Commit 1aec7c7f authored by Berengar Lehr's avatar Berengar Lehr Committed by Adam Langley

crypto: add twofish package

The code was (as annotated in the source code) adopted from Tom's
LibCrypt (public domain code, [1]). It was neither optimised for speed
nor were any security features added.

[1] http://libtom.org/?page=features&newsitems=5&whatfile=crypt

R=rsc, berengarlehr, albert.strasheim, agl1
CC=golang-dev, schulze
https://golang.org/cl/2687042
parent 1c99bdc8
......@@ -68,6 +68,7 @@ Corey Thomasson <cthom.lists@gmail.com>
Dan Sinclair <dan.sinclair@gmail.com>
Daniel Fleischman <danielfleischman@gmail.com>
Daniel Nadasi <dnadasi@google.com>
Berengar Lehr <Berengar.Lehr@gmx.de>
Daniel Theophanes <kardianos@gmail.com>
David G. Andersen <dave.andersen@gmail.com>
David Symonds <dsymonds@golang.org>
......
......@@ -47,6 +47,7 @@ DIRS=\
crypto/sha512\
crypto/subtle\
crypto/tls\
crypto/twofish\
crypto/x509\
crypto/xtea\
debug/dwarf\
......
# Copyright 2011 The Go Authors. All rights reserved.
# Use of this source code is governed by a BSD-style
# license that can be found in the LICENSE file.
include ../../../Make.inc
TARG=crypto/twofish
GOFILES=\
twofish.go\
include ../../../Make.pkg
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This package implements Bruce Schneier's Twofish encryption algorithm.
package twofish
// Twofish is defined in http://www.schneier.com/paper-twofish-paper.pdf [TWOFISH]
// This code is a port of the LibTom C implementation.
// See http://libtom.org/?page=features&newsitems=5&whatfile=crypt.
// LibTomCrypt is free for all purposes under the public domain.
// It was heavily inspired by the go blowfish package.
import (
"os"
"strconv"
)
// BlockSize is the constant block size of Twofish.
const BlockSize = 16
const mdsPolynomial = 0x169 // x^8 + x^6 + x^5 + x^3 + 1, see [TWOFISH] 4.2
const rsPolynomial = 0x14d // x^8 + x^6 + x^3 + x^2 + 1, see [TWOFISH] 4.3
// A Cipher is an instance of Twofish encryption using a particular key.
type Cipher struct {
s [4][256]uint32
k [40]uint32
}
type KeySizeError int
func (k KeySizeError) String() string {
return "crypto/twofish: invalid key size " + strconv.Itoa(int(k))
}
// NewCipher creates and returns a Cipher.
// The key argument should be the Twofish key, 16, 24 or 32 bytes.
func NewCipher(key []byte) (*Cipher, os.Error) {
keylen := len(key)
if keylen != 16 && keylen != 24 && keylen != 32 {
return nil, KeySizeError(keylen)
}
// k is the number of 64 bit words in key
k := keylen / 8
// Create the S[..] words
var S [4 * 4]byte
for i := 0; i < k; i++ {
// Computes [y0 y1 y2 y3] = rs . [x0 x1 x2 x3 x4 x5 x6 x7]
for j := 0; j < 4; j++ {
for k := 0; k < 8; k++ {
S[4*i+j] ^= gfMult(key[8*i+k], rs[j][k], rsPolynomial)
}
}
}
// Calculate subkeys
c := new(Cipher)
var tmp [4]byte
for i := byte(0); i < 20; i++ {
// A = h(p * 2x, Me)
for j := 0; j < 4; j++ {
tmp[j] = 2 * i
}
A := h(tmp[:], key, 0)
// B = rolc(h(p * (2x + 1), Mo), 8)
for j := 0; j < 4; j++ {
tmp[j] = 2*i + 1
}
B := h(tmp[:], key, 1)
B = rol(B, 8)
c.k[2*i] = A + B
// K[2i+1] = (A + 2B) <<< 9
c.k[2*i+1] = rol(2*B+A, 9)
}
// Calculate sboxes
switch k {
case 2:
for i := 0; i <= 255; i++ {
c.s[0][i] = mdsColumnMult(sbox[1][sbox[0][sbox[0][byte(i)]^S[0]]^S[4]], 0)
c.s[1][i] = mdsColumnMult(sbox[0][sbox[0][sbox[1][byte(i)]^S[1]]^S[5]], 1)
c.s[2][i] = mdsColumnMult(sbox[1][sbox[1][sbox[0][byte(i)]^S[2]]^S[6]], 2)
c.s[3][i] = mdsColumnMult(sbox[0][sbox[1][sbox[1][byte(i)]^S[3]]^S[7]], 3)
}
case 3:
for i := 0; i < 256; i++ {
c.s[0][i] = mdsColumnMult(sbox[1][sbox[0][sbox[0][sbox[1][byte(i)]^S[0]]^S[4]]^S[8]], 0)
c.s[1][i] = mdsColumnMult(sbox[0][sbox[0][sbox[1][sbox[1][byte(i)]^S[1]]^S[5]]^S[9]], 1)
c.s[2][i] = mdsColumnMult(sbox[1][sbox[1][sbox[0][sbox[0][byte(i)]^S[2]]^S[6]]^S[10]], 2)
c.s[3][i] = mdsColumnMult(sbox[0][sbox[1][sbox[1][sbox[0][byte(i)]^S[3]]^S[7]]^S[11]], 3)
}
default:
for i := 0; i < 256; i++ {
c.s[0][i] = mdsColumnMult(sbox[1][sbox[0][sbox[0][sbox[1][sbox[1][byte(i)]^S[0]]^S[4]]^S[8]]^S[12]], 0)
c.s[1][i] = mdsColumnMult(sbox[0][sbox[0][sbox[1][sbox[1][sbox[0][byte(i)]^S[1]]^S[5]]^S[9]]^S[13]], 1)
c.s[2][i] = mdsColumnMult(sbox[1][sbox[1][sbox[0][sbox[0][sbox[0][byte(i)]^S[2]]^S[6]]^S[10]]^S[14]], 2)
c.s[3][i] = mdsColumnMult(sbox[0][sbox[1][sbox[1][sbox[0][sbox[1][byte(i)]^S[3]]^S[7]]^S[11]]^S[15]], 3)
}
}
return c, nil
}
// Reset zeros the key data, so that it will no longer appear in the process's
// memory.
func (c *Cipher) Reset() {
for i := 0; i < 40; i++ {
c.k[i] = 0
}
for i := 0; i < 4; i++ {
for j := 0; j < 265; j++ {
c.s[i][j] = 0
}
}
}
// BlockSize returns the Twofish block size, 16 bytes.
func (c *Cipher) BlockSize() int { return BlockSize }
// store32l stores src in dst in little-endian form.
func store32l(dst []byte, src uint32) {
dst[0] = byte(src)
dst[1] = byte(src >> 8)
dst[2] = byte(src >> 16)
dst[3] = byte(src >> 24)
return
}
// load32l reads a little-endian uint32 from src.
func load32l(src []byte) uint32 {
return uint32(src[0]) | uint32(src[1])<<8 | uint32(src[2])<<16 | uint32(src[3])<<24
}
// rol returns x after a left circular rotation of y bits.
func rol(x, y uint32) uint32 {
return (x << (y & 31)) | (x >> (32 - (y & 31)))
}
// ror returns x after a right circular rotation of y bits.
func ror(x, y uint32) uint32 {
return (x >> (y & 31)) | (x << (32 - (y & 31)))
}
// The RS matrix. See [TWOFISH] 4.3
var rs = [4][8]byte{
{0x01, 0xA4, 0x55, 0x87, 0x5A, 0x58, 0xDB, 0x9E},
{0xA4, 0x56, 0x82, 0xF3, 0x1E, 0xC6, 0x68, 0xE5},
{0x02, 0xA1, 0xFC, 0xC1, 0x47, 0xAE, 0x3D, 0x19},
{0xA4, 0x55, 0x87, 0x5A, 0x58, 0xDB, 0x9E, 0x03},
}
// sbox tables
var sbox = [2][256]byte{
{
0xa9, 0x67, 0xb3, 0xe8, 0x04, 0xfd, 0xa3, 0x76, 0x9a, 0x92, 0x80, 0x78, 0xe4, 0xdd, 0xd1, 0x38,
0x0d, 0xc6, 0x35, 0x98, 0x18, 0xf7, 0xec, 0x6c, 0x43, 0x75, 0x37, 0x26, 0xfa, 0x13, 0x94, 0x48,
0xf2, 0xd0, 0x8b, 0x30, 0x84, 0x54, 0xdf, 0x23, 0x19, 0x5b, 0x3d, 0x59, 0xf3, 0xae, 0xa2, 0x82,
0x63, 0x01, 0x83, 0x2e, 0xd9, 0x51, 0x9b, 0x7c, 0xa6, 0xeb, 0xa5, 0xbe, 0x16, 0x0c, 0xe3, 0x61,
0xc0, 0x8c, 0x3a, 0xf5, 0x73, 0x2c, 0x25, 0x0b, 0xbb, 0x4e, 0x89, 0x6b, 0x53, 0x6a, 0xb4, 0xf1,
0xe1, 0xe6, 0xbd, 0x45, 0xe2, 0xf4, 0xb6, 0x66, 0xcc, 0x95, 0x03, 0x56, 0xd4, 0x1c, 0x1e, 0xd7,
0xfb, 0xc3, 0x8e, 0xb5, 0xe9, 0xcf, 0xbf, 0xba, 0xea, 0x77, 0x39, 0xaf, 0x33, 0xc9, 0x62, 0x71,
0x81, 0x79, 0x09, 0xad, 0x24, 0xcd, 0xf9, 0xd8, 0xe5, 0xc5, 0xb9, 0x4d, 0x44, 0x08, 0x86, 0xe7,
0xa1, 0x1d, 0xaa, 0xed, 0x06, 0x70, 0xb2, 0xd2, 0x41, 0x7b, 0xa0, 0x11, 0x31, 0xc2, 0x27, 0x90,
0x20, 0xf6, 0x60, 0xff, 0x96, 0x5c, 0xb1, 0xab, 0x9e, 0x9c, 0x52, 0x1b, 0x5f, 0x93, 0x0a, 0xef,
0x91, 0x85, 0x49, 0xee, 0x2d, 0x4f, 0x8f, 0x3b, 0x47, 0x87, 0x6d, 0x46, 0xd6, 0x3e, 0x69, 0x64,
0x2a, 0xce, 0xcb, 0x2f, 0xfc, 0x97, 0x05, 0x7a, 0xac, 0x7f, 0xd5, 0x1a, 0x4b, 0x0e, 0xa7, 0x5a,
0x28, 0x14, 0x3f, 0x29, 0x88, 0x3c, 0x4c, 0x02, 0xb8, 0xda, 0xb0, 0x17, 0x55, 0x1f, 0x8a, 0x7d,
0x57, 0xc7, 0x8d, 0x74, 0xb7, 0xc4, 0x9f, 0x72, 0x7e, 0x15, 0x22, 0x12, 0x58, 0x07, 0x99, 0x34,
0x6e, 0x50, 0xde, 0x68, 0x65, 0xbc, 0xdb, 0xf8, 0xc8, 0xa8, 0x2b, 0x40, 0xdc, 0xfe, 0x32, 0xa4,
0xca, 0x10, 0x21, 0xf0, 0xd3, 0x5d, 0x0f, 0x00, 0x6f, 0x9d, 0x36, 0x42, 0x4a, 0x5e, 0xc1, 0xe0,
},
{
0x75, 0xf3, 0xc6, 0xf4, 0xdb, 0x7b, 0xfb, 0xc8, 0x4a, 0xd3, 0xe6, 0x6b, 0x45, 0x7d, 0xe8, 0x4b,
0xd6, 0x32, 0xd8, 0xfd, 0x37, 0x71, 0xf1, 0xe1, 0x30, 0x0f, 0xf8, 0x1b, 0x87, 0xfa, 0x06, 0x3f,
0x5e, 0xba, 0xae, 0x5b, 0x8a, 0x00, 0xbc, 0x9d, 0x6d, 0xc1, 0xb1, 0x0e, 0x80, 0x5d, 0xd2, 0xd5,
0xa0, 0x84, 0x07, 0x14, 0xb5, 0x90, 0x2c, 0xa3, 0xb2, 0x73, 0x4c, 0x54, 0x92, 0x74, 0x36, 0x51,
0x38, 0xb0, 0xbd, 0x5a, 0xfc, 0x60, 0x62, 0x96, 0x6c, 0x42, 0xf7, 0x10, 0x7c, 0x28, 0x27, 0x8c,
0x13, 0x95, 0x9c, 0xc7, 0x24, 0x46, 0x3b, 0x70, 0xca, 0xe3, 0x85, 0xcb, 0x11, 0xd0, 0x93, 0xb8,
0xa6, 0x83, 0x20, 0xff, 0x9f, 0x77, 0xc3, 0xcc, 0x03, 0x6f, 0x08, 0xbf, 0x40, 0xe7, 0x2b, 0xe2,
0x79, 0x0c, 0xaa, 0x82, 0x41, 0x3a, 0xea, 0xb9, 0xe4, 0x9a, 0xa4, 0x97, 0x7e, 0xda, 0x7a, 0x17,
0x66, 0x94, 0xa1, 0x1d, 0x3d, 0xf0, 0xde, 0xb3, 0x0b, 0x72, 0xa7, 0x1c, 0xef, 0xd1, 0x53, 0x3e,
0x8f, 0x33, 0x26, 0x5f, 0xec, 0x76, 0x2a, 0x49, 0x81, 0x88, 0xee, 0x21, 0xc4, 0x1a, 0xeb, 0xd9,
0xc5, 0x39, 0x99, 0xcd, 0xad, 0x31, 0x8b, 0x01, 0x18, 0x23, 0xdd, 0x1f, 0x4e, 0x2d, 0xf9, 0x48,
0x4f, 0xf2, 0x65, 0x8e, 0x78, 0x5c, 0x58, 0x19, 0x8d, 0xe5, 0x98, 0x57, 0x67, 0x7f, 0x05, 0x64,
0xaf, 0x63, 0xb6, 0xfe, 0xf5, 0xb7, 0x3c, 0xa5, 0xce, 0xe9, 0x68, 0x44, 0xe0, 0x4d, 0x43, 0x69,
0x29, 0x2e, 0xac, 0x15, 0x59, 0xa8, 0x0a, 0x9e, 0x6e, 0x47, 0xdf, 0x34, 0x35, 0x6a, 0xcf, 0xdc,
0x22, 0xc9, 0xc0, 0x9b, 0x89, 0xd4, 0xed, 0xab, 0x12, 0xa2, 0x0d, 0x52, 0xbb, 0x02, 0x2f, 0xa9,
0xd7, 0x61, 0x1e, 0xb4, 0x50, 0x04, 0xf6, 0xc2, 0x16, 0x25, 0x86, 0x56, 0x55, 0x09, 0xbe, 0x91,
},
}
// gfMult returns a·b in GF(2^8)/p
func gfMult(a, b byte, p uint32) byte {
B := [2]uint32{0, uint32(b)}
P := [2]uint32{0, p}
var result uint32
// branchless GF multiplier
for i := 0; i < 7; i++ {
result ^= B[a&1]
a >>= 1
B[1] = P[B[1]>>7] ^ (B[1] << 1)
}
result ^= B[a&1]
return byte(result)
}
// mdsColumnMult calculates y{col} where [y0 y1 y2 y3] = MDS . [x0]
func mdsColumnMult(in byte, col int) uint32 {
mul01 := in
mul5B := gfMult(in, 0x5B, mdsPolynomial)
mulEF := gfMult(in, 0xEF, mdsPolynomial)
switch col {
case 0:
return uint32(mul01) | uint32(mul5B)<<8 | uint32(mulEF)<<16 | uint32(mulEF)<<24
case 1:
return uint32(mulEF) | uint32(mulEF)<<8 | uint32(mul5B)<<16 | uint32(mul01)<<24
case 2:
return uint32(mul5B) | uint32(mulEF)<<8 | uint32(mul01)<<16 | uint32(mulEF)<<24
case 3:
return uint32(mul5B) | uint32(mul01)<<8 | uint32(mulEF)<<16 | uint32(mul5B)<<24
}
panic("unreachable")
}
// h implements the S-box generation function. See [TWOFISH] 4.3.5
func h(in, key []byte, offset int) uint32 {
var y [4]byte
for x := 0; x < 4; x++ {
y[x] = in[x]
}
switch len(key) / 8 {
case 4:
y[0] = sbox[1][y[0]] ^ key[4*(6+offset)+0]
y[1] = sbox[0][y[1]] ^ key[4*(6+offset)+1]
y[2] = sbox[0][y[2]] ^ key[4*(6+offset)+2]
y[3] = sbox[1][y[3]] ^ key[4*(6+offset)+3]
fallthrough
case 3:
y[0] = sbox[1][y[0]] ^ key[4*(4+offset)+0]
y[1] = sbox[1][y[1]] ^ key[4*(4+offset)+1]
y[2] = sbox[0][y[2]] ^ key[4*(4+offset)+2]
y[3] = sbox[0][y[3]] ^ key[4*(4+offset)+3]
fallthrough
case 2:
y[0] = sbox[1][sbox[0][sbox[0][y[0]]^key[4*(2+offset)+0]]^key[4*(0+offset)+0]]
y[1] = sbox[0][sbox[0][sbox[1][y[1]]^key[4*(2+offset)+1]]^key[4*(0+offset)+1]]
y[2] = sbox[1][sbox[1][sbox[0][y[2]]^key[4*(2+offset)+2]]^key[4*(0+offset)+2]]
y[3] = sbox[0][sbox[1][sbox[1][y[3]]^key[4*(2+offset)+3]]^key[4*(0+offset)+3]]
}
// [y0 y1 y2 y3] = MDS . [x0 x1 x2 x3]
var mdsMult uint32
for i := 0; i < 4; i++ {
mdsMult ^= mdsColumnMult(y[i], i)
}
return mdsMult
}
// Encrypt encrypts a 16-byte block from src to dst, which may overlap.
// Note that for amounts of data larger than a block,
// it is not safe to just call Encrypt on successive blocks;
// instead, use an encryption mode like CBC (see crypto/block/cbc.go).
func (skey *Cipher) Encrypt(dst, src []byte) {
S1 := skey.s[0]
S2 := skey.s[1]
S3 := skey.s[2]
S4 := skey.s[3]
// Load input
a := load32l(src[0:4])
b := load32l(src[4:8])
c := load32l(src[8:12])
d := load32l(src[12:16])
// Pre-whitening
a ^= skey.k[0]
b ^= skey.k[1]
c ^= skey.k[2]
d ^= skey.k[3]
for i := 0; i < 8; i++ {
k := skey.k[8+i*4 : 12+i*4]
t2 := S2[byte(b)] ^ S3[byte(b>>8)] ^ S4[byte(b>>16)] ^ S1[byte(b>>24)]
t1 := S1[byte(a)] ^ S2[byte(a>>8)] ^ S3[byte(a>>16)] ^ S4[byte(a>>24)] + t2
c = ror(c^(t1+k[0]), 1)
d = rol(d, 1) ^ (t2 + t1 + k[1])
t2 = S2[byte(d)] ^ S3[byte(d>>8)] ^ S4[byte(d>>16)] ^ S1[byte(d>>24)]
t1 = S1[byte(c)] ^ S2[byte(c>>8)] ^ S3[byte(c>>16)] ^ S4[byte(c>>24)] + t2
a = ror(a^(t1+k[2]), 1)
b = rol(b, 1) ^ (t2 + t1 + k[3])
}
// Output with "undo last swap"
ta := c ^ skey.k[4]
tb := d ^ skey.k[5]
tc := a ^ skey.k[6]
td := b ^ skey.k[7]
store32l(dst[0:4], ta)
store32l(dst[4:8], tb)
store32l(dst[8:12], tc)
store32l(dst[12:16], td)
}
// Decrypt decrypts a 16-byte block from src to dst, which may overlap.
func (skey *Cipher) Decrypt(dst, src []byte) {
S1 := skey.s[0]
S2 := skey.s[1]
S3 := skey.s[2]
S4 := skey.s[3]
// Load input
ta := load32l(src[0:4])
tb := load32l(src[4:8])
tc := load32l(src[8:12])
td := load32l(src[12:16])
// Undo undo final swap
a := tc ^ skey.k[6]
b := td ^ skey.k[7]
c := ta ^ skey.k[4]
d := tb ^ skey.k[5]
for i := 8; i > 0; i-- {
k := skey.k[4+i*4 : 8+i*4]
t2 := S2[byte(d)] ^ S3[byte(d>>8)] ^ S4[byte(d>>16)] ^ S1[byte(d>>24)]
t1 := S1[byte(c)] ^ S2[byte(c>>8)] ^ S3[byte(c>>16)] ^ S4[byte(c>>24)] + t2
a = rol(a, 1) ^ (t1 + k[2])
b = ror(b^(t2+t1+k[3]), 1)
t2 = S2[byte(b)] ^ S3[byte(b>>8)] ^ S4[byte(b>>16)] ^ S1[byte(b>>24)]
t1 = S1[byte(a)] ^ S2[byte(a>>8)] ^ S3[byte(a>>16)] ^ S4[byte(a>>24)] + t2
c = rol(c, 1) ^ (t1 + k[0])
d = ror(d^(t2+t1+k[1]), 1)
}
// Undo pre-whitening
a ^= skey.k[0]
b ^= skey.k[1]
c ^= skey.k[2]
d ^= skey.k[3]
store32l(dst[0:4], a)
store32l(dst[4:8], b)
store32l(dst[8:12], c)
store32l(dst[12:16], d)
}
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package twofish
import (
"bytes"
"testing"
)
var qbox = [2][4][16]byte{
{
{0x8, 0x1, 0x7, 0xD, 0x6, 0xF, 0x3, 0x2, 0x0, 0xB, 0x5, 0x9, 0xE, 0xC, 0xA, 0x4},
{0xE, 0xC, 0xB, 0x8, 0x1, 0x2, 0x3, 0x5, 0xF, 0x4, 0xA, 0x6, 0x7, 0x0, 0x9, 0xD},
{0xB, 0xA, 0x5, 0xE, 0x6, 0xD, 0x9, 0x0, 0xC, 0x8, 0xF, 0x3, 0x2, 0x4, 0x7, 0x1},
{0xD, 0x7, 0xF, 0x4, 0x1, 0x2, 0x6, 0xE, 0x9, 0xB, 0x3, 0x0, 0x8, 0x5, 0xC, 0xA},
},
{
{0x2, 0x8, 0xB, 0xD, 0xF, 0x7, 0x6, 0xE, 0x3, 0x1, 0x9, 0x4, 0x0, 0xA, 0xC, 0x5},
{0x1, 0xE, 0x2, 0xB, 0x4, 0xC, 0x3, 0x7, 0x6, 0xD, 0xA, 0x5, 0xF, 0x9, 0x0, 0x8},
{0x4, 0xC, 0x7, 0x5, 0x1, 0x6, 0x9, 0xA, 0x0, 0xE, 0xD, 0x8, 0x2, 0xB, 0x3, 0xF},
{0xB, 0x9, 0x5, 0x1, 0xC, 0x3, 0xD, 0xE, 0x6, 0x4, 0x7, 0xF, 0x2, 0x0, 0x8, 0xA},
},
}
// genSbox generates the variable sbox
func genSbox(qi int, x byte) byte {
a0, b0 := x/16, x%16
for i := 0; i < 2; i++ {
a1 := a0 ^ b0
b1 := (a0 ^ ((b0 << 3) | (b0 >> 1)) ^ (a0 << 3)) & 15
a0 = qbox[qi][2*i][a1]
b0 = qbox[qi][2*i+1][b1]
}
return (b0 << 4) + a0
}
func TestSbox(t *testing.T) {
for n := 0; n < 2; n++ {
for m := 0; m < 256; m++ {
if genSbox(n, byte(m)) != sbox[n][m] {
t.Errorf("#%d|%d: sbox value = %d want %d", n, m, sbox[n][m], genSbox(n, byte(m)))
}
}
}
}
var testVectors = []struct {
key []byte
dec []byte
enc []byte
}{
// These tests are extracted from LibTom
{
[]byte{0x9F, 0x58, 0x9F, 0x5C, 0xF6, 0x12, 0x2C, 0x32, 0xB6, 0xBF, 0xEC, 0x2F, 0x2A, 0xE8, 0xC3, 0x5A},
[]byte{0xD4, 0x91, 0xDB, 0x16, 0xE7, 0xB1, 0xC3, 0x9E, 0x86, 0xCB, 0x08, 0x6B, 0x78, 0x9F, 0x54, 0x19},
[]byte{0x01, 0x9F, 0x98, 0x09, 0xDE, 0x17, 0x11, 0x85, 0x8F, 0xAA, 0xC3, 0xA3, 0xBA, 0x20, 0xFB, 0xC3},
},
{
[]byte{0x88, 0xB2, 0xB2, 0x70, 0x6B, 0x10, 0x5E, 0x36, 0xB4, 0x46, 0xBB, 0x6D, 0x73, 0x1A, 0x1E, 0x88,
0xEF, 0xA7, 0x1F, 0x78, 0x89, 0x65, 0xBD, 0x44},
[]byte{0x39, 0xDA, 0x69, 0xD6, 0xBA, 0x49, 0x97, 0xD5, 0x85, 0xB6, 0xDC, 0x07, 0x3C, 0xA3, 0x41, 0xB2},
[]byte{0x18, 0x2B, 0x02, 0xD8, 0x14, 0x97, 0xEA, 0x45, 0xF9, 0xDA, 0xAC, 0xDC, 0x29, 0x19, 0x3A, 0x65},
},
{
[]byte{0xD4, 0x3B, 0xB7, 0x55, 0x6E, 0xA3, 0x2E, 0x46, 0xF2, 0xA2, 0x82, 0xB7, 0xD4, 0x5B, 0x4E, 0x0D,
0x57, 0xFF, 0x73, 0x9D, 0x4D, 0xC9, 0x2C, 0x1B, 0xD7, 0xFC, 0x01, 0x70, 0x0C, 0xC8, 0x21, 0x6F},
[]byte{0x90, 0xAF, 0xE9, 0x1B, 0xB2, 0x88, 0x54, 0x4F, 0x2C, 0x32, 0xDC, 0x23, 0x9B, 0x26, 0x35, 0xE6},
[]byte{0x6C, 0xB4, 0x56, 0x1C, 0x40, 0xBF, 0x0A, 0x97, 0x05, 0x93, 0x1C, 0xB6, 0xD4, 0x08, 0xE7, 0xFA},
},
// These test are derived from http://www.schneier.com/code/ecb_ival.txt
{
[]byte{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
[]byte{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
[]byte{0x9F, 0x58, 0x9F, 0x5C, 0xF6, 0x12, 0x2C, 0x32, 0xB6, 0xBF, 0xEC, 0x2F, 0x2A, 0xE8, 0xC3, 0x5A},
},
{
[]byte{0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF, 0xFE, 0xDC, 0xBA, 0x98, 0x76, 0x54, 0x32, 0x10,
0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
},
[]byte{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
[]byte{0xCF, 0xD1, 0xD2, 0xE5, 0xA9, 0xBE, 0x9C, 0xDF, 0x50, 0x1F, 0x13, 0xB8, 0x92, 0xBD, 0x22, 0x48},
},
{
[]byte{0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF, 0xFE, 0xDC, 0xBA, 0x98, 0x76, 0x54, 0x32, 0x10,
0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF,
},
[]byte{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
[]byte{0x37, 0x52, 0x7B, 0xE0, 0x05, 0x23, 0x34, 0xB8, 0x9F, 0x0C, 0xFC, 0xCA, 0xE8, 0x7C, 0xFA, 0x20},
},
}
func TestCipher(t *testing.T) {
for n, tt := range testVectors {
// Test if the plaintext (dec) is encrypts to the given
// ciphertext (enc) using the given key. Test also if enc can
// be decrypted again into dec.
c, err := NewCipher(tt.key)
if err != nil {
t.Errorf("#%d: NewCipher: %v", n, err)
return
}
buf := make([]byte, 16)
c.Encrypt(buf, tt.dec)
if !bytes.Equal(buf, tt.enc) {
t.Errorf("#%d: encrypt = %x want %x", n, buf, tt.enc)
}
c.Decrypt(buf, tt.enc)
if !bytes.Equal(buf, tt.dec) {
t.Errorf("#%d: decrypt = %x want %x", n, buf, tt.dec)
}
// Test that 16 zero bytes, encrypted 1000 times then decrypted
// 1000 times results in zero bytes again.
zero := make([]byte, 16)
buf = make([]byte, 16)
for i := 0; i < 1000; i++ {
c.Encrypt(buf, buf)
}
for i := 0; i < 1000; i++ {
c.Decrypt(buf, buf)
}
if !bytes.Equal(buf, zero) {
t.Errorf("#%d: encrypt/decrypt 1000: have %x want %x", n, buf, zero)
}
}
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment