Commit 09899d3b authored by Alan Donovan's avatar Alan Donovan

exp/ssa: API and documentation.

R=gri, iant, crawshaw, bradfitz, gri, iant
CC=golang-dev
https://golang.org/cl/7071058
parent 7a389b61
// Package ssa defines a representation of the elements of Go programs
// (packages, types, functions, variables and constants) using a
// static single-assignment (SSA) form intermediate representation
// (IR) for the the bodies of functions.
//
// THIS INTERFACE IS EXPERIMENTAL AND IS LIKELY TO CHANGE.
//
// For an introduction to SSA form, see
// http://en.wikipedia.org/wiki/Static_single_assignment_form.
// This page provides a broader reading list:
// http://www.dcs.gla.ac.uk/~jsinger/ssa.html.
//
// The level of abstraction of the SSA form is intentionally close to
// the source language to facilitate construction of source analysis
// tools. It is not primarily intended for machine code generation.
//
// All looping, branching and switching constructs are replaced with
// unstructured control flow. We may add higher-level control flow
// primitives in the future to facilitate constant-time dispatch of
// switch statements, for example.
//
// Builder encapsulates the tasks of type-checking (using go/types)
// abstract syntax trees (as defined by go/ast) for the source files
// comprising a Go program, and the conversion of each function from
// Go ASTs to the SSA representation.
//
// By supplying an instance of the SourceLocator function prototype,
// clients may control how the builder locates, loads and parses Go
// sources files for imported packages. This package provides
// GorootLoader, which uses go/build to locate packages in the Go
// source distribution, and go/parser to parse them.
//
// The builder initially builds a naive SSA form in which all local
// variables are addresses of stack locations with explicit loads and
// stores. If desired, registerisation and φ-node insertion using
// dominance and dataflow can be performed as a later pass to improve
// the accuracy and performance of subsequent analyses; this pass is
// not yet implemented.
//
// The program representation constructed by this package is fully
// resolved internally, i.e. it does not rely on the names of Values,
// Packages, Functions, Types or BasicBlocks for the correct
// interpretation of the program. Only the identities of objects and
// the topology of the SSA and type graphs are semantically
// significant. (There is one exception: Ids, used to identify field
// and method names, contain strings.) Avoidance of name-based
// operations simplifies the implementation of subsequent passes and
// can make them very efficient. Many objects are nonetheless named
// to aid in debugging, but it is not essential that the names be
// either accurate or unambiguous. The public API exposes a number of
// name-based maps for client convenience.
//
// Given a Go source package such as this:
//
// package main
//
// import "fmt"
//
// const message = "Hello, World!"
//
// func hello() {
// fmt.Println(message)
// }
//
// The SSA Builder creates a *Program containing a main *Package such
// as this:
//
// Package(Name: "main")
// Members:
// "message": *Literal (Type: untyped string, Value: "Hello, World!")
// "init·guard": *Global (Type: *bool)
// "hello": *Function (Type: func())
// Init: *Function (Type: func())
//
// The printed representation of the function main.hello is shown
// below. Within the function listing, the name of each BasicBlock
// such as ".0.entry" is printed left-aligned, followed by the block's
// instructions, i.e. implementations of Instruction.
// For each instruction that defines an SSA virtual register
// (i.e. implements Value), the type of that value is shown in the
// right column.
//
// # Name: main.hello
// # Declared at hello.go:7:6
// # Type: func()
// func hello():
// .0.entry:
// t0 = new [1]interface{} *[1]interface{}
// t1 = &t0[0:untyped integer] *interface{}
// t2 = make interface interface{} <- string ("Hello, World!":string) interface{}
// *t1 = t2
// t3 = slice t0[:] []interface{}
// t4 = fmt.Println(t3) (n int, err error)
// ret
//
// TODO(adonovan): demonstrate more features in the example:
// parameters and control flow at the least.
//
// TODO(adonovan): Consider how token.Pos source location information
// should be made available generally. Currently it is only present in
// Package, Function and CallCommon.
//
// TODO(adonovan): Provide an example skeleton application that loads
// and dumps the SSA form of a program. Accommodate package-at-a-time
// vs. whole-program operation.
//
// TODO(adonovan): Consider the exceptional control-flow implications
// of defer and recover().
//
// TODO(adonovan): build tables/functions that relate source variables
// to SSA variables to assist user interfaces that make queries about
// specific source entities.
package ssa
package ssa
// This package defines a high-level intermediate representation for
// Go programs using static single-assignment (SSA) form.
import (
"fmt"
"go/ast"
"go/token"
"go/types"
)
// A Program is a partial or complete Go program converted to SSA form.
// Each Builder creates and populates a single Program during its
// lifetime.
//
// TODO(adonovan): synthetic methods for promoted methods and for
// standalone interface methods do not belong to any package. Make
// them enumerable here.
//
// TODO(adonovan): MethodSets of types other than named types
// (i.e. anon structs) are not currently accessible, nor are they
// memoized. Add a method: MethodSetForType() which looks in the
// appropriate Package (for methods of named types) or in
// Program.AnonStructMethods (for methods of anon structs).
//
type Program struct {
Files *token.FileSet // position information for the files of this Program
Packages map[string]*Package // all loaded Packages, keyed by import path
Builtins map[types.Object]*Builtin // all built-in functions, keyed by typechecker objects.
}
// A Package is a single analyzed Go package, containing Members for
// all package-level functions, variables, constants and types it
// declares. These may be accessed directly via Members, or via the
// type-specific accessor methods Func, Type, Var and Const.
//
type Package struct {
Prog *Program // the owning program
Types *types.Package // the type checker's package object for this package.
ImportPath string // e.g. "sync/atomic"
Pos token.Pos // position of an arbitrary file in the package
Members map[string]Member // all exported and unexported members of the package
AnonFuncs []*Function // all anonymous functions in this package
Init *Function // the package's (concatenated) init function
// The following fields are set transiently during building,
// then cleared.
files []*ast.File // the abstract syntax tree for the files of the package
}
// A Member is a member of a Go package, implemented by *Literal,
// *Global, *Function, or *Type; they are created by package-level
// const, var, func and type declarations respectively.
//
type Member interface {
Name() string // the declared name of the package member
String() string // human-readable information about the value
Type() types.Type // the type of the package member
ImplementsMember() // dummy method to indicate the "implements" relation.
}
// An Id identifies the name of a field of a struct type, or the name
// of a method of an interface or a named type.
//
// For exported names, i.e. those beginning with a Unicode upper-case
// letter, a simple string is unambiguous.
//
// However, a method set or struct may contain multiple unexported
// names with identical spelling that are logically distinct because
// they originate in different packages. Unexported names must
// therefore be disambiguated by their package too.
//
// The Pkg field of an Id is therefore nil iff the name is exported.
//
// This type is suitable for use as a map key because the equivalence
// relation == is consistent with identifier equality.
type Id struct {
Pkg *types.Package
Name string
}
// A MethodSet contains all the methods whose receiver is either T or
// *T, for some named or struct type T.
//
// TODO(adonovan): the client is required to adapt T<=>*T, e.g. when
// invoking an interface method. (This could be simplified for the
// client by having distinct method sets for T and *T, with the SSA
// Builder generating wrappers as needed, but probably the client is
// able to do a better job.) Document the precise rules the client
// must follow.
//
type MethodSet map[Id]*Function
// A Type is a Member of a Package representing the name, underlying
// type and method set of a named type declared at package scope.
//
// The method set contains only concrete methods; it is empty for
// interface types.
//
type Type struct {
NamedType *types.NamedType
Methods MethodSet
}
// An SSA value that can be referenced by an instruction.
//
// TODO(adonovan): add methods:
// - Referrers() []*Instruction // all instructions that refer to this value.
//
type Value interface {
// Name returns the name of this value, and determines how
// this Value appears when used as an operand of an
// Instruction.
//
// This is the same as the source name for Parameters,
// Builtins, Functions, Captures, Globals and some Allocs.
// For literals, it is a representation of the literal's value
// and type. For all other Values this is the name of the
// virtual register defined by the instruction.
//
// The name of an SSA Value is not semantically significant,
// and may not even be unique within a function.
Name() string
// If this value is an Instruction, String returns its
// disassembled form; otherwise it returns unspecified
// human-readable information about the Value, such as its
// kind, name and type.
String() string
// Type returns the type of this value. Many instructions
// (e.g. IndexAddr) change the behaviour depending on the
// types of their operands.
//
// Documented type invariants below (e.g. "Alloc.Type()
// returns a *types.Pointer") refer to the underlying type in
// the case of NamedTypes.
Type() types.Type
// Dummy method to indicate the "implements" relation.
ImplementsValue()
}
// An Instruction is an SSA instruction that computes a new Value or
// has some effect.
//
// An Instruction that defines a value (e.g. BinOp) also implements
// the Value interface; an Instruction that only has an effect (e.g. Store)
// does not.
//
// TODO(adonovan): add method:
// - Operands() []Value // all Values referenced by this instruction.
//
type Instruction interface {
// String returns the disassembled form of this value. e.g.
//
// Examples of Instructions that define a Value:
// e.g. "x + y" (BinOp)
// "len([])" (Call)
// Note that the name of the Value is not printed.
//
// Examples of Instructions that do define (are) Values:
// e.g. "ret x" (Ret)
// "*y = x" (Store)
//
// (This separation is useful for some analyses which
// distinguish the operation from the value it
// defines. e.g. 'y = local int' is both an allocation of
// memory 'local int' and a definition of a pointer y.)
String() string
// Block returns the basic block to which this instruction
// belongs.
Block() *BasicBlock
// SetBlock sets the basic block to which this instruction
// belongs.
SetBlock(*BasicBlock)
// Dummy method to indicate the "implements" relation.
ImplementsInstruction()
}
// Function represents the parameters, results and code of a function
// or method.
//
// If Blocks is nil, this indicates an external function for which no
// Go source code is available. In this case, Captures and Locals
// will be nil too. Clients performing whole-program analysis must
// handle external functions specially.
//
// Functions are immutable values; they do not have addresses.
//
// Blocks[0] is the function entry point; block order is not otherwise
// semantically significant, though it may affect the readability of
// the disassembly.
//
// A nested function that refers to one or more lexically enclosing
// local variables ("free variables") has Capture parameters. Such
// functions cannot be called directly but require a value created by
// MakeClosure which, via its Bindings, supplies values for these
// parameters. Captures are always addresses.
//
// If the function is a method (Signature.Recv != nil) then the first
// element of Params is the receiver parameter.
//
// Type() returns the function's Signature.
//
type Function struct {
Name_ string
Signature *types.Signature
Pos token.Pos // location of the definition
Enclosing *Function // enclosing function if anon; nil if global
Pkg *Package // enclosing package; nil for some synthetic methods
Prog *Program // enclosing program
Params []*Parameter
FreeVars []*Capture // free variables whose values must be supplied by closure
Locals []*Alloc
Blocks []*BasicBlock // basic blocks of the function; nil => external
// The following fields are set transiently during building,
// then cleared.
currentBlock *BasicBlock // where to emit code
objects map[types.Object]Value // addresses of local variables
results []*Alloc // tuple of named results
// syntax *funcSyntax // abstract syntax trees for Go source functions
// targets *targets // linked stack of branch targets
// lblocks map[*ast.Object]*lblock // labelled blocks
}
// An SSA basic block.
//
// The final element of Instrs is always an explicit transfer of
// control (If, Jump or Ret).
//
// A block may contain no Instructions only if it is unreachable,
// i.e. Preds is nil. Empty blocks are typically pruned.
//
// BasicBlocks and their Preds/Succs relation form a (possibly cyclic)
// graph independent of the SSA Value graph. It is illegal for
// multiple edges to exist between the same pair of blocks.
//
// The order of Preds and Succs are significant (to Phi and If
// instructions, respectively).
//
type BasicBlock struct {
Name string // label; no semantic significance
Func *Function // containing function
Instrs []Instruction // instructions in order
Preds, Succs []*BasicBlock // predecessors and successors
}
// Pure values ----------------------------------------
// A Capture is a pointer to a lexically enclosing local variable.
//
// The referent of a capture is a Parameter, Alloc or another Capture
// and is always considered potentially escaping, so Captures are
// always addresses in the heap, and have pointer types.
//
type Capture struct {
Outer Value // the Value captured from the enclosing context.
}
// A Parameter represents an input parameter of a function.
//
// Parameters are addresses and thus have pointer types.
// TODO(adonovan): this will change. We should just spill parameters
// to ordinary Alloc-style locals if they are ever used in an
// addressable context. Then we can lose the Heap flag.
//
// In the common case where Heap=false, Parameters are pointers into
// the function's stack frame. If the case where Heap=true because a
// parameter's address may escape from its function, Parameters are
// pointers into a space in the heap implicitly allocated during the
// function call. (See also Alloc, which uses the Heap flag in a
// similar manner.)
//
type Parameter struct {
Name_ string
Type_ *types.Pointer
Heap bool
}
// A Literal represents a literal nil, boolean, string or numeric
// (integer, fraction or complex) value.
//
// A literal's underlying Type() can be a basic type, possibly one of
// the "untyped" types. A nil literal can have any reference type:
// interface, map, channel, pointer, slice, or function---but not
// "untyped nil".
//
// All source-level constant expressions are represented by a Literal
// of equal type and value.
//
// Value holds the exact value of the literal, independent of its
// Type(), using the same representation as package go/types uses for
// constants.
//
// Example printed form:
// 42:int
// "hello":untyped string
// 3+4i:MyComplex
//
type Literal struct {
Type_ types.Type
Value interface{}
}
// A Global is a named Value holding the address of a package-level
// variable.
//
type Global struct {
Name_ string
Type_ types.Type
Pkg *Package
// The following fields are set transiently during building,
// then cleared.
spec *ast.ValueSpec // explained at buildGlobal
}
// A built-in function, e.g. len.
//
// Builtins are immutable values; they do not have addresses.
//
// Type() returns an inscrutable *types.builtin. Built-in functions
// may have polymorphic or variadic types that are not expressible in
// Go's type system.
//
type Builtin struct {
Object *types.Func // canonical types.Universe object for this built-in
}
// Value-defining instructions ----------------------------------------
// The Alloc instruction reserves space for a value of the given type,
// zero-initializes it, and yields its address.
//
// Alloc values are always addresses, and have pointer types, so the
// type of the allocated space is actually indirect(Type()).
//
// If Heap is false, Alloc allocates space in the function's
// activation record (frame); we refer to an Alloc(Heap=false) as a
// "local" alloc. Each local Alloc returns the same address each time
// it is executed within the same activation; the space is
// re-initialized to zero.
//
// If Heap is true, Alloc allocates space in the heap, and returns; we
// refer to an Alloc(Heap=true) as a "new" alloc. Each new Alloc
// returns a different address each time it is executed.
//
// When Alloc is applied to a channel, map or slice type, it returns
// the address of an uninitialized (nil) reference of that kind; store
// the result of MakeSlice, MakeMap or MakeChan in that location to
// instantiate these types.
//
// Example printed form:
// t0 = local int
// t1 = new int
//
type Alloc struct {
anInstruction
Name_ string
Type_ types.Type
Heap bool
}
// Phi represents an SSA φ-node, which combines values that differ
// across incoming control-flow edges and yields a new value. Within
// a block, all φ-nodes must appear before all non-φ nodes.
//
// Example printed form:
// t2 = phi [0.start: t0, 1.if.then: t1, ...]
//
type Phi struct {
Register
Edges []Value // Edges[i] is value for Block().Preds[i]
}
// Call represents a function or method call.
//
// The Call instruction yields the function result, if there is
// exactly one, or a tuple (empty or len>1) whose components are
// accessed via Extract.
//
// See CallCommon for generic function call documentation.
//
// Example printed form:
// t2 = println(t0, t1)
// t4 = t3()
// t7 = invoke t5.Println(...t6)
//
type Call struct {
Register
CallCommon
}
// BinOp yields the result of binary operation X Op Y.
//
// Example printed form:
// t1 = t0 + 1:int
//
type BinOp struct {
Register
// One of:
// ADD SUB MUL QUO REM + - * / %
// AND OR XOR SHL SHR AND_NOT & | ^ << >> &~
// EQL LSS GTR NEQ LEQ GEQ == != < <= < >=
Op token.Token
X, Y Value
}
// UnOp yields the result of Op X.
// ARROW is channel receive.
// MUL is pointer indirection (load).
//
// If CommaOk and Op=ARROW, the result is a 2-tuple of the value above
// and a boolean indicating the success of the receive. The
// components of the tuple are accessed using Extract.
//
// Example printed form:
// t0 = *x
// t2 = <-t1,ok
//
type UnOp struct {
Register
Op token.Token // One of: NOT SUB ARROW MUL XOR ! - <- * ^
X Value
CommaOk bool
}
// Conv yields the conversion of X to type Type().
//
// A conversion is one of the following kinds. The behaviour of the
// conversion operator may depend on both Type() and X.Type(), as well
// as the dynamic value.
//
// A '+' indicates that a dynamic representation change may occur.
// A '-' indicates that the conversion is a value-preserving change
// to types only.
//
// 1. implicit conversions (arising from assignability rules):
// - adding/removing a name, same underlying types.
// - channel type restriction, possibly adding/removing a name.
// 2. explicit conversions (in addition to the above):
// - changing a name, same underlying types.
// - between pointers to identical base types.
// + conversions between real numeric types.
// + conversions between complex numeric types.
// + integer/[]byte/[]rune -> string.
// + string -> []byte/[]rune.
//
// TODO(adonovan): split into two cases:
// - rename value (ChangeType)
// + value to type with different representation (Conv)
//
// Conversions of untyped string/number/bool constants to a specific
// representation are eliminated during SSA construction.
//
// Example printed form:
// t1 = convert interface{} <- int (t0)
//
type Conv struct {
Register
X Value
}
// ChangeInterface constructs a value of one interface type from a
// value of another interface type known to be assignable to it.
//
// Example printed form:
// t1 = change interface interface{} <- I (t0)
//
type ChangeInterface struct {
Register
X Value
}
// MakeInterface constructs an instance of an interface type from a
// value and its method-set.
//
// To construct the zero value of an interface type T, use:
// &Literal{types.nilType{}, T}
//
// Example printed form:
// t1 = make interface interface{} <- int (42:int)
//
type MakeInterface struct {
Register
X Value
Methods MethodSet // method set of (non-interface) X iff converting to interface
}
// A MakeClosure instruction yields an anonymous function value whose
// code is Fn and whose lexical capture slots are populated by Bindings.
//
// By construction, all captured variables are addresses of variables
// allocated with 'new', i.e. Alloc(Heap=true).
//
// Type() returns a *types.Signature.
//
// Example printed form:
// t0 = make closure anon@1.2 [x y z]
//
type MakeClosure struct {
Register
Fn *Function
Bindings []Value // values for each free variable in Fn.FreeVars
}
// The MakeMap instruction creates a new hash-table-based map object
// and yields a value of kind map.
//
// Type() returns a *types.Map.
//
// Example printed form:
// t1 = make map[string]int t0
//
type MakeMap struct {
Register
Reserve Value // initial space reservation; nil => default
}
// The MakeChan instruction creates a new channel object and yields a
// value of kind chan.
//
// Type() returns a *types.Chan.
//
// Example printed form:
// t0 = make chan int 0
//
type MakeChan struct {
Register
Size Value // int; size of buffer; zero => synchronous.
}
// MakeSlice yields a slice of length Len backed by a newly allocated
// array of length Cap.
//
// Both Len and Cap must be non-nil Values of integer type.
//
// (Alloc(types.Array) followed by Slice will not suffice because
// Alloc can only create arrays of statically known length.)
//
// Type() returns a *types.Slice.
//
// Example printed form:
// t1 = make slice []string 1:int t0
//
type MakeSlice struct {
Register
Len Value
Cap Value
}
// Slice yields a slice of an existing string, slice or *array X
// between optional integer bounds Low and High.
//
// Type() returns string if the type of X was string, otherwise a
// *types.Slice with the same element type as X.
//
// Example printed form:
// t1 = slice t0[1:]
//
type Slice struct {
Register
X Value // slice, string, or *array
Low, High Value // either may be nil
}
// FieldAddr yields the address of Field of *struct X.
//
// The field is identified by its index within the field list of the
// struct type of X.
//
// Type() returns a *types.Pointer.
//
// Example printed form:
// t1 = &t0.name [#1]
//
type FieldAddr struct {
Register
X Value // *struct
Field int // index into X.Type().(*types.Struct).Fields
}
// Field yields the Field of struct X.
//
// The field is identified by its index within the field list of the
// struct type of X; by using numeric indices we avoid ambiguity of
// package-local identifiers and permit compact representations.
//
// Example printed form:
// t1 = t0.name [#1]
//
type Field struct {
Register
X Value // struct
Field int // index into X.Type().(*types.Struct).Fields
}
// IndexAddr yields the address of the element at index Index of
// collection X. Index is an integer expression.
//
// The elements of maps and strings are not addressable; use Lookup or
// MapUpdate instead.
//
// Type() returns a *types.Pointer.
//
// Example printed form:
// t2 = &t0[t1]
//
type IndexAddr struct {
Register
X Value // slice or *array,
Index Value // numeric index
}
// Index yields element Index of array X.
//
// TODO(adonovan): permit X to have type slice.
// Currently this requires IndexAddr followed by Load.
//
// Example printed form:
// t2 = t0[t1]
//
type Index struct {
Register
X Value // array
Index Value // integer index
}
// Lookup yields element Index of collection X, a map or string.
// Index is an integer expression if X is a string or the appropriate
// key type if X is a map.
//
// If CommaOk, the result is a 2-tuple of the value above and a
// boolean indicating the result of a map membership test for the key.
// The components of the tuple are accessed using Extract.
//
// Example printed form:
// t2 = t0[t1]
// t5 = t3[t4],ok
//
type Lookup struct {
Register
X Value // string or map
Index Value // numeric or key-typed index
CommaOk bool // return a value,ok pair
}
// SelectState is a helper for Select.
// It represents one goal state and its corresponding communication.
//
type SelectState struct {
Dir ast.ChanDir // direction of case
Chan Value // channel to use (for send or receive)
Send Value // value to send (for send)
}
// Select tests whether (or blocks until) one or more of the specified
// sent or received states is entered.
//
// It returns a triple (index int, recv ?, recvOk bool) whose
// components, described below, must be accessed via the Extract
// instruction.
//
// If Blocking, select waits until exactly one state holds, i.e. a
// channel becomes ready for the designated operation of sending or
// receiving; select chooses one among the ready states
// pseudorandomly, performs the send or receive operation, and sets
// 'index' to the index of the chosen channel.
//
// If !Blocking, select doesn't block if no states hold; instead it
// returns immediately with index equal to -1.
//
// If the chosen channel was used for a receive, 'recv' is set to the
// received value; Otherwise it is unspecified. recv has no useful
// type since it is conceptually the union of all possible received
// values.
//
// The third component of the triple, recvOk, is a boolean whose value
// is true iff the selected operation was a receive and the receive
// successfully yielded a value.
//
// Example printed form:
// t3 = select nonblocking [<-t0, t1<-t2, ...]
// t4 = select blocking []
//
type Select struct {
Register
States []SelectState
Blocking bool
}
// Range yields an iterator over the domain and range of X.
// Elements are accessed via Next.
//
// Type() returns a *types.Result (tuple type).
//
// Example printed form:
// t0 = range "hello":string
//
type Range struct {
Register
X Value // array, *array, slice, string, map or chan
}
// Next reads and advances the iterator Iter and returns a 3-tuple
// value (ok, k, v). If the iterator is not exhausted, ok is true and
// k and v are the next elements of the domain and range,
// respectively. Otherwise ok is false and k and v are undefined.
//
// For channel iterators, k is the received value and v is always
// undefined.
//
// Components of the tuple are accessed using Extract.
//
// Type() returns a *types.Result (tuple type).
//
// Example printed form:
// t1 = next t0
//
type Next struct {
Register
Iter Value
}
// TypeAssert tests whether interface value X has type
// AssertedType.
//
// If CommaOk: on success it returns a pair (v, true) where v is a
// copy of value X; on failure it returns (z, false) where z is the
// zero value of that type. The components of the pair must be
// accessed using the Extract instruction.
//
// If !CommaOk, on success it returns just the single value v; on
// failure it panics.
//
// Type() reflects the actual type of the result, possibly a pair
// (types.Result); AssertedType is the asserted type.
//
// Example printed form:
// t1 = typeassert t0.(int)
// t3 = typeassert,ok t2.(T)
//
type TypeAssert struct {
Register
X Value
AssertedType types.Type
CommaOk bool
}
// Extract yields component Index of Tuple.
//
// This is used to access the results of instructions with multiple
// return values, such as Call, TypeAssert, Next, UnOp(ARROW) and
// IndexExpr(Map).
//
// Example printed form:
// t1 = extract t0 #1
//
type Extract struct {
Register
Tuple Value
Index int
}
// Instructions executed for effect. They do not yield a value. --------------------
// Jump transfers control to the sole successor of its owning block.
//
// A Jump instruction must be the last instruction of its containing
// BasicBlock.
//
// Example printed form:
// jump done
//
type Jump struct {
anInstruction
}
// The If instruction transfers control to one of the two successors
// of its owning block, depending on the boolean Cond: the first if
// true, the second if false.
//
// An If instruction must be the last instruction of its containing
// BasicBlock.
//
// Example printed form:
// if t0 goto done else body
//
type If struct {
anInstruction
Cond Value
}
// Ret returns values and control back to the calling function.
//
// len(Results) is always equal to the number of results in the
// function's signature. A source-level 'return' statement with no
// operands in a multiple-return value function is desugared to make
// the results explicit.
//
// If len(Results) > 1, Ret returns a tuple value with the specified
// components which the caller must access using Extract instructions.
//
// There is no instruction to return a ready-made tuple like those
// returned by a "value,ok"-mode TypeAssert, Lookup or UnOp(ARROW) or
// a tail-call to a function with multiple result parameters.
// TODO(adonovan): consider defining one; but: dis- and re-assembling
// the tuple is unavoidable if assignability conversions are required
// on the components.
//
// Ret must be the last instruction of its containing BasicBlock.
// Such a block has no successors.
//
// Example printed form:
// ret
// ret nil:I, 2:int
//
type Ret struct {
anInstruction
Results []Value
}
// Go creates a new goroutine and calls the specified function
// within it.
//
// See CallCommon for generic function call documentation.
//
// Example printed form:
// go println(t0, t1)
// go t3()
// go invoke t5.Println(...t6)
//
type Go struct {
anInstruction
CallCommon
}
// Defer pushes the specified call onto a stack of functions
// to be called immediately prior to returning from the
// current function.
//
// See CallCommon for generic function call documentation.
//
// Example printed form:
// defer println(t0, t1)
// defer t3()
// defer invoke t5.Println(...t6)
//
type Defer struct {
anInstruction
CallCommon
}
// Send sends X on channel Chan.
//
// Example printed form:
// send t0 <- t1
//
type Send struct {
anInstruction
Chan, X Value
}
// Store stores Val at address Addr.
// Stores can be of arbitrary types.
//
// Example printed form:
// *x = y
//
type Store struct {
anInstruction
Addr Value
Val Value
}
// MapUpdate updates the association of Map[Key] to Value.
//
// Example printed form:
// t0[t1] = t2
//
type MapUpdate struct {
anInstruction
Map Value
Key Value
Value Value
}
// Embeddable mix-ins used for common parts of other structs. --------------------
// Register is a mix-in embedded by all SSA values that are also
// instructions, i.e. virtual registers, and provides implementations
// of the Value interface's Name() and Type() methods: the name is
// simply a numbered register (e.g. "t0") and the type is the Type_
// field.
//
// Temporary names are automatically assigned to each Register on
// completion of building a function in SSA form.
//
// Clients must not assume that the 'id' value (and the Name() derived
// from it) is unique within a function. As always in this API,
// semantics are determined only by identity; names exist only to
// facilitate debugging.
//
type Register struct {
anInstruction
num int // "name" of virtual register, e.g. "t0". Not guaranteed unique.
Type_ types.Type // type of virtual register
}
// AnInstruction is a mix-in embedded by all Instructions.
// It provides the implementations of the Block and SetBlock methods.
type anInstruction struct {
Block_ *BasicBlock // the basic block of this instruction
}
// CallCommon is a mix-in embedded by Go, Defer and Call to hold the
// common parts of a function or method call.
//
// Each CallCommon exists in one of two modes, function call and
// interface method invocation, or "call" and "invoke" for short.
//
// 1. "call" mode: when Recv is nil, a CallCommon represents an
// ordinary function call of the value in Func.
//
// In the common case in which Func is a *Function, this indicates a
// statically dispatched call to a package-level function, an
// anonymous function, or a method of a named type. Also statically
// dispatched, but less common, Func may be a *MakeClosure, indicating
// an immediately applied function literal with free variables. Any
// other Value of Func indicates a dynamically dispatched function
// call.
//
// Args contains the arguments to the call. If Func is a method,
// Args[0] contains the receiver parameter. Recv and Method are not
// used in this mode.
//
// Example printed form:
// t2 = println(t0, t1)
// go t3()
// defer t5(...t6)
//
// 2. "invoke" mode: when Recv is non-nil, a CallCommon represents a
// dynamically dispatched call to an interface method. In this
// mode, Recv is the interface value and Method is the index of the
// method within the interface type of the receiver.
//
// Recv is implicitly supplied to the concrete method implementation
// as the receiver parameter; in other words, Args[0] holds not the
// receiver but the first true argument. Func is not used in this
// mode.
//
// Example printed form:
// t1 = invoke t0.String()
// go invoke t3.Run(t2)
// defer invoke t4.Handle(...t5)
//
// In both modes, HasEllipsis is true iff the last element of Args is
// a slice value containing zero or more arguments to a variadic
// function. (This is not semantically significant since the type of
// the called function is sufficient to determine this, but it aids
// readability of the printed form.)
//
type CallCommon struct {
Recv Value // receiver, iff interface method invocation
Method int // index of interface method within Recv.Type().(*types.Interface).Methods
Func Value // target of call, iff function call
Args []Value // actual parameters, including receiver in invoke mode
HasEllipsis bool // true iff last Args is a slice (needed?)
Pos token.Pos // position of call expression
}
func (v *Builtin) Type() types.Type { return v.Object.GetType() }
func (v *Builtin) Name() string { return v.Object.GetName() }
func (v *Capture) Type() types.Type { return v.Outer.Type() }
func (v *Capture) Name() string { return v.Outer.Name() }
func (v *Global) Type() types.Type { return v.Type_ }
func (v *Global) Name() string { return v.Name_ }
func (v *Global) String() string { return v.Name_ } // placeholder
func (v *Function) Name() string { return v.Name_ }
func (v *Function) Type() types.Type { return v.Signature }
func (v *Function) String() string { return v.Name_ } // placeholder
// FullName returns v's package-qualified name.
func (v *Global) FullName() string { return fmt.Sprintf("%s.%s", v.Pkg.ImportPath, v.Name_) }
func (v *Literal) Name() string { return "Literal" } // placeholder
func (v *Literal) String() string { return "Literal" } // placeholder
func (v *Literal) Type() types.Type { return v.Type_ } // placeholder
func (v *Parameter) Type() types.Type { return v.Type_ }
func (v *Parameter) Name() string { return v.Name_ }
func (v *Alloc) Type() types.Type { return v.Type_ }
func (v *Alloc) Name() string { return v.Name_ }
func (v *Register) Type() types.Type { return v.Type_ }
func (v *Register) setType(typ types.Type) { v.Type_ = typ }
func (v *Register) Name() string { return fmt.Sprintf("t%d", v.num) }
func (v *Register) setNum(num int) { v.num = num }
func (v *anInstruction) Block() *BasicBlock { return v.Block_ }
func (v *anInstruction) SetBlock(block *BasicBlock) { v.Block_ = block }
func (ms *Type) Type() types.Type { return ms.NamedType }
func (ms *Type) String() string { return ms.Name() }
func (ms *Type) Name() string { return ms.NamedType.Obj.Name }
func (p *Package) Name() string { return p.Types.Name }
// Func returns the package-level function of the specified name,
// or nil if not found.
//
func (p *Package) Func(name string) (f *Function) {
f, _ = p.Members[name].(*Function)
return
}
// Var returns the package-level variable of the specified name,
// or nil if not found.
//
func (p *Package) Var(name string) (g *Global) {
g, _ = p.Members[name].(*Global)
return
}
// Const returns the package-level constant of the specified name,
// or nil if not found.
//
func (p *Package) Const(name string) (l *Literal) {
l, _ = p.Members[name].(*Literal)
return
}
// Type returns the package-level type of the specified name,
// or nil if not found.
//
func (p *Package) Type(name string) (t *Type) {
t, _ = p.Members[name].(*Type)
return
}
// "Implements" relation boilerplate.
// Don't try to factor this using promotion and mix-ins: the long-hand
// form serves as better documentation, including in godoc.
func (*Alloc) ImplementsValue() {}
func (*BinOp) ImplementsValue() {}
func (*Builtin) ImplementsValue() {}
func (*Call) ImplementsValue() {}
func (*Capture) ImplementsValue() {}
func (*ChangeInterface) ImplementsValue() {}
func (*Conv) ImplementsValue() {}
func (*Extract) ImplementsValue() {}
func (*Field) ImplementsValue() {}
func (*FieldAddr) ImplementsValue() {}
func (*Function) ImplementsValue() {}
func (*Global) ImplementsValue() {}
func (*Index) ImplementsValue() {}
func (*IndexAddr) ImplementsValue() {}
func (*Literal) ImplementsValue() {}
func (*Lookup) ImplementsValue() {}
func (*MakeChan) ImplementsValue() {}
func (*MakeClosure) ImplementsValue() {}
func (*MakeInterface) ImplementsValue() {}
func (*MakeMap) ImplementsValue() {}
func (*MakeSlice) ImplementsValue() {}
func (*Next) ImplementsValue() {}
func (*Parameter) ImplementsValue() {}
func (*Phi) ImplementsValue() {}
func (*Range) ImplementsValue() {}
func (*Select) ImplementsValue() {}
func (*Slice) ImplementsValue() {}
func (*TypeAssert) ImplementsValue() {}
func (*UnOp) ImplementsValue() {}
func (*Function) ImplementsMember() {}
func (*Global) ImplementsMember() {}
func (*Literal) ImplementsMember() {}
func (*Type) ImplementsMember() {}
func (*Alloc) ImplementsInstruction() {}
func (*BinOp) ImplementsInstruction() {}
func (*Call) ImplementsInstruction() {}
func (*ChangeInterface) ImplementsInstruction() {}
func (*Conv) ImplementsInstruction() {}
func (*Defer) ImplementsInstruction() {}
func (*Extract) ImplementsInstruction() {}
func (*Field) ImplementsInstruction() {}
func (*FieldAddr) ImplementsInstruction() {}
func (*Go) ImplementsInstruction() {}
func (*If) ImplementsInstruction() {}
func (*Index) ImplementsInstruction() {}
func (*IndexAddr) ImplementsInstruction() {}
func (*Jump) ImplementsInstruction() {}
func (*Lookup) ImplementsInstruction() {}
func (*MakeChan) ImplementsInstruction() {}
func (*MakeClosure) ImplementsInstruction() {}
func (*MakeInterface) ImplementsInstruction() {}
func (*MakeMap) ImplementsInstruction() {}
func (*MakeSlice) ImplementsInstruction() {}
func (*MapUpdate) ImplementsInstruction() {}
func (*Next) ImplementsInstruction() {}
func (*Phi) ImplementsInstruction() {}
func (*Range) ImplementsInstruction() {}
func (*Ret) ImplementsInstruction() {}
func (*Select) ImplementsInstruction() {}
func (*Send) ImplementsInstruction() {}
func (*Slice) ImplementsInstruction() {}
func (*Store) ImplementsInstruction() {}
func (*TypeAssert) ImplementsInstruction() {}
func (*UnOp) ImplementsInstruction() {}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment