Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
slapos
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Joanne Hugé
slapos
Commits
633ba1ca
Commit
633ba1ca
authored
Feb 20, 2017
by
Yusei Tahara
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
component/tensorflow: add tensorflow 0.12.0.
parent
d11d3da4
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
1138 additions
and
0 deletions
+1138
-0
component/tensorflow/buildout.cfg
component/tensorflow/buildout.cfg
+127
-0
component/tensorflow/tensorflow-v0.12.0.patch
component/tensorflow/tensorflow-v0.12.0.patch
+40
-0
component/tensorflow/tensorflow.bzl.in
component/tensorflow/tensorflow.bzl.in
+971
-0
No files found.
component/tensorflow/buildout.cfg
0 → 100644
View file @
633ba1ca
[buildout]
extends =
../../stack/slapos.cfg
../scipy/buildout.cfg
../zip/buildout.cfg
../bazel/buildout.cfg
../protobuf-python/buildout.cfg
parts =
slapos-cookbook-develop
slapos-cookbook
tensorflow-build-install-egg
[numpy-egg]
recipe = zc.recipe.egg
initialization =
import scipy.stats # load our own libstdc++ explicitly at the very beginning
eggs =
setuptools
${scipy:egg}
${numpy:egg}
interpreter = numpy-python
scripts = numpy-python
location = ${buildout:parts-directory}/${:_buildout_section_name_}
[tensorflow-repository]
recipe = plone.recipe.command
stop-on-error = true
repository = https://github.com/tensorflow/tensorflow
tag = v0.12.0
git-binary = ${git:location}/bin/git
patch-binary = ${patch:location}/bin/patch
location = ${buildout:parts-directory}/${:_buildout_section_name_}
command = export HOME=${:location}; (${:git-binary} clone --recurse-submodules --quiet -b ${:tag} ${:repository} ${:location}; cd ${buildout:parts-directory} ; ${:patch-binary} -p1 -d ${:_buildout_section_name_} < ${:_profile_base_location_}/tensorflow-v0.12.0.patch ) || (rm -fr ${:location}; exit 1)
[template-tensorflow-bzl]
recipe = slapos.recipe.template:jinja2
location = ${buildout:parts-directory}/${:_buildout_section_name_}
mode = 640
filename = tensorflow.bzl
template = ${:_profile_base_location_}/${:filename}.in
rendered = ${:location}/${:filename}
tf_extension_linkopts = '-lrt', '-Wl,-rpath=${gcc:location}/lib64'
context =
key tf_extension_linkopts template-tensorflow-bzl:tf_extension_linkopts
location = ${buildout:parts-directory}/${:_buildout_section_name_}
[cuda]
tf_need_cuda = 1
tf_cuda_version = 8.0
tf_cudnn_version = 6.5
tf_cuda_compute_capabilities = 5.2,6.1
cuda_toolkit_path = /usr/local/cuda
cudnn_install_path = /usr/local/cuda
[tensorflow-build]
recipe = slapos.recipe.build
location = ${buildout:parts-directory}/${:_buildout_section_name_}
tensorflow-bzl-file-path = ${template-tensorflow-bzl:rendered}
workdir = ${tensorflow-repository:location}
gcc-bin = ${gcc:location}/bin
gcc-lib = ${gcc:location}/lib
gcc-lib64 = ${gcc:location}/lib64
numpy-python-command = ${buildout:bin-directory}/${numpy-egg:interpreter}
python27-lib = ${python2.7:location}/lib
java_home_bin = ${bazel:java_home}/bin
bazel_bin = ${bazel:location}/bin
need_cuda = ${cuda:cuda_toolkit_path}
script =
os.makedirs(location)
workdir = self.options['workdir']
env = {'PATH':':'.join([self.options['gcc-bin'],
self.options['java_home_bin'],
self.options['bazel_bin'],
os.environ['PATH']]),
'COMPILER_PATH':':'.join([self.options['gcc-bin'],
os.environ.get('COMPILER_PATH') or '']),
'LIBRARY_PATH':':'.join([self.options['gcc-lib'],
self.options['gcc-lib64'],
os.environ.get('LIBRARY_PATH') or '']),
'PYTHON_BIN_PATH':self.options['numpy-python-command'],
'PYTHON_LIB_PATH':self.options['python27-lib'],
'TF_NEED_GCP':'0',
'TF_NEED_HDFS':'0',
'TF_NEED_OPENCL':'0',
'TF_NEED_CUDA':self.buildout['cuda']['tf_need_cuda'],
##### FOR CUDA #####
'GCC_HOST_COMPILER_PATH':os.path.join(self.options['gcc-bin'], 'gcc'),
'TF_CUDA_VERSION':self.buildout['cuda']['tf_cuda_version'],
'CUDA_TOOLKIT_PATH':self.buildout['cuda']['cuda_toolkit_path'],
'TF_CUDNN_VERSION':self.buildout['cuda']['tf_cudnn_version'],
'CUDNN_INSTALL_PATH':self.buildout['cuda']['cudnn_install_path'],
'TF_CUDA_COMPUTE_CAPABILITIES':self.buildout['cuda']['tf_cuda_compute_capabilities'],
####################
}
import os.path
if not os.path.exists(env['CUDA_TOOLKIT_PATH']): env['TF_NEED_CUDA'] = '0'
env['LD_LIBRARY_PATH'] = env['LIBRARY_PATH']
env['LDFLAGS'] = '-lW,-rpath='+self.options['gcc-lib64']
shutil.copy(self.options['tensorflow-bzl-file-path'],
os.path.join(workdir, 'tensorflow', 'tensorflow.bzl'))
call(['./configure'], cwd=workdir, env=env)
bazel_command = (env['TF_NEED_CUDA'] == '1' and
['bazel', 'build', '-c', 'opt', '--copt', '-march=native', '--config', 'cuda', '-s', '--verbose_failures', '//tensorflow/tools/pip_package:build_pip_package']
or
['bazel', 'build', '-c', 'opt', '--copt', '-march=native', '-s', '--verbose_failures', '//tensorflow/tools/pip_package:build_pip_package'])
call(bazel_command, cwd=workdir, env=env)
[tensorflow-build-install-egg]
recipe = slapos.recipe.build
unzip-binary = ${unzip:location}/bin/unzip
tensorflow-repository-path = ${tensorflow-repository:location}
location = ${buildout:parts-directory}/${:_buildout_section_name_}
need-tensorflow-build = ${tensorflow-build:location}
need-protobuf-python = ${protobuf-python:egg}
egg = tensorflow
script =
os.makedirs(location)
workdir = self.options['tensorflow-repository-path']
egg_name = 'tensorflow-0.12.0-py2.7-linux-x86_64.egg'
dist_dir = os.path.join(workdir, 'dist')
dest_dir = os.path.join(self.buildout['buildout']['eggs-directory'], egg_name)
call(['bazel-bin/tensorflow/tools/pip_package/build_pip_package', dist_dir], cwd=workdir)
call([self.options['unzip-binary'], '-o', os.path.join(dist_dir, egg_name), '-d', dest_dir])
[versions]
protobuf = 3.1.0.post1
wheel = 0.30.0a0
component/tensorflow/tensorflow-v0.12.0.patch
0 → 100644
View file @
633ba1ca
diff -N -u -r tensorflow.orig/tensorflow/tools/pip_package/build_pip_package.sh tensorflow/tensorflow/tools/pip_package/build_pip_package.sh
--- tensorflow.orig/tensorflow/tools/pip_package/build_pip_package.sh 2017-01-04 12:16:06.540748399 +0900
+++ tensorflow/tensorflow/tools/pip_package/build_pip_package.sh 2017-01-04 12:16:19.852748187 +0900
@@ -136,7 +136,7 @@
pushd ${TMPDIR}
rm -f MANIFEST
echo $(date) : "=== Building wheel"
- "${PYTHON_BIN_PATH:-python}" setup.py bdist_wheel ${GPU_FLAG} >/dev/null
+ "${PYTHON_BIN_PATH:-python}" setup.py bdist_egg ${GPU_FLAG} >/dev/null
mkdir -p ${DEST}
cp dist/* ${DEST}
popd
diff -N -u -r tensorflow.orig/tensorflow/tools/pip_package/setup.py tensorflow/tensorflow/tools/pip_package/setup.py
--- tensorflow.orig/tensorflow/tools/pip_package/setup.py 2017-01-04 12:16:06.540748399 +0900
+++ tensorflow/tensorflow/tools/pip_package/setup.py 2017-01-04 12:17:29.836747073 +0900
@@ -34,7 +34,7 @@
REQUIRED_PACKAGES = [
'numpy >= 1.11.0',
'six >= 1.10.0',
- 'protobuf == 3.1.0',
+ 'protobuf == 3.1.0.post1',
]
project_name = 'tensorflow'
diff -N -u -r tensorflow.orig/tensorflow/workspace.bzl tensorflow/tensorflow/workspace.bzl
--- tensorflow.orig/tensorflow/workspace.bzl 2017-01-04 12:16:06.568748399 +0900
+++ tensorflow/tensorflow/workspace.bzl 2017-01-04 12:16:19.852748187 +0900
@@ -228,9 +228,9 @@
native.new_http_archive(
name = "zlib_archive",
- url = "http://zlib.net/zlib-1.2.8.tar.gz",
- sha256 = "36658cb768a54c1d4dec43c3116c27ed893e88b02ecfcb44f2166f9c0b7f2a0d",
- strip_prefix = "zlib-1.2.8",
+ url = "https://github.com/madler/zlib/archive/v1.2.9.zip",
+ sha256 = "819936ec260b679726f21dd9c1ef9c553ce0281988842c24a9c42652cbca698a",
+ strip_prefix = "zlib-1.2.9",
build_file = str(Label("//:zlib.BUILD")),
)
component/tensorflow/tensorflow.bzl.in
0 → 100644
View file @
633ba1ca
# -*- Python -*-
# Parse the bazel version string from `native.bazel_version`.
def _parse_bazel_version(bazel_version):
# Remove commit from version.
version = bazel_version.split(" ", 1)[0]
# Split into (release, date) parts and only return the release
# as a tuple of integers.
parts = version.split('-', 1)
# Turn "release" into a tuple of strings
version_tuple = ()
for number in parts[0].split('.'):
version_tuple += (str(number),)
return version_tuple
# Given a source file, generate a test name.
# i.e. "common_runtime/direct_session_test.cc" becomes
# "common_runtime_direct_session_test"
def src_to_test_name(src):
return src.replace("/", "_").split(".")[0]
# Check that a specific bazel version is being used.
def check_version(bazel_version):
if "bazel_version" not in dir(native):
fail("\nCurrent Bazel version is lower than 0.2.1, expected at least %s\n" % bazel_version)
elif not native.bazel_version:
print("\nCurrent Bazel is not a release version, cannot check for compatibility.")
print("Make sure that you are running at least Bazel %s.\n" % bazel_version)
else:
current_bazel_version = _parse_bazel_version(native.bazel_version)
minimum_bazel_version = _parse_bazel_version(bazel_version)
if minimum_bazel_version > current_bazel_version:
fail("\nCurrent Bazel version is {}, expected at least {}\n".format(
native.bazel_version, bazel_version))
pass
# Return the options to use for a C++ library or binary build.
# Uses the ":optmode" config_setting to pick the options.
load(
"//tensorflow/core:platform/default/build_config_root.bzl",
"tf_cuda_tests_tags",
"tf_sycl_tests_tags",
)
load(
"@local_config_cuda//cuda:build_defs.bzl",
"if_cuda",
)
# List of proto files for android builds
def tf_android_core_proto_sources():
return ["//tensorflow/core:" + p
for p in tf_android_core_proto_sources_relative()]
# As tf_android_core_proto_sources, but paths relative to
# //third_party/tensorflow/core.
def tf_android_core_proto_sources_relative():
return [
"example/example.proto",
"example/feature.proto",
"framework/allocation_description.proto",
"framework/attr_value.proto",
"framework/cost_graph.proto",
"framework/device_attributes.proto",
"framework/function.proto",
"framework/graph.proto",
"framework/kernel_def.proto",
"framework/log_memory.proto",
"framework/node_def.proto",
"framework/op_def.proto",
"framework/resource_handle.proto",
"framework/step_stats.proto",
"framework/summary.proto",
"framework/tensor.proto",
"framework/tensor_description.proto",
"framework/tensor_shape.proto",
"framework/tensor_slice.proto",
"framework/types.proto",
"framework/versions.proto",
"lib/core/error_codes.proto",
"protobuf/config.proto",
"protobuf/tensor_bundle.proto",
"protobuf/saver.proto",
"util/memmapped_file_system.proto",
"util/saved_tensor_slice.proto",
]
# Returns the list of pb.h and proto.h headers that are generated for
# tf_android_core_proto_sources().
def tf_android_core_proto_headers():
return (["//tensorflow/core/" + p.replace(".proto", ".pb.h")
for p in tf_android_core_proto_sources_relative()] +
["//tensorflow/core/" + p.replace(".proto", ".proto.h")
for p in tf_android_core_proto_sources_relative()])
# Returns the list of protos for which proto_text headers should be generated.
def tf_proto_text_protos_relative():
return [p for p in tf_android_core_proto_sources_relative()]
def if_android_arm(a):
return select({
"//tensorflow:android_arm": a,
"//conditions:default": [],
})
def if_android_arm64(a):
return select({
"//tensorflow:android_arm64": a,
"//conditions:default": [],
})
def if_not_android(a):
return select({
"//tensorflow:android": [],
"//conditions:default": a,
})
def if_android(a):
return select({
"//tensorflow:android": a,
"//conditions:default": [],
})
def if_ios(a):
return select({
"//tensorflow:ios": a,
"//conditions:default": [],
})
def if_mobile(a):
return select({
"//tensorflow:android": a,
"//tensorflow:ios": a,
"//conditions:default": [],
})
def if_not_mobile(a):
return select({
"//tensorflow:android": [],
"//tensorflow:ios": [],
"//conditions:default": a,
})
def if_not_windows(a):
return select({
"//tensorflow:windows": [],
"//conditions:default": a,
})
def tf_copts():
return (["-DEIGEN_AVOID_STL_ARRAY",
"-Iexternal/gemmlowp",
"-Wno-sign-compare",
"-fno-exceptions"] +
if_cuda(["-DGOOGLE_CUDA=1"]) +
if_android_arm(["-mfpu=neon"]) +
select({
"//tensorflow:android": [
"-std=c++11",
"-DTF_LEAN_BINARY",
"-O2",
],
"//tensorflow:darwin": [],
"//tensorflow:windows": [
"/DLANG_CXX11",
"/D__VERSION__=\\\"MSVC\\\"",
"/DPLATFORM_WINDOWS",
"/DEIGEN_HAS_C99_MATH",
"/DTENSORFLOW_USE_EIGEN_THREADPOOL",
],
"//tensorflow:ios": ["-std=c++11"],
"//conditions:default": ["-pthread"]}))
def tf_opts_nortti_if_android():
return if_android([
"-fno-rtti",
"-DGOOGLE_PROTOBUF_NO_RTTI",
"-DGOOGLE_PROTOBUF_NO_STATIC_INITIALIZER",
])
# Given a list of "op_lib_names" (a list of files in the ops directory
# without their .cc extensions), generate a library for that file.
def tf_gen_op_libs(op_lib_names, deps=None):
# Make library out of each op so it can also be used to generate wrappers
# for various languages.
if not deps:
deps = []
for n in op_lib_names:
native.cc_library(name=n + "_op_lib",
copts=tf_copts(),
srcs=["ops/" + n + ".cc"],
deps=deps + ["//tensorflow/core:framework"],
visibility=["//visibility:public"],
alwayslink=1,
linkstatic=1,)
def tf_gen_op_wrapper_cc(name, out_ops_file, pkg="",
op_gen="//tensorflow/cc:cc_op_gen_main"):
# Construct an op generator binary for these ops.
tool = out_ops_file + "_gen_cc"
native.cc_binary(
name = tool,
copts = tf_copts(),
linkopts = ["-lm"],
linkstatic = 1, # Faster to link this one-time-use binary dynamically
deps = ([op_gen, pkg + ":" + name + "_op_lib"])
)
# Run the op generator.
if name == "sendrecv_ops" or name == "function_ops":
include_internal = "1"
else:
include_internal = "0"
native.genrule(
name=name + "_genrule",
outs=[out_ops_file + ".h", out_ops_file + ".cc"],
tools=[":" + tool],
cmd=("$(location :" + tool + ") $(location :" + out_ops_file + ".h) " +
"$(location :" + out_ops_file + ".cc) " + include_internal))
# Given a list of "op_lib_names" (a list of files in the ops directory
# without their .cc extensions), generate individual C++ .cc and .h
# files for each of the ops files mentioned, and then generate a
# single cc_library called "name" that combines all the
# generated C++ code.
#
# For example, for:
# tf_gen_op_wrappers_cc("tf_ops_lib", [ "array_ops", "math_ops" ])
#
#
# This will ultimately generate ops/* files and a library like:
#
# cc_library(name = "tf_ops_lib",
# srcs = [ "ops/array_ops.cc",
# "ops/math_ops.cc" ],
# hdrs = [ "ops/array_ops.h",
# "ops/math_ops.h" ],
# deps = [ ... ])
def tf_gen_op_wrappers_cc(name,
op_lib_names=[],
other_srcs=[],
other_hdrs=[],
pkg="",
deps=[
"//tensorflow/cc:ops",
"//tensorflow/cc:scope",
"//tensorflow/cc:const_op",
],
op_gen="//tensorflow/cc:cc_op_gen_main",
visibility=None):
subsrcs = other_srcs
subhdrs = other_hdrs
for n in op_lib_names:
tf_gen_op_wrapper_cc(n, "ops/" + n, pkg=pkg, op_gen=op_gen)
subsrcs += ["ops/" + n + ".cc"]
subhdrs += ["ops/" + n + ".h"]
native.cc_library(name=name,
srcs=subsrcs,
hdrs=subhdrs,
deps=deps + [
"//tensorflow/core:core_cpu",
"//tensorflow/core:framework",
"//tensorflow/core:lib",
"//tensorflow/core:protos_all_cc",
],
copts=tf_copts(),
alwayslink=1,
visibility=visibility)
# Invoke this rule in .../tensorflow/python to build the wrapper library.
def tf_gen_op_wrapper_py(name, out=None, hidden=None, visibility=None, deps=[],
require_shape_functions=False, hidden_file=None,
generated_target_name=None):
# Construct a cc_binary containing the specified ops.
tool_name = "gen_" + name + "_py_wrappers_cc"
if not deps:
deps = ["//tensorflow/core:" + name + "_op_lib"]
native.cc_binary(
name = tool_name,
linkopts = ["-lm"],
copts = tf_copts(),
linkstatic = 1, # Faster to link this one-time-use binary dynamically
deps = (["//tensorflow/core:framework",
"//tensorflow/python:python_op_gen_main"] + deps),
visibility = ["//tensorflow:internal"],
)
# Invoke the previous cc_binary to generate a python file.
if not out:
out = "ops/gen_" + name + ".py"
if hidden:
# `hidden` is a list of op names to be hidden in the generated module.
native.genrule(
name=name + "_pygenrule",
outs=[out],
tools=[tool_name],
cmd=("$(location " + tool_name + ") " + ",".join(hidden)
+ " " + ("1" if require_shape_functions else "0") + " > $@"))
elif hidden_file:
# `hidden_file` is file containing a list of op names to be hidden in the
# generated module.
native.genrule(
name=name + "_pygenrule",
outs=[out],
srcs=[hidden_file],
tools=[tool_name],
cmd=("$(location " + tool_name + ") @$(location "
+ hidden_file + ") " + ("1" if require_shape_functions else "0")
+ " > $@"))
else:
# No ops should be hidden in the generated module.
native.genrule(
name=name + "_pygenrule",
outs=[out],
tools=[tool_name],
cmd=("$(location " + tool_name + ") "
+ ("1" if require_shape_functions else "0") + " > $@"))
# Make a py_library out of the generated python file.
if not generated_target_name:
generated_target_name = name
native.py_library(name=generated_target_name,
srcs=[out],
srcs_version="PY2AND3",
visibility=visibility,
deps=[
"//tensorflow/python:framework_for_generated_wrappers",
],)
# Define a bazel macro that creates cc_test for tensorflow.
# TODO(opensource): we need to enable this to work around the hidden symbol
# __cudaRegisterFatBinary error. Need more investigations.
def tf_cc_test(name, srcs, deps, linkstatic=0, tags=[], data=[], size="medium",
suffix="", args=None, linkopts=[]):
native.cc_test(name="%s%s" % (name, suffix),
srcs=srcs,
size=size,
args=args,
copts=tf_copts(),
data=data,
deps=deps,
linkopts=["-lpthread", "-lm"] + linkopts,
linkstatic=linkstatic,
tags=tags)
# Part of the testing workflow requires a distinguishable name for the build
# rules that involve a GPU, even if otherwise identical to the base rule.
def tf_cc_test_gpu(name, srcs, deps, linkstatic=0, tags=[], data=[],
size="medium", suffix="", args=None):
tf_cc_test(name, srcs, deps, linkstatic=linkstatic, tags=tags, data=data,
size=size, suffix=suffix, args=args)
def tf_cuda_cc_test(name, srcs, deps, tags=[], data=[], size="medium",
linkstatic=0, args=[], linkopts=[]):
tf_cc_test(name=name,
srcs=srcs,
deps=deps,
tags=tags + ["manual"],
data=data,
size=size,
linkstatic=linkstatic,
linkopts=linkopts,
args=args)
tf_cc_test(name=name,
srcs=srcs,
suffix="_gpu",
deps=deps + if_cuda(["//tensorflow/core:gpu_runtime"]),
linkstatic=if_cuda(1, 0),
tags=tags + tf_cuda_tests_tags(),
data=data,
size=size,
linkopts=linkopts,
args=args)
# Create a cc_test for each of the tensorflow tests listed in "tests"
def tf_cc_tests(srcs, deps, linkstatic=0, tags=[], size="medium",
args=None, linkopts=[]):
for src in srcs:
tf_cc_test(
name=src_to_test_name(src),
srcs=[src],
deps=deps,
linkstatic=linkstatic,
tags=tags,
size=size,
args=args,
linkopts=linkopts)
def tf_cc_tests_gpu(srcs, deps, linkstatic=0, tags=[], size="medium",
args=None):
tf_cc_tests(srcs, deps, linkstatic, tags=tags, size=size, args=args)
def tf_cuda_cc_tests(srcs, deps, tags=[], size="medium", linkstatic=0,
args=None, linkopts=[]):
for src in srcs:
tf_cuda_cc_test(
name=src_to_test_name(src),
srcs=[src],
deps=deps,
tags=tags,
size=size,
linkstatic=linkstatic,
args=args,
linkopts=linkopts)
def _cuda_copts():
"""Gets the appropriate set of copts for (maybe) CUDA compilation.
If we're doing CUDA compilation, returns copts for our particular CUDA
compiler. If we're not doing CUDA compilation, returns an empty list.
"""
common_cuda_opts = ["-x", "cuda", "-DGOOGLE_CUDA=1"]
return select({
"//conditions:default": [],
"@local_config_cuda//cuda:using_nvcc": (
common_cuda_opts +
[
"-nvcc_options=expt-relaxed-constexpr",
"-nvcc_options=ftz=true",
]
),
"@local_config_cuda//cuda:using_clang": (
common_cuda_opts +
[
"-fcuda-flush-denormals-to-zero",
"--cuda-path=external/local_config_cuda/cuda",
"--cuda-gpu-arch=sm_35",
]
),
}) + select({
# Pass -O3 when building CUDA code with clang; some important
# optimizations are not enabled at O2.
"@local_config_cuda//cuda:using_clang_opt": ["-O3"],
"//conditions:default": [],
})
# Build defs for TensorFlow kernels
# When this target is built using --config=cuda, a cc_library is built
# that passes -DGOOGLE_CUDA=1 and '-x cuda', linking in additional
# libraries needed by GPU kernels.
def tf_gpu_kernel_library(srcs, copts=[], cuda_copts=[], deps=[], hdrs=[],
**kwargs):
copts = copts + _cuda_copts() + if_cuda(cuda_copts) + tf_copts()
native.cc_library(
srcs = srcs,
hdrs = hdrs,
copts = copts,
deps = deps + if_cuda([
"//tensorflow/core:cuda",
"//tensorflow/core:gpu_lib",
]),
alwayslink=1,
**kwargs)
def tf_cuda_library(deps=None, cuda_deps=None, copts=None, **kwargs):
"""Generate a cc_library with a conditional set of CUDA dependencies.
When the library is built with --config=cuda:
- both deps and cuda_deps are used as dependencies
- the cuda runtime is added as a dependency (if necessary)
- The library additionally passes -DGOOGLE_CUDA=1 to the list of copts
Args:
- cuda_deps: BUILD dependencies which will be linked if and only if:
'--config=cuda' is passed to the bazel command line.
- deps: dependencies which will always be linked.
- copts: copts always passed to the cc_library.
- kwargs: Any other argument to cc_library.
"""
if not deps:
deps = []
if not cuda_deps:
cuda_deps = []
if not copts:
copts = []
native.cc_library(
deps = deps + if_cuda(cuda_deps + ["//tensorflow/core:cuda"]),
copts = copts + if_cuda(["-DGOOGLE_CUDA=1"]),
**kwargs)
def tf_kernel_library(name, prefix=None, srcs=None, gpu_srcs=None, hdrs=None,
deps=None, alwayslink=1, **kwargs):
"""A rule to build a TensorFlow OpKernel.
May either specify srcs/hdrs or prefix. Similar to tf_cuda_library,
but with alwayslink=1 by default. If prefix is specified:
* prefix*.cc (except *.cu.cc) is added to srcs
* prefix*.h (except *.cu.h) is added to hdrs
* prefix*.cu.cc and prefix*.h (including *.cu.h) are added to gpu_srcs.
With the exception that test files are excluded.
For example, with prefix = "cast_op",
* srcs = ["cast_op.cc"]
* hdrs = ["cast_op.h"]
* gpu_srcs = ["cast_op_gpu.cu.cc", "cast_op.h"]
* "cast_op_test.cc" is excluded
With prefix = "cwise_op"
* srcs = ["cwise_op_abs.cc", ..., "cwise_op_tanh.cc"],
* hdrs = ["cwise_ops.h", "cwise_ops_common.h"],
* gpu_srcs = ["cwise_op_gpu_abs.cu.cc", ..., "cwise_op_gpu_tanh.cu.cc",
"cwise_ops.h", "cwise_ops_common.h",
"cwise_ops_gpu_common.cu.h"]
* "cwise_ops_test.cc" is excluded
"""
if not srcs:
srcs = []
if not hdrs:
hdrs = []
if not deps:
deps = []
if prefix:
if native.glob([prefix + "*.cu.cc"], exclude = ["*test*"]):
if not gpu_srcs:
gpu_srcs = []
gpu_srcs = gpu_srcs + native.glob([prefix + "*.cu.cc", prefix + "*.h"],
exclude = ["*test*"])
srcs = srcs + native.glob([prefix + "*.cc"],
exclude = ["*test*", "*.cu.cc"])
hdrs = hdrs + native.glob([prefix + "*.h"], exclude = ["*test*", "*.cu.h"])
cuda_deps = ["//tensorflow/core:gpu_lib"]
if gpu_srcs:
for gpu_src in gpu_srcs:
if gpu_src.endswith(".cc") and not gpu_src.endswith(".cu.cc"):
fail("{} not allowed in gpu_srcs. .cc sources must end with .cu.cc".format(gpu_src))
tf_gpu_kernel_library(
name = name + "_gpu",
srcs = gpu_srcs,
deps = deps,
**kwargs)
cuda_deps.extend([":" + name + "_gpu"])
tf_cuda_library(
name = name,
srcs = srcs,
hdrs = hdrs,
copts = tf_copts(),
cuda_deps = cuda_deps,
linkstatic = 1, # Needed since alwayslink is broken in bazel b/27630669
alwayslink = alwayslink,
deps = deps,
**kwargs)
def tf_kernel_libraries(name, prefixes, deps=None, libs=None, **kwargs):
"""Makes one target per prefix, and one target that includes them all.
Args:
name: The name of the omnibus cc_library target that depends on each
generated tf_kernel_library target.
prefixes: A list of source file name prefixes used to generate individual
libraries. See the definition of tf_kernel_library for details.
deps: The dependencies list associated with each generated target.
libs: Additional tf_kernel_library targets that should be included in the
omnibus cc_library target but not as deps of individual libraries.
This can be used, for example, if a library that was previously
generated by this rule is refactored into a separate definition
in order to specify more or fewer deps for it.
Other attributes are forwarded to each individual target but not to the
omnibus cc_library target.
"""
for p in prefixes:
tf_kernel_library(name=p, prefix=p, deps=deps, **kwargs)
native.cc_library(name=name,
deps=[":" + p for p in prefixes] + (libs or []))
# Bazel rules for building swig files.
def _py_wrap_cc_impl(ctx):
srcs = ctx.files.srcs
if len(srcs) != 1:
fail("Exactly one SWIG source file label must be specified.", "srcs")
module_name = ctx.attr.module_name
src = ctx.files.srcs[0]
inputs = set([src])
inputs += ctx.files.swig_includes
for dep in ctx.attr.deps:
inputs += dep.cc.transitive_headers
inputs += ctx.files._swiglib
swig_include_dirs = set(_get_repository_roots(ctx, inputs))
swig_include_dirs += sorted([f.dirname for f in ctx.files._swiglib])
args = ["-c++",
"-python",
"-module", module_name,
"-o", ctx.outputs.cc_out.path,
"-outdir", ctx.outputs.py_out.dirname]
args += ["-l" + f.path for f in ctx.files.swig_includes]
args += ["-I" + i for i in swig_include_dirs]
args += [src.path]
outputs = [ctx.outputs.cc_out,
ctx.outputs.py_out]
ctx.action(executable=ctx.executable._swig,
arguments=args,
inputs=list(inputs),
outputs=outputs,
mnemonic="PythonSwig",
progress_message="SWIGing " + src.path)
return struct(files=set(outputs))
_py_wrap_cc = rule(
attrs = {
"srcs": attr.label_list(
mandatory = True,
allow_files = True,
),
"swig_includes": attr.label_list(
cfg = "data",
allow_files = True,
),
"deps": attr.label_list(
allow_files = True,
providers = ["cc"],
),
"module_name": attr.string(mandatory = True),
"py_module_name": attr.string(mandatory = True),
"_swig": attr.label(
default = Label("@swig//:swig"),
executable = True,
cfg = "host",
),
"_swiglib": attr.label(
default = Label("@swig//:templates"),
allow_files = True,
),
},
outputs = {
"cc_out": "%{module_name}.cc",
"py_out": "%{py_module_name}.py",
},
implementation = _py_wrap_cc_impl,
)
def _get_repository_roots(ctx, files):
"""Returns abnormal root directories under which files reside.
When running a ctx.action, source files within the main repository are all
relative to the current directory; however, files that are generated or exist
in remote repositories will have their root directory be a subdirectory,
e.g. bazel-out/local-fastbuild/genfiles/external/jpeg_archive. This function
returns the set of these devious directories, ranked and sorted by popularity
in order to hopefully minimize the number of I/O system calls within the
compiler, because includes have quadratic complexity.
"""
result = {}
for f in files:
root = f.root.path
if root:
if root not in result:
result[root] = 0
result[root] -= 1
work = f.owner.workspace_root
if work:
if root:
root += "/"
root += work
if root:
if root not in result:
result[root] = 0
result[root] -= 1
return [k for v, k in sorted([(v, k) for k, v in result.items()])]
# Bazel rule for collecting the header files that a target depends on.
def _transitive_hdrs_impl(ctx):
outputs = set()
for dep in ctx.attr.deps:
outputs += dep.cc.transitive_headers
return struct(files=outputs)
_transitive_hdrs = rule(
attrs = {
"deps": attr.label_list(
allow_files = True,
providers = ["cc"],
),
},
implementation = _transitive_hdrs_impl,
)
def transitive_hdrs(name, deps=[], **kwargs):
_transitive_hdrs(name=name + "_gather",
deps=deps)
native.filegroup(name=name,
srcs=[":" + name + "_gather"])
# Create a header only library that includes all the headers exported by
# the libraries in deps.
def cc_header_only_library(name, deps=[], **kwargs):
_transitive_hdrs(name=name + "_gather",
deps=deps)
native.cc_library(name=name,
hdrs=[":" + name + "_gather"],
**kwargs)
def tf_custom_op_library_additional_deps():
return [
"@protobuf//:protobuf",
"//third_party/eigen3",
"//tensorflow/core:framework_headers_lib",
]
# Traverse the dependency graph along the "deps" attribute of the
# target and return a struct with one field called 'tf_collected_deps'.
# tf_collected_deps will be the union of the deps of the current target
# and the tf_collected_deps of the dependencies of this target.
def _collect_deps_aspect_impl(target, ctx):
alldeps = set()
if hasattr(ctx.rule.attr, "deps"):
for dep in ctx.rule.attr.deps:
alldeps = alldeps | set([dep.label])
if hasattr(dep, "tf_collected_deps"):
alldeps = alldeps | dep.tf_collected_deps
return struct(tf_collected_deps=alldeps)
collect_deps_aspect = aspect(
implementation=_collect_deps_aspect_impl,
attr_aspects=["deps"])
def _dep_label(dep):
label = dep.label
return label.package + ":" + label.name
# This rule checks that the transitive dependencies of targets listed
# in the 'deps' attribute don't depend on the targets listed in
# the 'disallowed_deps' attribute.
def _check_deps_impl(ctx):
disallowed_deps = ctx.attr.disallowed_deps
for input_dep in ctx.attr.deps:
if not hasattr(input_dep, "tf_collected_deps"):
continue
for dep in input_dep.tf_collected_deps:
for disallowed_dep in disallowed_deps:
if dep == disallowed_dep.label:
fail(_dep_label(input_dep) + " cannot depend on " +
_dep_label(disallowed_dep))
return struct()
check_deps = rule(
_check_deps_impl,
attrs = {
"deps": attr.label_list(
aspects=[collect_deps_aspect],
mandatory = True,
allow_files = True
),
"disallowed_deps": attr.label_list(
mandatory = True,
allow_files = True
)},
)
# Helper to build a dynamic library (.so) from the sources containing
# implementations of custom ops and kernels.
def tf_custom_op_library(name, srcs=[], gpu_srcs=[], deps=[]):
cuda_deps = [
"//tensorflow/core:stream_executor_headers_lib",
"@local_config_cuda//cuda:cudart_static",
]
deps = deps + tf_custom_op_library_additional_deps()
if gpu_srcs:
basename = name.split(".")[0]
native.cc_library(
name = basename + "_gpu",
srcs = gpu_srcs,
copts = _cuda_copts(),
deps = deps + if_cuda(cuda_deps))
cuda_deps.extend([":" + basename + "_gpu"])
check_deps(name=name+"_check_deps",
deps=deps + if_cuda(cuda_deps),
disallowed_deps=["//tensorflow/core:framework",
"//tensorflow/core:lib"])
native.cc_binary(name=name,
srcs=srcs,
deps=deps + if_cuda(cuda_deps),
data=[name + "_check_deps"],
copts=tf_copts(),
linkshared=1,
linkopts = select({
"//conditions:default": [
"-lm",
],
"//tensorflow:darwin": [],
}),
)
def tf_extension_linkopts():
return [{{ tf_extension_linkopts }}] # No extension link opts
def tf_extension_copts():
return [] # No extension c opts
def tf_py_wrap_cc(name, srcs, swig_includes=[], deps=[], copts=[], **kwargs):
module_name = name.split("/")[-1]
# Convert a rule name such as foo/bar/baz to foo/bar/_baz.so
# and use that as the name for the rule producing the .so file.
cc_library_name = "/".join(name.split("/")[:-1] + ["_" + module_name + ".so"])
cc_library_pyd_name = "/".join(name.split("/")[:-1] + ["_" + module_name + ".pyd"])
extra_deps = []
_py_wrap_cc(name=name + "_py_wrap",
srcs=srcs,
swig_includes=swig_includes,
deps=deps + extra_deps,
module_name=module_name,
py_module_name=name)
extra_linkopts = select({
"@local_config_cuda//cuda:darwin": [
"-Wl,-exported_symbols_list",
"//tensorflow:tf_exported_symbols.lds"
],
"//tensorflow:windows": [
],
"//conditions:default": [
"-Wl,--version-script",
"//tensorflow:tf_version_script.lds"
]})
extra_deps += select({
"@local_config_cuda//cuda:darwin": [
"//tensorflow:tf_exported_symbols.lds"
],
"//tensorflow:windows": [
],
"//conditions:default": [
"//tensorflow:tf_version_script.lds"
]
})
native.cc_binary(
name=cc_library_name,
srcs=[module_name + ".cc"],
copts=(copts + ["-Wno-self-assign",
"-Wno-sign-compare",
"-Wno-write-strings"]
+ tf_extension_copts()),
linkopts=tf_extension_linkopts() + extra_linkopts,
linkstatic=1,
linkshared=1,
deps=deps + extra_deps)
native.genrule(
name = "gen_" + cc_library_pyd_name,
srcs = [":" + cc_library_name],
outs = [cc_library_pyd_name],
cmd = "cp $< $@",
)
native.py_library(name=name,
srcs=[":" + name + ".py"],
srcs_version="PY2AND3",
data=select({
"//tensorflow:windows": [":" + cc_library_pyd_name],
"//conditions:default": [":" + cc_library_name],
}))
def tf_py_test(name, srcs, size="medium", data=[], main=None, args=[],
tags=[], shard_count=1, additional_deps=[], flaky=0):
native.py_test(
name=name,
size=size,
srcs=srcs,
main=main,
args=args,
tags=tags,
visibility=["//tensorflow:internal"],
shard_count=shard_count,
data=data,
deps=[
"//tensorflow/python:extra_py_tests_deps",
"//tensorflow/python:gradient_checker",
] + additional_deps,
flaky=flaky,
srcs_version="PY2AND3")
def cuda_py_test(name, srcs, size="medium", data=[], main=None, args=[],
shard_count=1, additional_deps=[], tags=[], flaky=0):
test_tags = tags + tf_cuda_tests_tags()
tf_py_test(name=name,
size=size,
srcs=srcs,
data=data,
main=main,
args=args,
tags=test_tags,
shard_count=shard_count,
additional_deps=additional_deps,
flaky=flaky)
def sycl_py_test(name, srcs, size="medium", data=[], main=None, args=[],
shard_count=1, additional_deps=[], tags=[], flaky=0):
test_tags = tags + tf_sycl_tests_tags()
tf_py_test(name=name,
size=size,
srcs=srcs,
data=data,
main=main,
args=args,
tags=test_tags,
shard_count=shard_count,
additional_deps=additional_deps,
flaky=flaky)
def py_tests(name,
srcs,
size="medium",
additional_deps=[],
data=[],
tags=[],
shard_count=1,
prefix=""):
for src in srcs:
test_name = src.split("/")[-1].split(".")[0]
if prefix:
test_name = "%s_%s" % (prefix, test_name)
tf_py_test(name=test_name,
size=size,
srcs=[src],
main=src,
tags=tags,
shard_count=shard_count,
data=data,
additional_deps=additional_deps)
def cuda_py_tests(name, srcs, size="medium", additional_deps=[], data=[],
shard_count=1, tags=[], prefix=""):
test_tags = tags + tf_cuda_tests_tags()
py_tests(name=name, size=size, srcs=srcs, additional_deps=additional_deps,
data=data, tags=test_tags, shard_count=shard_count,prefix=prefix)
# Creates a genrule named <name> for running tools/proto_text's generator to
# make the proto_text functions, for the protos passed in <srcs>.
#
# Return a struct with fields (hdrs, srcs) containing the names of the
# generated files.
def tf_generate_proto_text_sources(name, srcs_relative_dir, srcs):
out_hdrs = ([p.replace(".proto", ".pb_text.h") for p in srcs] +
[p.replace(".proto", ".pb_text-impl.h") for p in srcs])
out_srcs = [p.replace(".proto", ".pb_text.cc") for p in srcs]
native.genrule(
name = name,
srcs = srcs + ["//tensorflow/tools/proto_text:placeholder.txt"],
outs = out_hdrs + out_srcs,
cmd = "$(location //tensorflow/tools/proto_text:gen_proto_text_functions) " +
"$(@D) " + srcs_relative_dir + " $(SRCS)",
tools = ["//tensorflow/tools/proto_text:gen_proto_text_functions"],
)
return struct(hdrs=out_hdrs, srcs=out_srcs)
def tf_genrule_cmd_append_to_srcs(to_append):
return ("cat $(SRCS) > $(@) && " +
"echo >> $(@) && " +
"echo " + to_append + " >> $(@)")
def tf_version_info_genrule():
native.genrule(
name = "version_info_gen",
srcs = [
"//tensorflow/tools/git:gen/spec.json",
"//tensorflow/tools/git:gen/head",
"//tensorflow/tools/git:gen/branch_ref",
],
outs = ["util/version_info.cc"],
cmd = "$(location //tensorflow/tools/git:gen_git_source.py) --generate $(SRCS) \"$@\"",
local = 1,
tools = ["//tensorflow/tools/git:gen_git_source.py"],
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment