Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
B
bcc
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
Analytics
Analytics
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Commits
Issue Boards
Open sidebar
Kirill Smelkov
bcc
Commits
74016c3f
Commit
74016c3f
authored
Sep 21, 2015
by
Brendan Gregg
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
funclatency
parent
30abd81b
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
485 additions
and
0 deletions
+485
-0
README.md
README.md
+1
-0
man/man8/funclatency.8
man/man8/funclatency.8
+109
-0
tools/funclatency
tools/funclatency
+150
-0
tools/funclatency_example.txt
tools/funclatency_example.txt
+225
-0
No files found.
README.md
View file @
74016c3f
...
@@ -66,6 +66,7 @@ Tools:
...
@@ -66,6 +66,7 @@ Tools:
-
tools/
[
biosnoop
](
tools/biosnoop
)
: Trace block device I/O with PID and latency.
[
Examples
](
tools/biosnoop_example.txt
)
.
-
tools/
[
biosnoop
](
tools/biosnoop
)
: Trace block device I/O with PID and latency.
[
Examples
](
tools/biosnoop_example.txt
)
.
-
tools/
[
funccount
](
tools/funccount
)
: Count kernel function calls.
[
Examples
](
tools/funccount_example.txt
)
.
-
tools/
[
funccount
](
tools/funccount
)
: Count kernel function calls.
[
Examples
](
tools/funccount_example.txt
)
.
-
tools/
[
funclatency
](
tools/funclatency
)
: Time kernel functions and show their latency distribution.
[
Examples
](
tools/funclatency_example.txt
)
.
-
tools/
[
killsnoop
](
tools/killsnoop
)
: Trace signals issued by the kill() syscall.
[
Examples
](
tools/killsnoop_example.txt
)
.
-
tools/
[
killsnoop
](
tools/killsnoop
)
: Trace signals issued by the kill() syscall.
[
Examples
](
tools/killsnoop_example.txt
)
.
-
tools/
[
opensnoop
](
tools/opensnoop
)
: Trace open() syscalls.
[
Examples
](
tools/opensnoop_example.txt
)
.
-
tools/
[
opensnoop
](
tools/opensnoop
)
: Trace open() syscalls.
[
Examples
](
tools/opensnoop_example.txt
)
.
-
tools/
[
pidpersec
](
tools/pidpersec
)
: Count new processes (via fork).
[
Examples
](
tools/pidpersec_example.txt
)
.
-
tools/
[
pidpersec
](
tools/pidpersec
)
: Count new processes (via fork).
[
Examples
](
tools/pidpersec_example.txt
)
.
...
...
man/man8/funclatency.8
0 → 100644
View file @
74016c3f
.TH funclatency 8 "2015-08-18" "USER COMMANDS"
.SH NAME
funclatency \- Time kernel funcitons and print latency as a histogram.
.SH SYNOPSIS
.B funclatency [\-h] [\-p PID] [\-i INTERVAL] [\-T] [\-u] [\-m] [\-r] pattern
.SH DESCRIPTION
This tool traces kernel function calls and times their duration (latency), and
shows the latency distribution as a histogram. The time is measured from when
the function is called to when it returns, and is inclusive of both on-CPU
time and time spent blocked.
This tool uses in-kernel eBPF maps for storing timestamps and the histogram,
for efficiency.
WARNING: This uses dynamic tracing of (what can be many) kernel functions, an
activity that has had issues on some kernel versions (risk of panics or
freezes). Test, and know what you are doing, before use.
Since this uses BPF, only the root user can use this tool.
.SH REQUIREMENTS
CONFIG_BPF and bcc.
.SH OPTIONS
pattern
Function name or search pattern. Supports "*" wildcards. See EXAMPLES.
You can also use \-r for regular expressions.
\-h
Print usage message.
.TP
\-p PID
Trace this process ID only.
.TP
\-i INTERVAL
Print output every interval seconds.
.TP
\-T
Include timestamps on output.
.TP
\-u
Output histogram in microseconds.
.TP
\-m
Output histogram in milliseconds.
.TP
\-r
Use regular expressions for the search pattern.
.SH EXAMPLES
.TP
Time the do_sys_open() kernel function, and print the distribution as a histogram:
#
.B funclatency do_sys_open
.TP
Time vfs_read(), and print the histogram in units of microseconds:
#
.B funclatency \-u vfs_read
.TP
Time do_nanosleep(), and print the histogram in units of milliseconds:
#
.B funclatency \-m do_nanosleep
.TP
Time vfs_read(), and print output every 5 seconds, with timestamps:
#
.B funclatency \-mTi 5 vfs_read
.TP
Time vfs_read() for process ID 181 only:
#
.B funclatency \-p 181 vfs_read:
.TP
Time both vfs_fstat() and vfs_fstatat() calls, by use of a wildcard:
#
.B funclatency 'vfs_fstat*'
.SH FIELDS
.TP
necs
Nanosecond range
.TP
usecs
Microsecond range
.TP
mecs
Millisecond range
.TP
count
How many calls fell into this range
.TP
distribution
An ASCII bar chart to visualize the distribution (count column)
.SH OVERHEAD
This traces kernel functions and maintains in-kernel timestamps and a histgroam,
which are asynchronously copied to user-space. While this method is very
efficient, the rate of kernel functions can also be very high (>1M/sec), at
which point the overhead is expected to be measurable. Measure in a test
environment and understand overheads before use. You can also use funccount
to measure the rate of kernel functions over a short duration, to set some
expectations before use.
.SH SOURCE
This is from bcc.
.IP
https://github.com/iovisor/bcc
.PP
Also look in the bcc distribution for a companion _examples.txt file containing
example usage, output, and commentary for this tool.
.SH OS
Linux
.SH STABILITY
Unstable - in development.
.SH AUTHOR
Brendan Gregg
.SH SEE ALSO
funccount(8)
tools/funclatency
0 → 100755
View file @
74016c3f
#!/usr/bin/python
#
# funclatency Time kernel funcitons and print latency as a histogram.
# For Linux, uses BCC, eBPF.
#
# USAGE: funclatency [-h] [-p PID] [-i INTERVAL] [-T] [-u] [-m] [-r] pattern
#
# Run "funclatency -h" for full usage.
#
# The pattern is a string with optional '*' wildcards, similar to file globbing.
# If you'd prefer to use regular expressions, use the -r option. Matching
# multiple functions is of limited use, since the output has one histogram for
# everything. Future versions should split the output histogram by the function.
#
# Copyright (c) 2015 Brendan Gregg.
# Licensed under the Apache License, Version 2.0 (the "License")
#
# 20-Sep-2015 Brendan Gregg Created this.
from
__future__
import
print_function
from
bcc
import
BPF
from
time
import
sleep
,
strftime
import
argparse
import
signal
# arguments
examples
=
"""examples:
./funclatency do_sys_open # time the do_sys_open() kenel function
./funclatency -u vfs_read # time vfs_read(), in microseconds
./funclatency -m do_nanosleep # time do_nanosleep(), in milliseconds
./funclatency -mTi 5 vfs_read # output every 5 seconds, with timestamps
./funclatency -p 181 vfs_read # time process 181 only
./funclatency 'vfs_fstat*' # time both vfs_fstat() and vfs_fstatat()
"""
parser
=
argparse
.
ArgumentParser
(
description
=
"Time kernel funcitons and print latency as a histogram"
,
formatter_class
=
argparse
.
RawDescriptionHelpFormatter
,
epilog
=
examples
)
parser
.
add_argument
(
"-p"
,
"--pid"
,
help
=
"trace this PID only"
)
parser
.
add_argument
(
"-i"
,
"--interval"
,
default
=
99999999
,
help
=
"summary interval, seconds"
)
parser
.
add_argument
(
"-T"
,
"--timestamp"
,
action
=
"store_true"
,
help
=
"include timestamp on output"
)
parser
.
add_argument
(
"-u"
,
"--microseconds"
,
action
=
"store_true"
,
help
=
"microsecond histogram"
)
parser
.
add_argument
(
"-m"
,
"--milliseconds"
,
action
=
"store_true"
,
help
=
"millisecond histogram"
)
parser
.
add_argument
(
"-r"
,
"--regexp"
,
action
=
"store_true"
,
help
=
"use regular expressions. Default is
\
"
*
\
"
wildcards only."
)
parser
.
add_argument
(
"pattern"
,
help
=
"search expression for kernel functions"
)
args
=
parser
.
parse_args
()
pattern
=
args
.
pattern
if
not
args
.
regexp
:
pattern
=
pattern
.
replace
(
'*'
,
'.*'
)
pattern
=
'^'
+
pattern
+
'$'
debug
=
0
# define BPF program
bpf_text
=
"""
#include <uapi/linux/ptrace.h>
#include <linux/blkdev.h>
BPF_TABLE(
\
"
array
\
"
, int, u64, dist, 64);
BPF_HASH(start, u32);
int trace_func_entry(struct pt_regs *ctx)
{
u32 pid = bpf_get_current_pid_tgid();
u64 ts = bpf_ktime_get_ns();
FILTER
start.update(&pid, &ts);
return 0;
}
int trace_func_return(struct pt_regs *ctx)
{
u64 *tsp, delta;
u32 pid = bpf_get_current_pid_tgid();
// calculate delta time
tsp = start.lookup(&pid);
if (tsp == 0) {
return 0; // missed start
}
start.delete(&pid);
delta = bpf_ktime_get_ns() - *tsp;
FACTOR
// store as histogram
int index = bpf_log2l(delta);
u64 *leaf = dist.lookup(&index);
if (leaf) (*leaf)++;
return 0;
}
"""
if
args
.
pid
:
bpf_text
=
bpf_text
.
replace
(
'FILTER'
,
'if (pid != %s) { return 0; }'
%
args
.
pid
)
else
:
bpf_text
=
bpf_text
.
replace
(
'FILTER'
,
''
)
if
args
.
milliseconds
:
bpf_text
=
bpf_text
.
replace
(
'FACTOR'
,
'delta /= 1000000;'
)
label
=
"msecs"
elif
args
.
microseconds
:
bpf_text
=
bpf_text
.
replace
(
'FACTOR'
,
'delta /= 1000;'
)
label
=
"usecs"
else
:
bpf_text
=
bpf_text
.
replace
(
'FACTOR'
,
''
)
label
=
"nsecs"
if
debug
:
print
(
bpf_text
)
# signal handler
def
signal_ignore
(
signal
,
frame
):
print
()
# load BPF program
b
=
BPF
(
text
=
bpf_text
)
b
.
attach_kprobe
(
event_re
=
pattern
,
fn_name
=
"trace_func_entry"
)
b
.
attach_kretprobe
(
event_re
=
pattern
,
fn_name
=
"trace_func_return"
)
# header
print
(
"Tracing %s... Hit Ctrl-C to end."
%
args
.
pattern
)
# output
exiting
=
0
if
args
.
interval
else
1
dist
=
b
.
get_table
(
"dist"
)
while
(
1
):
try
:
sleep
(
int
(
args
.
interval
))
except
KeyboardInterrupt
:
exiting
=
1
# as cleanup can take many seconds, trap Ctrl-C:
signal
.
signal
(
signal
.
SIGINT
,
signal_ignore
)
print
()
if
args
.
timestamp
:
print
(
"%-8s
\
n
"
%
strftime
(
"%H:%M:%S"
),
end
=
""
)
dist
.
print_log2_hist
(
label
)
dist
.
clear
()
if
exiting
:
print
(
"Detaching..."
)
exit
()
tools/funclatency_example.txt
0 → 100644
View file @
74016c3f
Demonstrations of funclatency, the Linux eBPF/bcc version.
Timing the do_sys_open() kernel function until Ctrl-C:
# ./funclatency do_sys_open
Tracing do_sys_open... Hit Ctrl-C to end.
^C
nsecs : count distribution
0 -> 1 : 0 | |
2 -> 3 : 0 | |
4 -> 7 : 0 | |
8 -> 15 : 0 | |
16 -> 31 : 0 | |
32 -> 63 : 0 | |
64 -> 127 : 0 | |
128 -> 255 : 0 | |
256 -> 511 : 0 | |
512 -> 1023 : 0 | |
1024 -> 2047 : 0 | |
2048 -> 4095 : 124 |**************** |
4096 -> 8191 : 291 |**************************************|
8192 -> 16383 : 36 |**** |
16384 -> 32767 : 16 |** |
32768 -> 65535 : 8 |* |
65536 -> 131071 : 0 | |
131072 -> 262143 : 0 | |
262144 -> 524287 : 0 | |
524288 -> 1048575 : 0 | |
1048576 -> 2097151 : 0 | |
2097152 -> 4194303 : 1 | |
Detaching...
The output shows a histogram of function latency (call time), measured from when
the function began executing (was called) to when it finished (returned).
This example output shows that most of the time, do_sys_open() took between
2048 and 65536 nanoseconds (2 to 65 microseconds). The peak of this distribution
shows 291 calls of between 4096 and 8191 nanoseconds. There was also one
occurrance, an outlier, in the 2 to 4 millisecond range.
How this works: the function entry and return are traced using the kernel kprobe
and kretprobe tracer. Timestamps are collected, the delta time calculated, which
is the bucketized and stored as an in-kernel histogram for efficiency. The
histgram is visible in the output: it's the "count" column; everything else is
decoration. Only the count column is copied to user-level on output. This is an
efficient way to time kernel functions and examine their latency distribution.
Now vfs_read() is traced, and a microseconds histogram printed:
# ./funclatency -u vfs_read
Tracing vfs_read... Hit Ctrl-C to end.
^C
usecs : count distribution
0 -> 1 : 1143 |**************************************|
2 -> 3 : 420 |************* |
4 -> 7 : 159 |***** |
8 -> 15 : 295 |********* |
16 -> 31 : 25 | |
32 -> 63 : 5 | |
64 -> 127 : 1 | |
128 -> 255 : 0 | |
256 -> 511 : 0 | |
512 -> 1023 : 0 | |
1024 -> 2047 : 1 | |
2048 -> 4095 : 0 | |
4096 -> 8191 : 5 | |
8192 -> 16383 : 0 | |
16384 -> 32767 : 0 | |
32768 -> 65535 : 0 | |
65536 -> 131071 : 7 | |
131072 -> 262143 : 7 | |
262144 -> 524287 : 3 | |
524288 -> 1048575 : 7 | |
Detaching...
This shows a bimodal distribution. Many vfs_read() calls were faster than 15
microseconds, however, there was also a small handful between 65 milliseconds
and 1 second, seen at the bottom of the table. These are likely network reads
from SSH, waiting on interactive keystrokes.
Tracing do_nanosleep() in milliseconds:
# ./funclatency -m do_nanosleep
Tracing do_nanosleep... Hit Ctrl-C to end.
^C
msecs : count distribution
0 -> 1 : 0 | |
2 -> 3 : 0 | |
4 -> 7 : 0 | |
8 -> 15 : 0 | |
16 -> 31 : 0 | |
32 -> 63 : 0 | |
64 -> 127 : 0 | |
128 -> 255 : 0 | |
256 -> 511 : 0 | |
512 -> 1023 : 328 |**************************************|
1024 -> 2047 : 0 | |
2048 -> 4095 : 0 | |
4096 -> 8191 : 32 |*** |
8192 -> 16383 : 0 | |
16384 -> 32767 : 0 | |
32768 -> 65535 : 2 | |
Detaching...
This looks like it has found threads that are sleeping every 1, 5, and 60
seconds.
An interval can be provided using -i, and timestamps added using -T. For
example, tracing vfs_read() latency in milliseconds and printing output
every 5 seconds:
# ./funclatency -mTi 5 vfs_read
Tracing vfs_read... Hit Ctrl-C to end.
20:10:08
msecs : count distribution
0 -> 1 : 1500 |*************************************+|
2 -> 3 : 3 | |
4 -> 7 : 1 | |
8 -> 15 : 2 | |
16 -> 31 : 0 | |
32 -> 63 : 0 | |
64 -> 127 : 4 | |
128 -> 255 : 3 | |
256 -> 511 : 1 | |
512 -> 1023 : 7 | |
20:10:13
msecs : count distribution
0 -> 1 : 1251 |*************************************+|
2 -> 3 : 3 | |
4 -> 7 : 2 | |
8 -> 15 : 0 | |
16 -> 31 : 2 | |
32 -> 63 : 3 | |
64 -> 127 : 5 | |
128 -> 255 : 5 | |
256 -> 511 : 3 | |
512 -> 1023 : 6 | |
1024 -> 2047 : 2 | |
20:10:18
msecs : count distribution
0 -> 1 : 1265 |*************************************+|
2 -> 3 : 0 | |
4 -> 7 : 5 | |
8 -> 15 : 9 | |
16 -> 31 : 7 | |
32 -> 63 : 1 | |
64 -> 127 : 2 | |
128 -> 255 : 3 | |
256 -> 511 : 5 | |
512 -> 1023 : 5 | |
1024 -> 2047 : 0 | |
2048 -> 4095 : 1 | |
^C
20:10:20
msecs : count distribution
0 -> 1 : 249 |*************************************+|
2 -> 3 : 0 | |
4 -> 7 : 0 | |
8 -> 15 : 1 | |
16 -> 31 : 0 | |
32 -> 63 : 0 | |
64 -> 127 : 0 | |
128 -> 255 : 0 | |
256 -> 511 : 0 | |
512 -> 1023 : 1 | |
Detaching...
A single process can be traced, which filters in-kernel for efficiency. Here,
the vfs_read() function is timed as milliseconds for PID 17064, which is a
bash shell:
# ./funclatency -mp 17064 vfs_read
Tracing vfs_read... Hit Ctrl-C to end.
^C
msecs : count distribution
0 -> 1 : 1 |** |
2 -> 3 : 0 | |
4 -> 7 : 0 | |
8 -> 15 : 1 |** |
16 -> 31 : 2 |***** |
32 -> 63 : 0 | |
64 -> 127 : 13 |**************************************|
128 -> 255 : 10 |***************************** |
256 -> 511 : 4 |*********** |
Detaching...
The distribution between 64 and 511 milliseconds shows keystroke latency.
USAGE message:
# ./funclatency -h
usage: funclatency [-h] [-p PID] [-i INTERVAL] [-T] [-u] [-m] [-r] pattern
Time kernel funcitons and print latency as a histogram
positional arguments:
pattern search expression for kernel functions
optional arguments:
-h, --help show this help message and exit
-p PID, --pid PID trace this PID only
-i INTERVAL, --interval INTERVAL
summary interval, seconds
-T, --timestamp include timestamp on output
-u, --microseconds microsecond histogram
-m, --milliseconds millisecond histogram
-r, --regexp use regular expressions. Default is "*" wildcards
only.
examples:
./funclatency do_sys_open # time the do_sys_open() kenel function
./funclatency -u vfs_read # time vfs_read(), in microseconds
./funclatency -m do_nanosleep # time do_nanosleep(), in milliseconds
./funclatency -mTi 5 vfs_read # output every 5 seconds, with timestamps
./funclatency -p 181 vfs_read # time process 181 only
./funclatency 'vfs_fstat*' # time both vfs_fstat() and vfs_fstatat()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment