErr_SetString
(
PyExc_TypeError
,
"expected a sortwrapperobject"
);
return
NULL
;
}
xx
=
((
sortwrapperobject
*
)
x
)
->
key
;
yy
=
((
sortwrapperobject
*
)
y
)
->
key
;
return
PyObject_CallFunctionObjArgs
(
co
->
func
,
xx
,
yy
,
NULL
);
}
PyDoc_STRVAR
(
cmpwrapper_doc
,
"cmp() wrapper for sort with custom keys."
);
static
PyTypeObject
cmpwrapper_type
=
{
PyVarObject_HEAD_INIT
(
&
PyType_Type
,
0
)
"cmpwrapper"
,
/* tp_name */
sizeof
(
cmpwrapperobject
),
/* tp_basicsize */
0
,
/* tp_itemsize */
/* methods */
(
destructor
)
cmpwrapper_dealloc
,
/* tp_dealloc */
0
,
/* tp_print */
0
,
/* tp_getattr */
0
,
/* tp_setattr */
0
,
/* tp_compare */
0
,
/* tp_repr */
0
,
/* tp_as_number */
0
,
/* tp_as_sequence */
0
,
/* tp_as_mapping */
0
,
/* tp_hash */
(
ternaryfunc
)
cmpwrapper_call
,
/* tp_call */
0
,
/* tp_str */
PyObject_GenericGetAttr
,
/* tp_getattro */
0
,
/* tp_setattro */
0
,
/* tp_as_buffer */
Py_TPFLAGS_DEFAULT
,
/* tp_flags */
cmpwrapper_doc
,
/* tp_doc */
};
static
PyObject
*
build_cmpwrapper
(
PyObject
*
cmpfunc
)
{
cmpwrapperobject
*
co
;
co
=
PyObject_New
(
cmpwrapperobject
,
&
cmpwrapper_type
);
if
(
co
==
NULL
)
return
NULL
;
Py_INCREF
(
cmpfunc
);
co
->
func
=
cmpfunc
;
return
(
PyObject
*
)
co
;
}
/* An adaptive, stable, natural mergesort. See listsort.txt.
* Returns Py_None on success, NULL on error. Even in case of error, the
* list will be some permutation of its input state (nothing is lost or
* duplicated).
*/
static
PyObject
*
listsort
(
PyListObject
*
self
,
PyObject
*
args
,
PyObject
*
kwds
)
{
MergeState
ms
;
PyObject
**
lo
,
**
hi
;
Py_ssize_t
nremaining
;
Py_ssize_t
minrun
;
Py_ssize_t
saved_ob_size
,
saved_allocated
;
PyObject
**
saved_ob_item
;
PyObject
**
final_ob_item
;
PyObject
*
compare
=
NULL
;
PyObject
*
result
=
NULL
;
/* guilty until proved innocent */
int
reverse
=
0
;
PyObject
*
keyfunc
=
NULL
;
Py_ssize_t
i
;
PyObject
*
key
,
*
value
,
*
kvpair
;
static
char
*
kwlist
[]
=
{
"cmp"
,
"key"
,
"reverse"
,
0
};
assert
(
self
!=
NULL
);
assert
(
PyList_Check
(
self
));
if
(
args
!=
NULL
)
{
if
(
!
PyArg_ParseTupleAndKeywords
(
args
,
kwds
,
"|OOi:sort"
,
kwlist
,
&
compare
,
&
keyfunc
,
&
reverse
))
return
NULL
;
}
if
(
compare
==
Py_None
)
compare
=
NULL
;
if
(
compare
!=
NULL
&&
PyErr_WarnPy3k
(
"the cmp argument is not supported in 3.x"
,
1
)
<
0
)
return
NULL
;
if
(
keyfunc
==
Py_None
)
keyfunc
=
NULL
;
if
(
compare
!=
NULL
&&
keyfunc
!=
NULL
)
{
compare
=
build_cmpwrapper
(
compare
);
if
(
compare
==
NULL
)
return
NULL
;
}
else
Py_XINCREF
(
compare
);
/* The list is temporarily made empty, so that mutations performed
* by comparison functions can't affect the slice of memory we're
* sorting (allowing mutations during sorting is a core-dump
* factory, since ob_item may change).
*/
saved_ob_size
=
Py_SIZE
(
self
);
saved_ob_item
=
self
->
ob_item
;
saved_allocated
=
self
->
allocated
;
Py_SIZE
(
self
)
=
0
;
self
->
ob_item
=
NULL
;
self
->
allocated
=
-
1
;
/* any operation will reset it to >= 0 */
if
(
keyfunc
!=
NULL
)
{
for
(
i
=
0
;
i
<
saved_ob_size
;
i
++
)
{
value
=
saved_ob_item
[
i
];
key
=
PyObject_CallFunctionObjArgs
(
keyfunc
,
value
,
NULL
);
if
(
key
==
NULL
)
{
for
(
i
=
i
-
1
;
i
>=
0
;
i
--
)
{
kvpair
=
saved_ob_item
[
i
];
value
=
sortwrapper_getvalue
(
kvpair
);
saved_ob_item
[
i
]
=
value
;
Py_DECREF
(
kvpair
);
}
goto
dsu_fail
;
}
kvpair
=
build_sortwrapper
(
key
,
value
);
if
(
kvpair
==
NULL
)
goto
dsu_fail
;
saved_ob_item
[
i
]
=
kvpair
;
}
}
/* Reverse sort stability achieved by initially reversing the list,
applying a stable forward sort, then reversing the final result. */
if
(
reverse
&&
saved_ob_size
>
1
)
reverse_slice
(
saved_ob_item
,
saved_ob_item
+
saved_ob_size
);
merge_init
(
&
ms
,
compare
);
nremaining
=
saved_ob_size
;
if
(
nremaining
<
2
)
goto
succeed
;
/* March over the array once, left to right, finding natural runs,
* and extending short natural runs to minrun elements.
*/
lo
=
saved_ob_item
;
hi
=
lo
+
nremaining
;
minrun
=
merge_compute_minrun
(
nremaining
);
do
{
int
descending
;
Py_ssize_t
n
;
/* Identify next run. */
n
=
count_run
(
lo
,
hi
,
compare
,
&
descending
);
if
(
n
<
0
)
goto
fail
;
if
(
descending
)
reverse_slice
(
lo
,
lo
+
n
);
/* If short, extend to min(minrun, nremaining). */
if
(
n
<
minrun
)
{
const
Py_ssize_t
force
=
nremaining
<=
minrun
?
nremaining
:
minrun
;
if
(
binarysort
(
lo
,
lo
+
force
,
lo
+
n
,
compare
)
<
0
)
goto
fail
;
n
=
force
;
}
/* Push run onto pending-runs stack, and maybe merge. */
assert
(
ms
.
n
<
MAX_MERGE_PENDING
);
ms
.
pending
[
ms
.
n
].
base
=
lo
;
ms
.
pending
[
ms
.
n
].
len
=
n
;
++
ms
.
n
;
if
(
merge_collapse
(
&
ms
)
<
0
)
goto
fail
;
/* Advance to find next run. */
lo
+=
n
;
nremaining
-=
n
;
}
while
(
nremaining
);
assert
(
lo
==
hi
);
if
(
merge_force_collapse
(
&
ms
)
<
0
)
goto
fail
;
assert
(
ms
.
n
==
1
);
assert
(
ms
.
pending
[
0
].
base
==
saved_ob_item
);
assert
(
ms
.
pending
[
0
].
len
==
saved_ob_size
);
succeed:
result
=
Py_None
;
fail:
if
(
keyfunc
!=
NULL
)
{
for
(
i
=
0
;
i
<
saved_ob_size
;
i
++
)
{
kvpair
=
saved_ob_item
[
i
];
value
=
sortwrapper_getvalue
(
kvpair
);
saved_ob_item
[
i
]
=
value
;
Py_DECREF
(
kvpair
);
}
}
if
(
self
->
allocated
!=
-
1
&&
result
!=
NULL
)
{
/* The user mucked with the list during the sort,
* and we don't already have another error to report.
*/
PyErr_SetString
(
PyExc_ValueError
,
"list modified during sort"
);
result
=
NULL
;
}
if
(
reverse
&&
saved_ob_size
>
1
)
reverse_slice
(
saved_ob_item
,
saved_ob_item
+
saved_ob_size
);
merge_freemem
(
&
ms
);
dsu_fail:
final_ob_item
=
self
->
ob_item
;
i
=
Py_SIZE
(
self
);
Py_SIZE
(
self
)
=
saved_ob_size
;
self
->
ob_item
=
saved_ob_item
;
self
->
allocated
=
saved_allocated
;
if
(
final_ob_item
!=
NULL
)
{
/* we cannot use list_clear() for this because it does not
guarantee that the list is really empty when it returns */
while
(
--
i
>=
0
)
{
Py_XDECREF
(
final_ob_item
[
i
]);
}
PyMem_FREE
(
final_ob_item
);
}
Py_XDECREF
(
compare
);
Py_XINCREF
(
result
);
return
result
;
}
#undef IFLT
#undef ISLT
int
PyList_Sort
(
PyObject
*
v
)
{
if
(
v
==
NULL
||
!
PyList_Check
(
v
))
{
PyErr_BadInternalCall
();
return
-
1
;
}
v
=
listsort
((
PyListObject
*
)
v
,
(
PyObject
*
)
NULL
,
(
PyObject
*
)
NULL
);
if
(
v
==
NULL
)
return
-
1
;
Py_DECREF
(
v
);
return
0
;
}
static
PyObject
*
listreverse
(
PyListObject
*
self
)
{
if
(
Py_SIZE
(
self
)
>
1
)
reverse_slice
(
self
->
ob_item
,
self
->
ob_item
+
Py_SIZE
(
self
));
Py_RETURN_NONE
;
}
int
PyList_Reverse
(
PyObject
*
v
)
{
PyListObject
*
self
=
(
PyListObject
*
)
v
;
if
(
v
==
NULL
||
!
PyList_Check
(
v
))
{
PyErr_BadInternalCall
();
return
-
1
;
}
if
(
Py_SIZE
(
self
)
>
1
)
reverse_slice
(
self
->
ob_item
,
self
->
ob_item
+
Py_SIZE
(
self
));
return
0
;
}
PyObject
*
PyList_AsTuple
(
PyObject
*
v
)
{
PyObject
*
w
;
PyObject
**
p
,
**
q
;
Py_ssize_t
n
;
if
(
v
==
NULL
||
!
PyList_Check
(
v
))
{
PyErr_BadInternalCall
();
return
NULL
;
}
n
=
Py_SIZE
(
v
);
w
=
PyTuple_New
(
n
);
if
(
w
==
NULL
)
return
NULL
;
p
=
((
PyTupleObject
*
)
w
)
->
ob_item
;
q
=
((
PyListObject
*
)
v
)
->
ob_item
;
while
(
--
n
>=
0
)
{
Py_INCREF
(
*
q
);
*
p
=
*
q
;
p
++
;
q
++
;
}
return
w
;
}
static
PyObject
*
listindex
(
PyListObject
*
self
,
PyObject
*
args
)
{
Py_ssize_t
i
,
start
=
0
,
stop
=
Py_SIZE
(
self
);
PyObject
*
v
,
*
format_tuple
,
*
err_string
;
static
PyObject
*
err_format
=
NULL
;
if
(
!
PyArg_ParseTuple
(
args
,
"O|O&O&:index"
,
&
v
,
_PyEval_SliceIndex
,
&
start
,
_PyEval_SliceIndex
,
&
stop
))
return
NULL
;
if
(
start
<
0
)
{
start
+=
Py_SIZE
(
self
);
if
(
start
<
0
)
start
=
0
;
}
if
(
stop
<
0
)
{
stop
+=
Py_SIZE
(
self
);
if
(
stop
<
0
)
stop
=
0
;
}
for
(
i
=
start
;
i
<
stop
&&
i
<
Py_SIZE
(
self
);
i
++
)
{
int
cmp
=
PyObject_RichCompareBool
(
self
->
ob_item
[
i
],
v
,
Py_EQ
);
if
(
cmp
>
0
)
return
PyInt_FromSsize_t
(
i
);
else
if
(
cmp
<
0
)
return
NULL
;
}
if
(
err_format
==
NULL
)
{
err_format
=
PyString_FromString
(
"%r is not in list"
);
if
(
err_format
==
NULL
)
return
NULL
;
}
format_tuple
=
PyTuple_Pack
(
1
,
v
);
if
(
format_tuple
==
NULL
)
return
NULL
;
err_string
=
PyString_Format
(
err_format
,
format_tuple
);
Py_DECREF
(
format_tuple
);
if
(
err_string
==
NULL
)
return
NULL
;
PyErr_SetObject
(
PyExc_ValueError
,
err_string
);
Py_DECREF
(
err_string
);
return
NULL
;
}
static
PyObject
*
listcount
(
PyListObject
*
self
,
PyObject
*
v
)
{
Py_ssize_t
count
=
0
;
Py_ssize_t
i
;
for
(
i
=
0
;
i
<
Py_SIZE
(
self
);
i
++
)
{
int
cmp
=
PyObject_RichCompareBool
(
self
->
ob_item
[
i
],
v
,
Py_EQ
);
if
(
cmp
>
0
)
count
++
;
else
if
(
cmp
<
0
)
return
NULL
;
}
return
PyInt_FromSsize_t
(
count
);
}
static
PyObject
*
listremove
(
PyListObject
*
self
,
PyObject
*
v
)
{
Py_ssize_t
i
;
for
(
i
=
0
;
i
<
Py_SIZE
(
self
);
i
++
)
{
int
cmp
=
PyObject_RichCompareBool
(
self
->
ob_item
[
i
],
v
,
Py_EQ
);
if
(
cmp
>
0
)
{
if
(
list_ass_slice
(
self
,
i
,
i
+
1
,
(
PyObject
*
)
NULL
)
==
0
)
Py_RETURN_NONE
;
return
NULL
;
}
else
if
(
cmp
<
0
)
return
NULL
;
}
PyErr_SetString
(
PyExc_ValueError
,
"list.remove(x): x not in list"
);
return
NULL
;
}
static
int
list_traverse
(
PyListObject
*
o
,
visitproc
visit
,
void
*
arg
)
{
Py_ssize_t
i
;
for
(
i
=
Py_SIZE
(
o
);
--
i
>=
0
;
)
Py_VISIT
(
o
->
ob_item
[
i
]);
return
0
;
}
static
PyObject
*
list_richcompare
(
PyObject
*
v
,
PyObject
*
w
,
int
op
)
{
PyListObject
*
vl
,
*
wl
;
Py_ssize_t
i
;
if
(
!
PyList_Check
(
v
)
||
!
PyList_Check
(
w
))
{
Py_INCREF
(
Py_NotImplemented
);
return
Py_NotImplemented
;
}
vl
=
(
PyListObject
*
)
v
;
wl
=
(
PyListObject
*
)
w
;
if
(
Py_SIZE
(
vl
)
!=
Py_SIZE
(
wl
)
&&
(
op
==
Py_EQ
||
op
==
Py_NE
))
{
/* Shortcut: if the lengths differ, the lists differ */
PyObject
*
res
;
if
(
op
==
Py_EQ
)
res
=
Py_False
;
else
res
=
Py_True
;
Py_INCREF
(
res
);
return
res
;
}
/* Search for the first index where items are different */
for
(
i
=
0
;
i
<
Py_SIZE
(
vl
)
&&
i
<
Py_SIZE
(
wl
);
i
++
)
{
int
k
=
PyObject_RichCompareBool
(
vl
->
ob_item
[
i
],
wl
->
ob_item
[
i
],
Py_EQ
);
if
(
k
<
0
)
return
NULL
;
if
(
!
k
)
break
;
}
if
(
i
>=
Py_SIZE
(
vl
)
||
i
>=
Py_SIZE
(
wl
))
{
/* No more items to compare -- compare sizes */
Py_ssize_t
vs
=
Py_SIZE
(
vl
);
Py_ssize_t
ws
=
Py_SIZE
(
wl
);
int
cmp
;
PyObject
*
res
;
switch
(
op
)
{
case
Py_LT
:
cmp
=
vs
<
ws
;
break
;
case
Py_LE
:
cmp
=
vs
<=
ws
;
break
;
case
Py_EQ
:
cmp
=
vs
==
ws
;
break
;
case
Py_NE
:
cmp
=
vs
!=
ws
;
break
;
case
Py_GT
:
cmp
=
vs
>
ws
;
break
;
case
Py_GE
:
cmp
=
vs
>=
ws
;
break
;
default:
return
NULL
;
/* cannot happen */
}
if
(
cmp
)
res
=
Py_True
;
else
res
=
Py_False
;
Py_INCREF
(
res
);
return
res
;
}
/* We have an item that differs -- shortcuts for EQ/NE */
if
(
op
==
Py_EQ
)
{
Py_INCREF
(
Py_False
);
return
Py_False
;
}
if
(
op
==
Py_NE
)
{
Py_INCREF
(
Py_True
);
return
Py_True
;
}
/* Compare the final item again using the proper operator */
return
PyObject_RichCompare
(
vl
->
ob_item
[
i
],
wl
->
ob_item
[
i
],
op
);
}
static
int
list_init
(
PyListObject
*
self
,
PyObject
*
args
,
PyObject
*
kw
)
{
PyObject
*
arg
=
NULL
;
static
char
*
kwlist
[]
=
{
"sequence"
,
0
};
if
(
!
PyArg_ParseTupleAndKeywords
(
args
,
kw
,
"|O:list"
,
kwlist
,
&
arg
))
return
-
1
;
/* Verify list invariants established by PyType_GenericAlloc() */
assert
(
0
<=
Py_SIZE
(
self
));
assert
(
Py_SIZE
(
self
)
<=
self
->
allocated
||
self
->
allocated
==
-
1
);
assert
(
self
->
ob_item
!=
NULL
||
self
->
allocated
==
0
||
self
->
allocated
==
-
1
);
/* Empty previous contents */
if
(
self
->
ob_item
!=
NULL
)
{
(
void
)
list_clear
(
self
);
}
if
(
arg
!=
NULL
)
{
PyObject
*
rv
=
listextend
(
self
,
arg
);
if
(
rv
==
NULL
)
return
-
1
;
Py_DECREF
(
rv
);
}
return
0
;
}
static
PyObject
*
list_sizeof
(
PyListObject
*
self
)
{
Py_ssize_t
res
;
res
=
sizeof
(
PyListObject
)
+
self
->
allocated
*
sizeof
(
void
*
);
return
PyInt_FromSsize_t
(
res
);
}
static
PyObject
*
list_iter
(
PyObject
*
seq
);
static
PyObject
*
list_reversed
(
PyListObject
*
seq
,
PyObject
*
unused
);
PyDoc_STRVAR
(
getitem_doc
,
"x.__getitem__(y) <==> x[y]"
);
PyDoc_STRVAR
(
reversed_doc
,
"L.__reversed__() -- return a reverse iterator over the list"
);
PyDoc_STRVAR
(
sizeof_doc
,
"L.__sizeof__() -- size of L in memory, in bytes"
);
PyDoc_STRVAR
(
append_doc
,
"L.append(object) -- append object to end"
);
PyDoc_STRVAR
(
extend_doc
,
"L.extend(iterable) -- extend list by appending elements from the iterable"
);
PyDoc_STRVAR
(
insert_doc
,
"L.insert(index, object) -- insert object before index"
);
PyDoc_STRVAR
(
pop_doc
,
"L.pop([index]) -> item -- remove and return item at index (default last).
\n
"
"Raises IndexError if list is empty or index is out of range."
);
PyDoc_STRVAR
(
remove_doc
,
"L.remove(value) -- remove first occurrence of value.
\n
"
"Raises ValueError if the value is not present."
);
PyDoc_STRVAR
(
index_doc
,
"L.index(value, [start, [stop]]) -> integer -- return first index of value.
\n
"
"Raises ValueError if the value is not present."
);
PyDoc_STRVAR
(
count_doc
,
"L.count(value) -> integer -- return number of occurrences of value"
);
PyDoc_STRVAR
(
reverse_doc
,
"L.reverse() -- reverse *IN PLACE*"
);
PyDoc_STRVAR
(
sort_doc
,
"L.sort(cmp=None, key=None, reverse=False) -- stable sort *IN PLACE*;
\n
\
cmp(x, y) -> -1, 0, 1"
);
static
PyObject
*
list_subscript
(
PyListObject
*
,
PyObject
*
);
static
PyMethodDef
list_methods
[]
=
{
{
"__getitem__"
,
(
PyCFunction
)
list_subscript
,
METH_O
|
METH_COEXIST
,
getitem_doc
},
{
"__reversed__"
,(
PyCFunction
)
list_reversed
,
METH_NOARGS
,
reversed_doc
},
{
"__sizeof__"
,
(
PyCFunction
)
list_sizeof
,
METH_NOARGS
,
sizeof_doc
},
{
"append"
,
(
PyCFunction
)
listappend
,
METH_O
,
append_doc
},
{
"insert"
,
(
PyCFunction
)
listinsert
,
METH_VARARGS
,
insert_doc
},
{
"extend"
,
(
PyCFunction
)
listextend
,
METH_O
,
extend_doc
},
{
"pop"
,
(
PyCFunction
)
listpop
,
METH_VARARGS
,
pop_doc
},
{
"remove"
,
(
PyCFunction
)
listremove
,
METH_O
,
remove_doc
},
{
"index"
,
(
PyCFunction
)
listindex
,
METH_VARARGS
,
index_doc
},
{
"count"
,
(
PyCFunction
)
listcount
,
METH_O
,
count_doc
},
{
"reverse"
,
(
PyCFunction
)
listreverse
,
METH_NOARGS
,
reverse_doc
},
{
"sort"
,
(
PyCFunction
)
listsort
,
METH_VARARGS
|
METH_KEYWORDS
,
sort_doc
},
{
NULL
,
NULL
}
/* sentinel */
};
static
PySequenceMethods
list_as_sequence
=
{
(
lenfunc
)
list_length
,
/* sq_length */
(
binaryfunc
)
list_concat
,
/* sq_concat */
(
ssizeargfunc
)
list_repeat
,
/* sq_repeat */
(
ssizeargfunc
)
list_item
,
/* sq_item */
(
ssizessizeargfunc
)
list_slice
,
/* sq_slice */
(
ssizeobjargproc
)
list_ass_item
,
/* sq_ass_item */
(
ssizessizeobjargproc
)
list_ass_slice
,
/* sq_ass_slice */
(
objobjproc
)
list_contains
,
/* sq_contains */
(
binaryfunc
)
list_inplace_concat
,
/* sq_inplace_concat */
(
ssizeargfunc
)
list_inplace_repeat
,
/* sq_inplace_repeat */
};
PyDoc_STRVAR
(
list_doc
,
"list() -> new empty list
\n
"
"list(iterable) -> new list initialized from iterable's items"
);
static
PyObject
*
list_subscript
(
PyListObject
*
self
,
PyObject
*
item
)
{
if
(
PyIndex_Check
(
item
))
{
Py_ssize_t
i
;
i
=
PyNumber_AsSsize_t
(
item
,
PyExc_IndexError
);
if
(
i
==
-
1
&&
PyErr_Occurred
())
return
NULL
;
if
(
i
<
0
)
i
+=
PyList_GET_SIZE
(
self
);
return
list_item
(
self
,
i
);
}
else
if
(
PySlice_Check
(
item
))
{
Py_ssize_t
start
,
stop
,
step
,
slicelength
,
cur
,
i
;
PyObject
*
result
;
PyObject
*
it
;
PyObject
**
src
,
**
dest
;
if
(
PySlice_GetIndicesEx
((
PySliceObject
*
)
item
,
Py_SIZE
(
self
),
&
start
,
&
stop
,
&
step
,
&
slicelength
)
<
0
)
{
return
NULL
;
}
if
(
slicelength
<=
0
)
{
return
PyList_New
(
0
);
}
else
if
(
step
==
1
)
{
return
list_slice
(
self
,
start
,
stop
);
}
else
{
result
=
PyList_New
(
slicelength
);
if
(
!
result
)
return
NULL
;
src
=
self
->
ob_item
;
dest
=
((
PyListObject
*
)
result
)
->
ob_item
;
for
(
cur
=
start
,
i
=
0
;
i
<
slicelength
;
cur
+=
step
,
i
++
)
{
it
=
src
[
cur
];
Py_INCREF
(
it
);
dest
[
i
]
=
it
;
}
return
result
;
}
}
else
{
PyErr_Format
(
PyExc_TypeError
,
"list indices must be integers, not %.200s"
,
item
->
ob_type
->
tp_name
);
return
NULL
;
}
}
static
int
list_ass_subscript
(
PyListObject
*
self
,
PyObject
*
item
,
PyObject
*
value
)
{
if
(
PyIndex_Check
(
item
))
{
Py_ssize_t
i
=
PyNumber_AsSsize_t
(
item
,
PyExc_IndexError
);
if
(
i
==
-
1
&&
PyErr_Occurred
())
return
-
1
;
if
(
i
<
0
)
i
+=
PyList_GET_SIZE
(
self
);
return
list_ass_item
(
self
,
i
,
value
);
}
else
if
(
PySlice_Check
(
item
))
{
Py_ssize_t
start
,
stop
,
step
,
slicelength
;
if
(
PySlice_GetIndicesEx
((
PySliceObject
*
)
item
,
Py_SIZE
(
self
),
&
start
,
&
stop
,
&
step
,
&
slicelength
)
<
0
)
{
return
-
1
;
}
if
(
step
==
1
)
return
list_ass_slice
(
self
,
start
,
stop
,
value
);
/* Make sure s[5:2] = [..] inserts at the right place:
before 5, not before 2. */
if
((
step
<
0
&&
start
<
stop
)
||
(
step
>
0
&&
start
>
stop
))
stop
=
start
;
if
(
value
==
NULL
)
{
/* delete slice */
PyObject
**
garbage
;
size_t
cur
;
Py_ssize_t
i
;
if
(
slicelength
<=
0
)
return
0
;
if
(
step
<
0
)
{
stop
=
start
+
1
;
start
=
stop
+
step
*
(
slicelength
-
1
)
-
1
;
step
=
-
step
;
}
assert
((
size_t
)
slicelength
<=
PY_SIZE_MAX
/
sizeof
(
PyObject
*
));
garbage
=
(
PyObject
**
)
PyMem_MALLOC
(
slicelength
*
sizeof
(
PyObject
*
));
if
(
!
garbage
)
{
PyErr_NoMemory
();
return
-
1
;
}
/* drawing pictures might help understand these for
loops. Basically, we memmove the parts of the
list that are *not* part of the slice: step-1
items for each item that is part of the slice,
and then tail end of the list that was not
covered by the slice */
for
(
cur
=
start
,
i
=
0
;
cur
<
(
size_t
)
stop
;
cur
+=
step
,
i
++
)
{
Py_ssize_t
lim
=
step
-
1
;
garbage
[
i
]
=
PyList_GET_ITEM
(
self
,
cur
);
if
(
cur
+
step
>=
(
size_t
)
Py_SIZE
(
self
))
{
lim
=
Py_SIZE
(
self
)
-
cur
-
1
;
}
memmove
(
self
->
ob_item
+
cur
-
i
,
self
->
ob_item
+
cur
+
1
,
lim
*
sizeof
(
PyObject
*
));
}
cur
=
start
+
slicelength
*
step
;
if
(
cur
<
(
size_t
)
Py_SIZE
(
self
))
{
memmove
(
self
->
ob_item
+
cur
-
slicelength
,
self
->
ob_item
+
cur
,
(
Py_SIZE
(
self
)
-
cur
)
*
sizeof
(
PyObject
*
));
}
Py_SIZE
(
self
)
-=
slicelength
;
list_resize
(
self
,
Py_SIZE
(
self
));
for
(
i
=
0
;
i
<
slicelength
;
i
++
)
{
Py_DECREF
(
garbage
[
i
]);
}
PyMem_FREE
(
garbage
);
return
0
;
}
else
{
/* assign slice */
PyObject
*
ins
,
*
seq
;
PyObject
**
garbage
,
**
seqitems
,
**
selfitems
;
Py_ssize_t
cur
,
i
;
/* protect against a[::-1] = a */
if
(
self
==
(
PyListObject
*
)
value
)
{
seq
=
list_slice
((
PyListObject
*
)
value
,
0
,
PyList_GET_SIZE
(
value
));
}
else
{
seq
=
PySequence_Fast
(
value
,
"must assign iterable "
"to extended slice"
);
}
if
(
!
seq
)
return
-
1
;
if
(
PySequence_Fast_GET_SIZE
(
seq
)
!=
slicelength
)
{
PyErr_Format
(
PyExc_ValueError
,
"attempt to assign sequence of "
"size %zd to extended slice of "
"size %zd"
,
PySequence_Fast_GET_SIZE
(
seq
),
slicelength
);
Py_DECREF
(
seq
);
return
-
1
;
}
if
(
!
slicelength
)
{
Py_DECREF
(
seq
);
return
0
;
}
garbage
=
(
PyObject
**
)
PyMem_MALLOC
(
slicelength
*
sizeof
(
PyObject
*
));
if
(
!
garbage
)
{
Py_DECREF
(
seq
);
PyErr_NoMemory
();
return
-
1
;
}
selfitems
=
self
->
ob_item
;
seqitems
=
PySequence_Fast_ITEMS
(
seq
);
for
(
cur
=
start
,
i
=
0
;
i
<
slicelength
;
cur
+=
step
,
i
++
)
{
garbage
[
i
]
=
selfitems
[
cur
];
ins
=
seqitems
[
i
];
Py_INCREF
(
ins
);
selfitems
[
cur
]
=
ins
;
}
for
(
i
=
0
;
i
<
slicelength
;
i
++
)
{
Py_DECREF
(
garbage
[
i
]);
}
PyMem_FREE
(
garbage
);
Py_DECREF
(
seq
);
return
0
;
}
}
else
{
PyErr_Format
(
PyExc_TypeError
,
"list indices must be integers, not %.200s"
,
item
->
ob_type
->
tp_name
);
return
-
1
;
}
}
static
PyMappingMethods
list_as_mapping
=
{
(
lenfunc
)
list_length
,
(
binaryfunc
)
list_subscript
,
(
objobjargproc
)
list_ass_subscript
};
PyTypeObject
PyList_Type
=
{
PyVarObject_HEAD_INIT
(
&
PyType_Type
,
0
)
"list"
,
sizeof
(
PyListObject
),
0
,
(
destructor
)
list_dealloc
,
/* tp_dealloc */
(
printfunc
)
list_print
,
/* tp_print */
0
,
/* tp_getattr */
0
,
/* tp_setattr */
0
,
/* tp_compare */
(
reprfunc
)
list_repr
,
/* tp_repr */
0
,
/* tp_as_number */
&
list_as_sequence
,
/* tp_as_sequence */
&
list_as_mapping
,
/* tp_as_mapping */
(
hashfunc
)
PyObject_HashNotImplemented
,
/* tp_hash */
0
,
/* tp_call */
0
,
/* tp_str */
PyObject_GenericGetAttr
,
/* tp_getattro */
0
,
/* tp_setattro */
0
,
/* tp_as_buffer */
Py_TPFLAGS_DEFAULT
|
Py_TPFLAGS_HAVE_GC
|
Py_TPFLAGS_BASETYPE
|
Py_TPFLAGS_LIST_SUBCLASS
,
/* tp_flags */
list_doc
,
/* tp_doc */
(
traverseproc
)
list_traverse
,
/* tp_traverse */
(
inquiry
)
list_clear
,
/* tp_clear */
list_richcompare
,
/* tp_richcompare */
0
,
/* tp_weaklistoffset */
list_iter
,
/* tp_iter */
0
,
/* tp_iternext */
list_methods
,
/* tp_methods */
0
,
/* tp_members */
0
,
/* tp_getset */
0
,
/* tp_base */
0
,
/* tp_dict */
0
,
/* tp_descr_get */
0
,
/* tp_descr_set */
0
,
/* tp_dictoffset */
(
initproc
)
list_init
,
/* tp_init */
PyType_GenericAlloc
,
/* tp_alloc */
PyType_GenericNew
,
/* tp_new */
PyObject_GC_Del
,
/* tp_free */
};
/*********************** List Iterator **************************/
typedef
struct
{
PyObject_HEAD
long
it_index
;
PyListObject
*
it_seq
;
/* Set to NULL when iterator is exhausted */
}
listiterobject
;
static
PyObject
*
list_iter
(
PyObject
*
);
static
void
listiter_dealloc
(
listiterobject
*
);
static
int
listiter_traverse
(
listiterobject
*
,
visitproc
,
void
*
);
static
PyObject
*
listiter_next
(
listiterobject
*
);
static
PyObject
*
listiter_len
(
listiterobject
*
);
PyDoc_STRVAR
(
length_hint_doc
,
"Private method returning an estimate of len(list(it))."
);
static
PyMethodDef
listiter_methods
[]
=
{
{
"__length_hint__"
,
(
PyCFunction
)
listiter_len
,
METH_NOARGS
,
length_hint_doc
},
{
NULL
,
NULL
}
/* sentinel */
};
PyTypeObject
PyListIter_Type
=
{
PyVarObject_HEAD_INIT
(
&
PyType_Type
,
0
)
"listiterator"
,
/* tp_name */
sizeof
(
listiterobject
),
/* tp_basicsize */
0
,
/* tp_itemsize */
/* methods */
(
destructor
)
listiter_dealloc
,
/* tp_dealloc */
0
,
/* tp_print */
0
,
/* tp_getattr */
0
,
/* tp_setattr */
0
,
/* tp_compare */
0
,
/* tp_repr */
0
,
/* tp_as_number */
0
,
/* tp_as_sequence */
0
,
/* tp_as_mapping */
0
,
/* tp_hash */
0
,
/* tp_call */
0
,
/* tp_str */
PyObject_GenericGetAttr
,
/* tp_getattro */
0
,
/* tp_setattro */
0
,
/* tp_as_buffer */
Py_TPFLAGS_DEFAULT
|
Py_TPFLAGS_HAVE_GC
,
/* tp_flags */
0
,
/* tp_doc */
(
traverseproc
)
listiter_traverse
,
/* tp_traverse */
0
,
/* tp_clear */
0
,
/* tp_richcompare */
0
,
/* tp_weaklistoffset */
PyObject_SelfIter
,
/* tp_iter */
(
iternextfunc
)
listiter_next
,
/* tp_iternext */
listiter_methods
,
/* tp_methods */
0
,
/* tp_members */
};
static
PyObject
*
list_iter
(
PyObject
*
seq
)
{
listiterobject
*
it
;
if
(
!
PyList_Check
(
seq
))
{
PyErr_BadInternalCall
();
return
NULL
;
}
it
=
PyObject_GC_New
(
listiterobject
,
&
PyListIter_Type
);
if
(
it
==
NULL
)
return
NULL
;
it
->
it_index
=
0
;
Py_INCREF
(
seq
);
it
->
it_seq
=
(
PyListObject
*
)
seq
;
_PyObject_GC_TRACK
(
it
);
return
(
PyObject
*
)
it
;
}
static
void
listiter_dealloc
(
listiterobject
*
it
)
{
_PyObject_GC_UNTRACK
(
it
);
Py_XDECREF
(
it
->
it_seq
);
PyObject_GC_Del
(
it
);
}
static
int
listiter_traverse
(
listiterobject
*
it
,
visitproc
visit
,
void
*
arg
)
{
Py_VISIT
(
it
->
it_seq
);
return
0
;
}
static
PyObject
*
listiter_next
(
listiterobject
*
it
)
{
PyListObject
*
seq
;
PyObject
*
item
;
assert
(
it
!=
NULL
);
seq
=
it
->
it_seq
;
if
(
seq
==
NULL
)
return
NULL
;
assert
(
PyList_Check
(
seq
));
if
(
it
->
it_index
<
PyList_GET_SIZE
(
seq
))
{
item
=
PyList_GET_ITEM
(
seq
,
it
->
it_index
);
++
it
->
it_index
;
Py_INCREF
(
item
);
return
item
;
}
Py_DECREF
(
seq
);
it
->
it_seq
=
NULL
;
return
NULL
;
}
static
PyObject
*
listiter_len
(
listiterobject
*
it
)
{
Py_ssize_t
len
;
if
(
it
->
it_seq
)
{
len
=
PyList_GET_SIZE
(
it
->
it_seq
)
-
it
->
it_index
;
if
(
len
>=
0
)
return
PyInt_FromSsize_t
(
len
);
}
return
PyInt_FromLong
(
0
);
}
/*********************** List Reverse Iterator **************************/
typedef
struct
{
PyObject_HEAD
Py_ssize_t
it_index
;
PyListObject
*
it_seq
;
/* Set to NULL when iterator is exhausted */
}
listreviterobject
;
static
PyObject
*
list_reversed
(
PyListObject
*
,
PyObject
*
);
static
void
listreviter_dealloc
(
listreviterobject
*
);
static
int
listreviter_traverse
(
listreviterobject
*
,
visitproc
,
void
*
);
static
PyObject
*
listreviter_next
(
listreviterobject
*
);
static
PyObject
*
listreviter_len
(
listreviterobject
*
);
static
PyMethodDef
listreviter_methods
[]
=
{
{
"__length_hint__"
,
(
PyCFunction
)
listreviter_len
,
METH_NOARGS
,
length_hint_doc
},
{
NULL
,
NULL
}
/* sentinel */
};
PyTypeObject
PyListRevIter_Type
=
{
PyVarObject_HEAD_INIT
(
&
PyType_Type
,
0
)
"listreverseiterator"
,
/* tp_name */
sizeof
(
listreviterobject
),
/* tp_basicsize */
0
,
/* tp_itemsize */
/* methods */
(
destructor
)
listreviter_dealloc
,
/* tp_dealloc */
0
,
/* tp_print */
0
,
/* tp_getattr */
0
,
/* tp_setattr */
0
,
/* tp_compare */
0
,
/* tp_repr */
0
,
/* tp_as_number */
0
,
/* tp_as_sequence */
0
,
/* tp_as_mapping */
0
,
/* tp_hash */
0
,
/* tp_call */
0
,
/* tp_str */
PyObject_GenericGetAttr
,
/* tp_getattro */
0
,
/* tp_setattro */
0
,
/* tp_as_buffer */
Py_TPFLAGS_DEFAULT
|
Py_TPFLAGS_HAVE_GC
,
/* tp_flags */
0
,
/* tp_doc */
(
traverseproc
)
listreviter_traverse
,
/* tp_traverse */
0
,
/* tp_clear */
0
,
/* tp_richcompare */
0
,
/* tp_weaklistoffset */
PyObject_SelfIter
,
/* tp_iter */
(
iternextfunc
)
listreviter_next
,
/* tp_iternext */
listreviter_methods
,
/* tp_methods */
0
,
};
static
PyObject
*
list_reversed
(
PyListObject
*
seq
,
PyObject
*
unused
)
{
listreviterobject
*
it
;
it
=
PyObject_GC_New
(
listreviterobject
,
&
PyListRevIter_Type
);
if
(
it
==
NULL
)
return
NULL
;
assert
(
PyList_Check
(
seq
));
it
->
it_index
=
PyList_GET_SIZE
(
seq
)
-
1
;
Py_INCREF
(
seq
);
it
->
it_seq
=
seq
;
PyObject_GC_Track
(
it
);
return
(
PyObject
*
)
it
;
}
static
void
listreviter_dealloc
(
listreviterobject
*
it
)
{
PyObject_GC_UnTrack
(
it
);
Py_XDECREF
(
it
->
it_seq
);
PyObject_GC_Del
(
it
);
}
static
int
listreviter_traverse
(
listreviterobject
*
it
,
visitproc
visit
,
void
*
arg
)
{
Py_VISIT
(
it
->
it_seq
);
return
0
;
}
static
PyObject
*
listreviter_next
(
listreviterobject
*
it
)
{
PyObject
*
item
;
Py_ssize_t
index
=
it
->
it_index
;
PyListObject
*
seq
=
it
->
it_seq
;
if
(
index
>=
0
&&
index
<
PyList_GET_SIZE
(
seq
))
{
item
=
PyList_GET_ITEM
(
seq
,
index
);
it
->
it_index
--
;
Py_INCREF
(
item
);
return
item
;
}
it
->
it_index
=
-
1
;
if
(
seq
!=
NULL
)
{
it
->
it_seq
=
NULL
;
Py_DECREF
(
seq
);
}
return
NULL
;
}
static
PyObject
*
listreviter_len
(
listreviterobject
*
it
)
{
Py_ssize_t
len
=
it
->
it_index
+
1
;
if
(
it
->
it_seq
==
NULL
||
PyList_GET_SIZE
(
it
->
it_seq
)
<
len
)
len
=
0
;
return
PyLong_FromSsize_t
(
len
);
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment