Commit f37434bd authored by Iago López Galeiras's avatar Iago López Galeiras Committed by Sasha Goldshtein

tools: add tcptracer (#762)

* tools: add tcptracer

This allows tracking TCP connections by tracking TCP connects, closes
and accepts.

This is different from existing tools like tcpconnect or tcpaccept in
that:

* It includes more information like network namespace or source ports
for tcpconnects or remote ports for tcpaccepts
* It traces tcp_close allowing to see when a connection ends
* It only shows information about established connections

* tcptracer: add to README

* tcptracer: add example

* tcptracer: add man page
parent 4bb6d7fe
......@@ -133,6 +133,7 @@ pair of .c and .py files, and some are directories of files.
- tools/[tcplife](tools/tcplife.py): Trace TCP sessions and summarize lifespan. [Examples](tools/tcplife_example.txt).
- tools/[tcpretrans](tools/tcpretrans.py): Trace TCP retransmits and TLPs. [Examples](tools/tcpretrans_example.txt).
- tools/[tcptop](tools/tcptop.py): Summarize TCP send/recv throughput by host. Top for TCP. [Examples](tools/tcptop_example.txt).
- tools/[tcptracer](tools/tcptracer.py): Trace TCP established connections (connect(), accept(), close()). [Examples](tools/tcptracer_example.txt).
- tools/[tplist](tools/tplist.py): Display kernel tracepoints or USDT probes and their formats. [Examples](tools/tplist_example.txt).
- tools/[trace](tools/trace.py): Trace arbitrary functions, with filters. [Examples](tools/trace_example.txt).
- tools/[ttysnoop](tools/ttysnoop.py): Watch live output from a tty or pts device. [Examples](tools/ttysnoop_example.txt).
......
.TH tcptracer 8 "2017-03-27" "USER COMMANDS"
.SH NAME
tcptracer \- Trace TCP established connections. Uses Linux eBPF/bcc.
.SH SYNOPSIS
.B tcptracer [\-h] [\-v] [\-p PID] [\-N NETNS]
.SH DESCRIPTION
This tool traces established TCP connections that open and close while tracing,
and prints a line of output per connect, accept and close events. This includes
the type of event, PID, IP addresses and ports.
This tool works by using kernel dynamic tracing, and will need to be updated if
the kernel implementation changes. Only established TCP connections are traced,
so it is expected that the overhead of this tool is rather low.
Since this uses BPF, only the root user can use this tool.
.SH REQUIREMENTS
CONFIG_BPF and bcc.
.SH OPTIONS
.TP
\-h
Print usage message.
.TP
\-v
Print full lines, with long event type names and network namespace numbers.
.TP
\-p PID
Trace this process ID only (filtered in-kernel).
.TP
\-N NETNS
Trace this network namespace only (filtered in-kernel).
.TP
.SH EXAMPLES
.TP
Trace all TCP established connections:
#
.B tcptracer
.TP
Trace all TCP established connections with verbose lines:
#
.B tcptracer \-v
.TP
Trace PID 181 only:
#
.B tcptracer \-p 181
.TP
Trace connections in network namespace 4026531969 only:
#
.B tcptracer \-N 4026531969
.SH FIELDS
.TP
TYPE
Type of event. In non-verbose mode: C for connect, A for accept, X for close.
.TP
PID
Process ID
.TP
COMM
Process name
.TP
IP
IP address family (4 or 6)
.TP
SADDR
Source IP address.
.TP
DADDR
Destination IP address.
.TP
SPORT
Source port.
.TP
DPORT
Destination port.
.TP
NETNS
Network namespace where the event originated.
.SH OVERHEAD
This traces the kernel inet accept function, and the TCP connect, close,
and set state functions. However, it only prints information for connections
that are established, so it shouldn't have a huge overhead.
As always, test and understand this tools overhead for your types of workloads
before production use.
.SH SOURCE
This is from bcc.
.IP
https://github.com/iovisor/bcc
.PP
Also look in the bcc distribution for a companion _examples.txt file containing
example usage, output, and commentary for this tool.
.SH OS
Linux
.SH STABILITY
Unstable - in development.
.SH AUTHOR
Iago López Galeiras
.SH SEE ALSO
tcpaccept(8), tcpconnect(8), tcptop(8), tcplife(8)
#!/usr/bin/python
#
# tcpv4tracer Trace TCP connections.
# For Linux, uses BCC, eBPF. Embedded C.
#
# USAGE: tcpv4tracer [-h] [-v] [-p PID] [-N NETNS]
#
# You should generally try to avoid writing long scripts that measure multiple
# functions and walk multiple kernel structures, as they will be a burden to
# maintain as the kernel changes.
# The following code should be replaced, and simplified, when static TCP probes
# exist.
#
# Copyright 2017 Kinvolk GmbH
#
# Licensed under the Apache License, Version 2.0 (the "License")
from __future__ import print_function
from bcc import BPF
import argparse as ap
import ctypes
from socket import inet_ntop, AF_INET, AF_INET6
from struct import pack
parser = ap.ArgumentParser(description="Trace TCP connections",
formatter_class=ap.RawDescriptionHelpFormatter)
parser.add_argument("-p", "--pid", default=0, type=int,
help="trace this PID only")
parser.add_argument("-N", "--netns", default=0, type=int,
help="trace this Network Namespace only")
parser.add_argument("-v", "--verbose", action="store_true",
help="include Network Namespace in the output")
args = parser.parse_args()
bpf_text = """
#include <uapi/linux/ptrace.h>
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wtautological-compare"
#include <net/sock.h>
#pragma clang diagnostic pop
#include <net/inet_sock.h>
#include <net/net_namespace.h>
#include <bcc/proto.h>
#define TCP_EVENT_TYPE_CONNECT 1
#define TCP_EVENT_TYPE_ACCEPT 2
#define TCP_EVENT_TYPE_CLOSE 3
struct tcp_ipv4_event_t {
u32 type;
u32 pid;
char comm[TASK_COMM_LEN];
u8 ip;
u32 saddr;
u32 daddr;
u16 sport;
u16 dport;
u32 netns;
};
BPF_PERF_OUTPUT(tcp_ipv4_event);
struct tcp_ipv6_event_t {
u32 type;
u32 pid;
char comm[TASK_COMM_LEN];
u8 ip;
unsigned __int128 saddr;
unsigned __int128 daddr;
u16 sport;
u16 dport;
u32 netns;
};
BPF_PERF_OUTPUT(tcp_ipv6_event);
// tcp_set_state doesn't run in the context of the process that initiated the
// connection so we need to store a map TUPLE -> PID to send the right PID on
// the event
struct ipv4_tuple_t {
u32 saddr;
u32 daddr;
u16 sport;
u16 dport;
u32 netns;
};
struct ipv6_tuple_t {
unsigned __int128 saddr;
unsigned __int128 daddr;
u16 sport;
u16 dport;
u32 netns;
};
struct pid_comm_t {
u64 pid;
char comm[TASK_COMM_LEN];
};
BPF_HASH(tuplepid_ipv4, struct ipv4_tuple_t, struct pid_comm_t);
BPF_HASH(tuplepid_ipv6, struct ipv6_tuple_t, struct pid_comm_t);
BPF_HASH(connectsock, u64, struct sock *);
static int read_ipv4_tuple(struct ipv4_tuple_t *tuple, struct sock *skp)
{
u32 saddr = 0, daddr = 0, net_ns_inum = 0;
u16 sport = 0, dport = 0;
possible_net_t skc_net;
bpf_probe_read(&saddr, sizeof(saddr), &skp->__sk_common.skc_rcv_saddr);
bpf_probe_read(&daddr, sizeof(daddr), &skp->__sk_common.skc_daddr);
bpf_probe_read(&sport, sizeof(sport),
&((struct inet_sock *)skp)->inet_sport);
bpf_probe_read(&dport, sizeof(dport), &skp->__sk_common.skc_dport);
#ifdef CONFIG_NET_NS
bpf_probe_read(&skc_net, sizeof(skc_net), &skp->__sk_common.skc_net);
bpf_probe_read(&net_ns_inum, sizeof(net_ns_inum), &skc_net.net->ns.inum);
#else
net_ns_inum = 0;
#endif
##FILTER_NETNS##
tuple->saddr = saddr;
tuple->daddr = daddr;
tuple->sport = sport;
tuple->dport = dport;
tuple->netns = net_ns_inum;
// if addresses or ports are 0, ignore
if (saddr == 0 || daddr == 0 || sport == 0 || dport == 0) {
return 0;
}
return 1;
}
static int read_ipv6_tuple(struct ipv6_tuple_t *tuple, struct sock *skp)
{
u32 net_ns_inum = 0;
u16 sport = 0, dport = 0;
unsigned __int128 saddr = 0, daddr = 0;
possible_net_t skc_net;
bpf_probe_read(&sport, sizeof(sport),
&((struct inet_sock *)skp)->inet_sport);
bpf_probe_read(&dport, sizeof(dport), &skp->__sk_common.skc_dport);
bpf_probe_read(&saddr, sizeof(saddr),
&skp->__sk_common.skc_v6_rcv_saddr.in6_u.u6_addr32);
bpf_probe_read(&daddr, sizeof(daddr),
&skp->__sk_common.skc_v6_daddr.in6_u.u6_addr32);
#ifdef CONFIG_NET_NS
bpf_probe_read(&skc_net, sizeof(skc_net), &skp->__sk_common.skc_net);
bpf_probe_read(&net_ns_inum, sizeof(net_ns_inum), &skc_net.net->ns.inum);
#else
net_ns_inum = 0;
#endif
##FILTER_NETNS##
tuple->saddr = saddr;
tuple->daddr = daddr;
tuple->sport = sport;
tuple->dport = dport;
tuple->netns = net_ns_inum;
// if addresses or ports are 0, ignore
if (saddr == 0 || daddr == 0 || sport == 0 || dport == 0) {
return 0;
}
return 1;
}
static bool check_family(struct sock *sk, u16 expected_family) {
u64 zero = 0;
u16 family = 0;
bpf_probe_read(&family, sizeof(family), &sk->__sk_common.skc_family);
return family == expected_family;
}
int trace_connect_v4_entry(struct pt_regs *ctx, struct sock *sk)
{
u64 pid = bpf_get_current_pid_tgid();
##FILTER_PID##
// stash the sock ptr for lookup on return
connectsock.update(&pid, &sk);
return 0;
}
int trace_connect_v4_return(struct pt_regs *ctx)
{
int ret = PT_REGS_RC(ctx);
u64 pid = bpf_get_current_pid_tgid();
struct sock **skpp;
skpp = connectsock.lookup(&pid);
if (skpp == 0) {
return 0; // missed entry
}
connectsock.delete(&pid);
if (ret != 0) {
// failed to send SYNC packet, may not have populated
// socket __sk_common.{skc_rcv_saddr, ...}
return 0;
}
// pull in details
struct sock *skp = *skpp;
struct ipv4_tuple_t t = { };
if (!read_ipv4_tuple(&t, skp)) {
return 0;
}
struct pid_comm_t p = { };
p.pid = pid;
bpf_get_current_comm(&p.comm, sizeof(p.comm));
tuplepid_ipv4.update(&t, &p);
return 0;
}
int trace_connect_v6_entry(struct pt_regs *ctx, struct sock *sk)
{
u64 pid = bpf_get_current_pid_tgid();
##FILTER_PID##
// stash the sock ptr for lookup on return
connectsock.update(&pid, &sk);
return 0;
}
int trace_connect_v6_return(struct pt_regs *ctx)
{
int ret = PT_REGS_RC(ctx);
u64 pid = bpf_get_current_pid_tgid();
struct sock **skpp;
skpp = connectsock.lookup(&pid);
if (skpp == 0) {
return 0; // missed entry
}
connectsock.delete(&pid);
if (ret != 0) {
// failed to send SYNC packet, may not have populated
// socket __sk_common.{skc_rcv_saddr, ...}
return 0;
}
// pull in details
struct sock *skp = *skpp;
struct ipv6_tuple_t t = { };
if (!read_ipv6_tuple(&t, skp)) {
return 0;
}
struct pid_comm_t p = { };
p.pid = pid;
bpf_get_current_comm(&p.comm, sizeof(p.comm));
tuplepid_ipv6.update(&t, &p);
return 0;
}
int trace_tcp_set_state_entry(struct pt_regs *ctx, struct sock *sk, int state)
{
if (state != TCP_ESTABLISHED && state != TCP_CLOSE) {
return 0;
}
struct sock *skp;
bpf_probe_read(&skp, sizeof(struct sock *), &sk);
u8 ipver = 0;
if (check_family(skp, AF_INET)) {
ipver = 4;
struct ipv4_tuple_t t = { };
if (!read_ipv4_tuple(&t, skp)) {
return 0;
}
if (state == TCP_CLOSE) {
tuplepid_ipv4.delete(&t);
return 0;
}
struct pid_comm_t *p;
p = tuplepid_ipv4.lookup(&t);
if (p == 0) {
return 0; // missed entry
}
struct tcp_ipv4_event_t evt4 = { };
evt4.type = TCP_EVENT_TYPE_CONNECT;
evt4.pid = p->pid >> 32;
evt4.ip = ipver;
evt4.saddr = t.saddr;
evt4.daddr = t.daddr;
evt4.sport = ntohs(t.sport);
evt4.dport = ntohs(t.dport);
evt4.netns = t.netns;
int i;
for (i = 0; i < TASK_COMM_LEN; i++) {
evt4.comm[i] = p->comm[i];
}
tcp_ipv4_event.perf_submit(ctx, &evt4, sizeof(evt4));
tuplepid_ipv4.delete(&t);
} else if (check_family(skp, AF_INET6)) {
ipver = 6;
struct ipv6_tuple_t t = { };
if (!read_ipv6_tuple(&t, skp)) {
return 0;
}
if (state == TCP_CLOSE) {
tuplepid_ipv6.delete(&t);
return 0;
}
struct pid_comm_t *p;
p = tuplepid_ipv6.lookup(&t);
if (p == 0) {
return 0; // missed entry
}
struct tcp_ipv6_event_t evt6 = { };
evt6.type = TCP_EVENT_TYPE_CONNECT;
evt6.pid = p->pid >> 32;
evt6.ip = ipver;
evt6.saddr = t.saddr;
evt6.daddr = t.daddr;
evt6.sport = ntohs(t.sport);
evt6.dport = ntohs(t.dport);
evt6.netns = t.netns;
int i;
for (i = 0; i < TASK_COMM_LEN; i++) {
evt6.comm[i] = p->comm[i];
}
tcp_ipv6_event.perf_submit(ctx, &evt6, sizeof(evt6));
tuplepid_ipv6.delete(&t);
}
// else drop
return 0;
}
int trace_close_entry(struct pt_regs *ctx, struct sock *sk)
{
u64 pid = bpf_get_current_pid_tgid();
##FILTER_PID##
// pull in details
struct sock *skp;
bpf_probe_read(&skp, sizeof(struct sock *), &sk);
u8 oldstate = 0;
bpf_probe_read(&oldstate, sizeof(oldstate), (u8 *)&skp->sk_state);
// Don't generate close events for connections that were never
// established in the first place.
if (oldstate == TCP_SYN_SENT ||
oldstate == TCP_SYN_RECV ||
oldstate == TCP_NEW_SYN_RECV)
return 0;
u8 ipver = 0;
if (check_family(skp, AF_INET)) {
ipver = 4;
struct ipv4_tuple_t t = { };
if (!read_ipv4_tuple(&t, skp)) {
return 0;
}
struct tcp_ipv4_event_t evt4 = { };
evt4.type = TCP_EVENT_TYPE_CLOSE;
evt4.pid = pid >> 32;
evt4.ip = ipver;
evt4.saddr = t.saddr;
evt4.daddr = t.daddr;
evt4.sport = ntohs(t.sport);
evt4.dport = ntohs(t.dport);
evt4.netns = t.netns;
bpf_get_current_comm(&evt4.comm, sizeof(evt4.comm));
tcp_ipv4_event.perf_submit(ctx, &evt4, sizeof(evt4));
} else if (check_family(skp, AF_INET6)) {
ipver = 6;
struct ipv6_tuple_t t = { };
if (!read_ipv6_tuple(&t, skp)) {
return 0;
}
struct tcp_ipv6_event_t evt6 = { };
evt6.type = TCP_EVENT_TYPE_CLOSE;
evt6.pid = pid >> 32;
evt6.ip = ipver;
evt6.saddr = t.saddr;
evt6.daddr = t.daddr;
evt6.sport = ntohs(t.sport);
evt6.dport = ntohs(t.dport);
evt6.netns = t.netns;
bpf_get_current_comm(&evt6.comm, sizeof(evt6.comm));
tcp_ipv6_event.perf_submit(ctx, &evt6, sizeof(evt6));
}
// else drop
return 0;
};
int trace_accept_return(struct pt_regs *ctx)
{
struct sock *newsk = (struct sock *)PT_REGS_RC(ctx);
u64 pid = bpf_get_current_pid_tgid();
##FILTER_PID##
if (newsk == NULL) {
return 0;
}
// pull in details
u16 lport = 0, dport = 0;
u32 net_ns_inum = 0;
u8 ipver = 0;
bpf_probe_read(&dport, sizeof(dport), &newsk->__sk_common.skc_dport);
bpf_probe_read(&lport, sizeof(lport), &newsk->__sk_common.skc_num);
// Get network namespace id, if kernel supports it
#ifdef CONFIG_NET_NS
possible_net_t skc_net;
bpf_probe_read(&skc_net, sizeof(skc_net), &newsk->__sk_common.skc_net);
bpf_probe_read(&net_ns_inum, sizeof(net_ns_inum), &skc_net.net->ns.inum);
#else
net_ns_inum = 0;
#endif
##FILTER_NETNS##
if (check_family(newsk, AF_INET)) {
ipver = 4;
struct tcp_ipv4_event_t evt4 = { 0 };
evt4.type = TCP_EVENT_TYPE_ACCEPT;
evt4.netns = net_ns_inum;
evt4.pid = pid >> 32;
evt4.ip = ipver;
bpf_probe_read(&evt4.saddr, sizeof(evt4.saddr),
&newsk->__sk_common.skc_rcv_saddr);
bpf_probe_read(&evt4.daddr, sizeof(evt4.daddr),
&newsk->__sk_common.skc_daddr);
evt4.sport = lport;
evt4.dport = ntohs(dport);
bpf_get_current_comm(&evt4.comm, sizeof(evt4.comm));
// do not send event if IP address is 0.0.0.0 or port is 0
if (evt4.saddr != 0 && evt4.daddr != 0 &&
evt4.sport != 0 && evt4.dport != 0) {
tcp_ipv4_event.perf_submit(ctx, &evt4, sizeof(evt4));
}
} else if (check_family(newsk, AF_INET6)) {
ipver = 6;
struct tcp_ipv6_event_t evt6 = { 0 };
evt6.type = TCP_EVENT_TYPE_ACCEPT;
evt6.netns = net_ns_inum;
evt6.pid = pid >> 32;
evt6.ip = ipver;
bpf_probe_read(&evt6.saddr, sizeof(evt6.saddr),
&newsk->__sk_common.skc_v6_rcv_saddr.in6_u.u6_addr32);
bpf_probe_read(&evt6.daddr, sizeof(evt6.daddr),
&newsk->__sk_common.skc_v6_daddr.in6_u.u6_addr32);
evt6.sport = lport;
evt6.dport = ntohs(dport);
bpf_get_current_comm(&evt6.comm, sizeof(evt6.comm));
// do not send event if IP address is 0.0.0.0 or port is 0
if (evt6.saddr != 0 && evt6.daddr != 0 &&
evt6.sport != 0 && evt6.dport != 0) {
tcp_ipv6_event.perf_submit(ctx, &evt6, sizeof(evt6));
}
}
// else drop
return 0;
}
"""
TASK_COMM_LEN = 16 # linux/sched.h
class TCPIPV4Evt(ctypes.Structure):
_fields_ = [
("type", ctypes.c_uint),
("pid", ctypes.c_uint),
("comm", ctypes.c_char * TASK_COMM_LEN),
("ip", ctypes.c_ubyte),
("saddr", ctypes.c_uint),
("daddr", ctypes.c_uint),
("sport", ctypes.c_ushort),
("dport", ctypes.c_ushort),
("netns", ctypes.c_uint)
]
class TCPIPV6Evt(ctypes.Structure):
_fields_ = [
("type", ctypes.c_uint),
("pid", ctypes.c_uint),
("comm", ctypes.c_char * TASK_COMM_LEN),
("ip", ctypes.c_ubyte),
("saddr", (ctypes.c_ulong * 2)),
("daddr", (ctypes.c_ulong * 2)),
("sport", ctypes.c_ushort),
("dport", ctypes.c_ushort),
("netns", ctypes.c_uint)
]
verbose_types = {"C": "connect", "A": "accept",
"X": "close", "U": "unknown"}
def print_ipv4_event(cpu, data, size):
event = ctypes.cast(data, ctypes.POINTER(TCPIPV4Evt)).contents
if event.type == 1:
type_str = "C"
elif event.type == 2:
type_str = "A"
elif event.type == 3:
type_str = "X"
else:
type_str = "U"
if args.verbose:
print("%-12s " % (verbose_types[type_str]), end="")
else:
print("%-2s " % (type_str), end="")
print("%-6d %-16s %-2d %-16s %-16s %-6d %-6d" %
(event.pid, event.comm.decode('utf-8'),
event.ip,
inet_ntop(AF_INET, pack("I", event.saddr)),
inet_ntop(AF_INET, pack("I", event.daddr)),
event.sport,
event.dport), end="")
if args.verbose and not args.netns:
print(" %-8d" % event.netns)
else:
print()
def print_ipv6_event(cpu, data, size):
event = ctypes.cast(data, ctypes.POINTER(TCPIPV6Evt)).contents
if event.type == 1:
type_str = "C"
elif event.type == 2:
type_str = "A"
elif event.type == 3:
type_str = "X"
else:
type_str = "U"
if args.verbose:
print("%-12s " % (verbose_types[type_str]), end="")
else:
print("%-2s " % (type_str), end="")
print("%-6d %-16s %-2d %-16s %-16s %-6d %-6d" %
(event.pid, event.comm.decode('utf-8'),
event.ip,
"["+inet_ntop(AF_INET6, event.saddr)+"]",
"["+inet_ntop(AF_INET6, event.daddr)+"]",
event.sport,
event.dport), end="")
if args.verbose and not args.netns:
print(" %-8d" % event.netns)
else:
print()
pid_filter = ""
netns_filter = ""
if args.pid:
pid_filter = 'if (pid >> 32 != %d) { return 0; }' % args.pid
if args.netns:
netns_filter = 'if (net_ns_inum != %d) { return 0; }' % args.netns
bpf_text = bpf_text.replace('##FILTER_PID##', pid_filter)
bpf_text = bpf_text.replace('##FILTER_NETNS##', netns_filter)
# initialize BPF
b = BPF(text=bpf_text)
b.attach_kprobe(event="tcp_v4_connect", fn_name="trace_connect_v4_entry")
b.attach_kretprobe(event="tcp_v4_connect", fn_name="trace_connect_v4_return")
b.attach_kprobe(event="tcp_v6_connect", fn_name="trace_connect_v6_entry")
b.attach_kretprobe(event="tcp_v6_connect", fn_name="trace_connect_v6_return")
b.attach_kprobe(event="tcp_set_state", fn_name="trace_tcp_set_state_entry")
b.attach_kprobe(event="tcp_close", fn_name="trace_close_entry")
b.attach_kretprobe(event="inet_csk_accept", fn_name="trace_accept_return")
print("Tracing TCP established connections. Ctrl-C to end.")
# header
if args.verbose:
print("%-12s %-6s %-16s %-2s %-16s %-16s %-6s %-7s" % ("TYPE",
"PID", "COMM", "IP", "SADDR", "DADDR", "SPORT", "DPORT"), end="")
if not args.netns:
print("%-8s" % "NETNS", end="")
print()
else:
print("%-2s %-6s %-16s %-2s %-16s %-16s %-6s %-6s" %
("T", "PID", "COMM", "IP", "SADDR", "DADDR", "SPORT", "DPORT"))
def inet_ntoa(addr):
dq = ''
for i in range(0, 4):
dq = dq + str(addr & 0xff)
if (i != 3):
dq = dq + '.'
addr = addr >> 8
return dq
b["tcp_ipv4_event"].open_perf_buffer(print_ipv4_event)
b["tcp_ipv6_event"].open_perf_buffer(print_ipv6_event)
while True:
b.kprobe_poll()
Demonstrations of tcptracer, the Linux eBPF/bcc version.
This tool traces the kernel function performing TCP connections (eg, via a
connect() or accept() syscalls) and closing them (explicitly or if the process
dies). Some example output (IP addresses are fake):
```
# ./tcptracer
Tracing TCP established connections. Ctrl-C to end.
T PID COMM IP SADDR DADDR SPORT DPORT
C 28943 telnet 4 192.168.1.2 192.168.1.1 59306 23
C 28818 curl 6 [::1] [::1] 55758 80
X 28943 telnet 4 192.168.1.2 192.168.1.1 59306 23
A 28817 nc 6 [::1] [::1] 80 55758
X 28818 curl 6 [::1] [::1] 55758 80
X 28817 nc 6 [::1] [::1] 80 55758
A 28978 nc 4 10.202.210.1 10.202.109.12 8080 59160
X 28978 nc 4 10.202.210.1 10.202.109.12 8080 59160
```
This output shows three conections, one outgoing from a "telnet" process, one
outgoing from "curl" to a local netcat, and one incoming received by the "nc"
process. The output details show the kind of event (C for connection, X for
close and A for accept), PID, IP version, source address, destination address,
source port and destination port.
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment