Commit 345c1bd4 authored by Austin Clements's avatar Austin Clements

Debugged processes, remote values, and remote type parser

R=rsc
APPROVED=rsc
DELTA=917  (917 added, 0 deleted, 0 changed)
OCL=34049
CL=34066
parent 0a969fa9
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ogle
import (
"eval";
"ptrace";
"reflect";
"os";
"sym";
)
// A FormatError indicates a failure to process information in or
// about a remote process, such as unexpected or missing information
// in the object file or runtime structures.
type FormatError string
func (e FormatError) String() string {
return string(e);
}
// An UnknownArchitecture occurs when trying to load an object file
// that indicates an architecture not supported by the debugger.
type UnknownArchitecture sym.ElfMachine
func (e UnknownArchitecture) String() string {
return "unknown architecture: " + sym.ElfMachine(e).String();
}
// A Process represents a remote attached process.
type Process struct {
Arch;
ptrace.Process;
// The symbol table of this process
syms *sym.GoSymTable;
// Current thread
thread ptrace.Thread;
// Current frame, or nil if the current thread is not stopped
frame *frame;
// Types parsed from the remote process
types map[ptrace.Word] *remoteType;
// Types and values from the remote runtime package
runtime runtimeValues;
// Runtime field indexes
f runtimeIndexes;
}
// NewProcess constructs a new remote process around a ptrace'd
// process, an architecture, and a symbol table.
func NewProcess(proc ptrace.Process, arch Arch, syms *sym.GoSymTable) *Process {
p := &Process{
Arch: arch,
Process: proc,
syms: syms,
thread: proc.Threads()[0],
types: make(map[ptrace.Word] *remoteType),
};
// TODO(austin) Set p.frame if proc is stopped
p.bootstrap();
return p;
}
// NewProcessElf constructs a new remote process around a ptrace'd
// process and the process' ELF object.
func NewProcessElf(proc ptrace.Process, elf *sym.Elf) (*Process, os.Error) {
syms, err := sym.ElfGoSyms(elf);
if err != nil {
return nil, err;
}
if syms == nil {
return nil, FormatError("Failed to find symbol table");
}
var arch Arch;
switch elf.Machine {
case sym.ElfX86_64:
arch = Amd64;
default:
return nil, UnknownArchitecture(elf.Machine);
}
return NewProcess(proc, arch, syms), nil;
}
// bootstrap constructs the runtime structure of a remote process.
func (p *Process) bootstrap() {
// Manually construct runtime types
p.runtime.String = newManualType(eval.TypeOfNative(rt1String{}), p.Arch);
p.runtime.Slice = newManualType(eval.TypeOfNative(rt1Slice{}), p.Arch);
p.runtime.Eface = newManualType(eval.TypeOfNative(rt1Eface{}), p.Arch);
p.runtime.Type = newManualType(eval.TypeOfNative(rt1Type{}), p.Arch);
p.runtime.CommonType = newManualType(eval.TypeOfNative(rt1CommonType{}), p.Arch);
p.runtime.UncommonType = newManualType(eval.TypeOfNative(rt1UncommonType{}), p.Arch);
p.runtime.StructField = newManualType(eval.TypeOfNative(rt1StructField{}), p.Arch);
p.runtime.StructType = newManualType(eval.TypeOfNative(rt1StructType{}), p.Arch);
p.runtime.PtrType = newManualType(eval.TypeOfNative(rt1PtrType{}), p.Arch);
p.runtime.ArrayType = newManualType(eval.TypeOfNative(rt1ArrayType{}), p.Arch);
p.runtime.SliceType = newManualType(eval.TypeOfNative(rt1SliceType{}), p.Arch);
p.runtime.Stktop = newManualType(eval.TypeOfNative(rt1Stktop{}), p.Arch);
p.runtime.Gobuf = newManualType(eval.TypeOfNative(rt1Gobuf{}), p.Arch);
p.runtime.G = newManualType(eval.TypeOfNative(rt1G{}), p.Arch);
// Get addresses of type·*runtime.XType for discrimination.
rtv := reflect.Indirect(reflect.NewValue(&p.runtime)).(*reflect.StructValue);
rtvt := rtv.Type().(*reflect.StructType);
for i := 0; i < rtv.NumField(); i++ {
n := rtvt.Field(i).Name;
if n[0] != 'P' || n[1] < 'A' || n[1] > 'Z' {
continue;
}
sym := p.syms.SymFromName("type·*runtime." + n[1:len(n)]);
if sym == nil {
continue;
}
rtv.Field(i).(*reflect.Uint64Value).Set(sym.Common().Value);
}
// Get field indexes
fillRuntimeIndexes(&p.runtime, &p.f);
}
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ogle
import (
"eval";
"fmt";
"log";
"ptrace";
)
const debugParseRemoteType = false
// A remoteType is the local representation of a type in a remote process.
type remoteType struct {
eval.Type;
// The size of values of this type in bytes.
size int;
// The field alignment of this type. Only used for
// manually-constructed types.
fieldAlign int;
// The maker function to turn a remote address of a value of
// this type into an interpreter Value.
mk maker;
}
var manualTypes = make(map[Arch] map[eval.Type] *remoteType)
// newManualType constructs a remote type from an interpreter Type
// using the size and alignment properties of the given architecture.
// Most types are parsed directly out of the remote process, but to do
// so we need to layout the structures that describe those types ourselves.
func newManualType(t eval.Type, arch Arch) *remoteType {
if nt, ok := t.(*eval.NamedType); ok {
t = nt.Def;
}
// Get the type map for this architecture
typeMap, ok := manualTypes[arch];
if typeMap == nil {
typeMap = make(map[eval.Type] *remoteType);
manualTypes[arch] = typeMap;
// Construct basic types for this architecture
basicType := func(t eval.Type, mk maker, size int, fieldAlign int) {
t = t.(*eval.NamedType).Def;
if fieldAlign == 0 {
fieldAlign = size;
}
typeMap[t] = &remoteType{t, size, fieldAlign, mk};
};
basicType(eval.Uint8Type, mkUint8, 1, 0);
basicType(eval.Uint32Type, mkUint32, 4, 0);
basicType(eval.UintptrType, mkUintptr, arch.PtrSize(), 0);
basicType(eval.Int32Type, mkInt32, 4, 0);
basicType(eval.IntType, mkInt, arch.IntSize(), 0);
basicType(eval.StringType, mkString, arch.PtrSize() + arch.IntSize(), arch.PtrSize());
}
if rt, ok := typeMap[t]; ok {
return rt;
}
var rt *remoteType;
switch t := t.(type) {
case *eval.PtrType:
var elem *remoteType;
mk := func(r remote) eval.Value {
return remotePtr{r, elem};
};
rt = &remoteType{t, arch.PtrSize(), arch.PtrSize(), mk};
// Construct the element type after registering the
// type to break cycles.
typeMap[t] = rt;
elem = newManualType(t.Elem, arch);
case *eval.ArrayType:
elem := newManualType(t.Elem, arch);
mk := func(r remote) eval.Value {
return remoteArray{r, t.Len, elem};
};
rt = &remoteType{t, elem.size*int(t.Len), elem.fieldAlign, mk};
case *eval.SliceType:
elem := newManualType(t.Elem, arch);
mk := func(r remote) eval.Value {
return remoteSlice{r, elem};
};
rt = &remoteType{t, arch.PtrSize() + 2*arch.IntSize(), arch.PtrSize(), mk};
case *eval.StructType:
layout := make([]remoteStructField, len(t.Elems));
offset := 0;
fieldAlign := 0;
for i, f := range t.Elems {
elem := newManualType(f.Type, arch);
if fieldAlign == 0 {
fieldAlign = elem.fieldAlign;
}
offset = arch.Align(offset, elem.fieldAlign);
layout[i].offset = offset;
layout[i].fieldType = elem;
offset += elem.size;
}
mk := func(r remote) eval.Value {
return remoteStruct{r, layout};
};
rt = &remoteType{t, offset, fieldAlign, mk};
default:
log.Crashf("cannot manually construct type %T", t);
}
typeMap[t] = rt;
return rt;
}
var prtIndent = "";
// parseRemoteType parses a Type structure in a remote process to
// construct the corresponding interpreter type and remote type.
func parseRemoteType(rs remoteStruct) *remoteType {
addr := rs.addr().base;
p := rs.addr().p;
// We deal with circular types by discovering cycles at
// NamedTypes. If a type cycles back to something other than
// a named type, we're guaranteed that there will be a named
// type somewhere in that cycle. Thus, we continue down,
// re-parsing types until we reach the named type in the
// cycle. In order to still create one remoteType per remote
// type, we insert an empty remoteType in the type map the
// first time we encounter the type and re-use that structure
// the second time we encounter it.
rt, ok := p.types[addr];
if ok && rt.Type != nil {
return rt;
} else if !ok {
rt = &remoteType{};
p.types[addr] = rt;
}
if debugParseRemoteType {
sym := p.syms.SymFromAddr(uint64(addr));
name := "<unknown>";
if sym != nil {
name = sym.Common().Name;
}
log.Stderrf("%sParsing type at %#x (%s)", prtIndent, addr, name);
prtIndent += " ";
defer func() { prtIndent = prtIndent[0:len(prtIndent)-1] }();
}
// Get Type header
itype := ptrace.Word(rs.Field(p.f.Type.Typ).(remoteUint).Get());
typ := rs.Field(p.f.Type.Ptr).(remotePtr).Get().(remoteStruct);
// Is this a named type?
var nt *eval.NamedType;
uncommon := typ.Field(p.f.CommonType.UncommonType).(remotePtr).Get();
if uncommon != nil {
name := uncommon.(remoteStruct).Field(p.f.UncommonType.Name).(remotePtr).Get();
if name != nil {
// TODO(austin) Declare type in appropriate remote package
nt = eval.NewNamedType(name.(remoteString).Get());
rt.Type = nt;
}
}
// Create type
var t eval.Type;
var mk maker;
switch itype {
case p.runtime.PBoolType:
t = eval.BoolType;
mk = mkBool;
case p.runtime.PUint8Type:
t = eval.Uint8Type;
mk = mkUint8;
case p.runtime.PUint16Type:
t = eval.Uint16Type;
mk = mkUint16;
case p.runtime.PUint32Type:
t = eval.Uint32Type;
mk = mkUint32;
case p.runtime.PUint64Type:
t = eval.Uint64Type;
mk = mkUint64;
case p.runtime.PUintType:
t = eval.UintType;
mk = mkUint;
case p.runtime.PUintptrType:
t = eval.UintptrType;
mk = mkUintptr;
case p.runtime.PInt8Type:
t = eval.Int8Type;
mk = mkInt8;
case p.runtime.PInt16Type:
t = eval.Int16Type;
mk = mkInt16;
case p.runtime.PInt32Type:
t = eval.Int32Type;
mk = mkInt32;
case p.runtime.PInt64Type:
t = eval.Int64Type;
mk = mkInt64;
case p.runtime.PIntType:
t = eval.IntType;
mk = mkInt;
case p.runtime.PFloat32Type:
t = eval.Float32Type;
mk = mkFloat32;
case p.runtime.PFloat64Type:
t = eval.Float64Type;
mk = mkFloat64;
case p.runtime.PFloatType:
t = eval.FloatType;
mk = mkFloat;
case p.runtime.PStringType:
t = eval.StringType;
mk = mkString;
case p.runtime.PArrayType:
// Cast to an ArrayType
typ := p.runtime.ArrayType.mk(typ.addr()).(remoteStruct);
len := int64(typ.Field(p.f.ArrayType.Len).(remoteUint).Get());
elem := parseRemoteType(typ.Field(p.f.ArrayType.Elem).(remotePtr).Get().(remoteStruct));
t = eval.NewArrayType(len, elem.Type);
mk = func(r remote) eval.Value {
return remoteArray{r, len, elem};
};
case p.runtime.PStructType:
// Cast to a StructType
typ := p.runtime.StructType.mk(typ.addr()).(remoteStruct);
fs := typ.Field(p.f.StructType.Fields).(remoteSlice).Get();
fields := make([]eval.StructField, fs.Len);
layout := make([]remoteStructField, fs.Len);
for i := range fields {
f := fs.Base.Elem(int64(i)).(remoteStruct);
elemrs := f.Field(p.f.StructField.Typ).(remotePtr).Get().(remoteStruct);
elem := parseRemoteType(elemrs);
fields[i].Type = elem.Type;
name := f.Field(p.f.StructField.Name).(remotePtr).Get();
if name == nil {
fields[i].Anonymous = true;
} else {
fields[i].Name = name.(remoteString).Get();
}
layout[i].offset = int(f.Field(p.f.StructField.Offset).(remoteUint).Get());
layout[i].fieldType = elem;
}
t = eval.NewStructType(fields);
mk = func(r remote) eval.Value {
return remoteStruct{r, layout};
};
case p.runtime.PPtrType:
// Cast to a PtrType
typ := p.runtime.PtrType.mk(typ.addr()).(remoteStruct);
elem := parseRemoteType(typ.Field(p.f.PtrType.Elem).(remotePtr).Get().(remoteStruct));
t = eval.NewPtrType(elem.Type);
mk = func(r remote) eval.Value {
return remotePtr{r, elem};
};
case p.runtime.PSliceType:
// Cast to a SliceType
typ := p.runtime.SliceType.mk(typ.addr()).(remoteStruct);
elem := parseRemoteType(typ.Field(p.f.SliceType.Elem).(remotePtr).Get().(remoteStruct));
t = eval.NewSliceType(elem.Type);
mk = func(r remote) eval.Value {
return remoteSlice{r, elem};
};
case p.runtime.PMapType, p.runtime.PChanType, p.runtime.PFuncType, p.runtime.PInterfaceType, p.runtime.PUnsafePointerType, p.runtime.PDotDotDotType:
// TODO(austin)
t = eval.UintptrType;
mk = mkUintptr;
default:
sym := p.syms.SymFromAddr(uint64(itype));
name := "<unknown symbol>";
if sym != nil {
name = sym.Common().Name;
}
err := fmt.Sprintf("runtime type at %#x has unexpected type %#x (%s)", addr, itype, name);
eval.Abort(FormatError(err));
}
// Fill in the remote type
if nt != nil {
nt.Complete(t);
} else {
rt.Type = t;
}
rt.size = int(typ.Field(p.f.CommonType.Size).(remoteUint).Get());
rt.mk = mk;
return rt;
}
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ogle
import (
"eval";
"fmt";
"ptrace";
)
// A RemoteMismatchError occurs when an operation that requires two
// identical remote processes is given different process. For
// example, this occurs when trying to set a pointer in one process to
// point to something in another process.
type RemoteMismatchError string
func (e RemoteMismatchError) String() string {
return string(e);
}
// A maker is a function that converts a remote address into an
// interpreter Value.
type maker func(remote) eval.Value
type remoteValue interface {
addr() remote;
}
// remote represents an address in a remote process.
type remote struct {
base ptrace.Word;
p *Process;
}
func (v remote) Get(size int) uint64 {
// TODO(austin) This variable might temporarily be in a
// register. We could trace the assembly back from the
// current PC, looking for the beginning of the function or a
// call (both of which guarantee that the variable is in
// memory), or an instruction that loads the variable into a
// register.
//
// TODO(austin) If this is a local variable, it might not be
// live at this PC. In fact, because the compiler reuses
// slots, there might even be a different local variable at
// this location right now. A simple solution to both
// problems is to include the range of PC's over which a local
// variable is live in the symbol table.
//
// TODO(austin) We need to prevent the remote garbage
// collector from collecting objects out from under us.
var arr [8]byte;
buf := arr[0:size];
_, err := v.p.thread.Peek(v.base, buf);
if err != nil {
eval.Abort(err);
}
return uint64(v.p.ToWord(buf));
}
func (v remote) Set(size int, x uint64) {
var arr [8]byte;
buf := arr[0:size];
v.p.FromWord(ptrace.Word(x), buf);
_, err := v.p.thread.Poke(v.base, buf);
if err != nil {
eval.Abort(err);
}
}
func (v remote) plus(x ptrace.Word) remote {
return remote{v.base + x, v.p};
}
/*
* Bool
*/
type remoteBool struct {
r remote;
}
func (v remoteBool) String() string {
return fmt.Sprintf("%v", v.Get());
}
func (v remoteBool) Assign(o eval.Value) {
v.Set(o.(eval.BoolValue).Get());
}
func (v remoteBool) Get() bool {
return v.r.Get(1) != 0;
}
func (v remoteBool) Set(x bool) {
if x {
v.r.Set(1, 1);
} else {
v.r.Set(1, 0);
}
}
func (v remoteBool) addr() remote {
return v.r;
}
func mkBool(r remote) eval.Value {
return remoteBool{r};
}
/*
* Uint
*/
type remoteUint struct {
r remote;
size int;
}
func (v remoteUint) String() string {
return fmt.Sprintf("%v", v.Get());
}
func (v remoteUint) Assign(o eval.Value) {
v.Set(o.(eval.UintValue).Get());
}
func (v remoteUint) Get() uint64 {
return v.r.Get(v.size);
}
func (v remoteUint) Set(x uint64) {
v.r.Set(v.size, x);
}
func (v remoteUint) addr() remote {
return v.r;
}
func mkUint8(r remote) eval.Value {
return remoteUint{r, 1};
}
func mkUint16(r remote) eval.Value {
return remoteUint{r, 2};
}
func mkUint32(r remote) eval.Value {
return remoteUint{r, 4};
}
func mkUint64(r remote) eval.Value {
return remoteUint{r, 8};
}
func mkUint(r remote) eval.Value {
return remoteUint{r, r.p.IntSize()};
}
func mkUintptr(r remote) eval.Value {
return remoteUint{r, r.p.PtrSize()};
}
/*
* Int
*/
type remoteInt struct {
r remote;
size int;
}
func (v remoteInt) String() string {
return fmt.Sprintf("%v", v.Get());
}
func (v remoteInt) Assign(o eval.Value) {
v.Set(o.(eval.IntValue).Get());
}
func (v remoteInt) Get() int64 {
return int64(v.r.Get(v.size));
}
func (v remoteInt) Set(x int64) {
v.r.Set(v.size, uint64(x));
}
func (v remoteInt) addr() remote {
return v.r;
}
func mkInt8(r remote) eval.Value {
return remoteInt{r, 1};
}
func mkInt16(r remote) eval.Value {
return remoteInt{r, 2};
}
func mkInt32(r remote) eval.Value {
return remoteInt{r, 4};
}
func mkInt64(r remote) eval.Value {
return remoteInt{r, 8};
}
func mkInt(r remote) eval.Value {
return remoteInt{r, r.p.IntSize()};
}
/*
* Float
*/
type remoteFloat struct {
r remote;
size int;
}
func (v remoteFloat) String() string {
return fmt.Sprintf("%v", v.Get());
}
func (v remoteFloat) Assign(o eval.Value) {
v.Set(o.(eval.FloatValue).Get());
}
func (v remoteFloat) Get() float64 {
bits := v.r.Get(v.size);
switch v.size {
case 4:
return float64(v.r.p.ToFloat32(uint32(bits)));
case 8:
return v.r.p.ToFloat64(bits);
}
panic("Unexpected float size ", v.size);
}
func (v remoteFloat) Set(x float64) {
var bits uint64;
switch v.size{
case 4:
bits = uint64(v.r.p.FromFloat32(float32(x)));
case 8:
bits = v.r.p.FromFloat64(x);
default:
panic("Unexpected float size ", v.size);
}
v.r.Set(v.size, bits);
}
func (v remoteFloat) addr() remote {
return v.r;
}
func mkFloat32(r remote) eval.Value {
return remoteFloat{r, 4};
}
func mkFloat64(r remote) eval.Value {
return remoteFloat{r, 8};
}
func mkFloat(r remote) eval.Value {
return remoteFloat{r, r.p.FloatSize()};
}
/*
* String
*/
type remoteString struct {
r remote;
}
func (v remoteString) String() string {
return v.Get();
}
func (v remoteString) Assign(o eval.Value) {
v.Set(o.(eval.StringValue).Get());
}
func (v remoteString) Get() string {
rs := v.r.p.runtime.String.mk(v.r).(remoteStruct);
str := ptrace.Word(rs.Field(v.r.p.f.String.Str).(remoteUint).Get());
len := rs.Field(v.r.p.f.String.Len).(remoteInt).Get();
bytes := make([]uint8, len);
_, err := v.r.p.thread.Peek(str, bytes);
if err != nil {
eval.Abort(err);
}
return string(bytes);
}
func (v remoteString) Set(x string) {
// TODO(austin) This isn't generally possible without the
// ability to allocate remote memory.
eval.Abort(RemoteMismatchError("remote strings cannot be assigned to"));
}
func mkString(r remote) eval.Value {
return remoteString{r};
}
/*
* Array
*/
type remoteArray struct {
r remote;
len int64;
elemType *remoteType;
}
func (v remoteArray) String() string {
res := "{";
for i := int64(0); i < v.len; i++ {
if i > 0 {
res += ", ";
}
res += v.Elem(i).String();
}
return res + "}";
}
func (v remoteArray) Assign(o eval.Value) {
// TODO(austin) Could do a bigger memcpy if o is a
// remoteArray in the same Process.
oa := o.(eval.ArrayValue);
for i := int64(0); i < v.len; i++ {
v.Elem(i).Assign(oa.Elem(i));
}
}
func (v remoteArray) Get() eval.ArrayValue {
return v;
}
func (v remoteArray) Elem(i int64) eval.Value {
return v.elemType.mk(v.r.plus(ptrace.Word(int64(v.elemType.size) * i)));
}
func (v remoteArray) From(i int64) eval.ArrayValue {
return remoteArray{v.r.plus(ptrace.Word(int64(v.elemType.size) * i)), v.len - i, v.elemType};
}
/*
* Struct
*/
type remoteStruct struct {
r remote;
layout []remoteStructField;
}
type remoteStructField struct {
offset int;
fieldType *remoteType;
}
func (v remoteStruct) String() string {
res := "{";
for i := range v.layout {
if i > 0 {
res += ", ";
}
res += v.Field(i).String();
}
return res + "}";
}
func (v remoteStruct) Assign(o eval.Value) {
// TODO(austin) Could do a bigger memcpy.
oa := o.(eval.StructValue);
l := len(v.layout);
for i := 0; i < l; i++ {
v.Field(i).Assign(oa.Field(i));
}
}
func (v remoteStruct) Get() eval.StructValue {
return v;
}
func (v remoteStruct) Field(i int) eval.Value {
f := &v.layout[i];
return f.fieldType.mk(v.r.plus(ptrace.Word(f.offset)));
}
func (v remoteStruct) addr() remote {
return v.r;
}
/*
* Pointer
*/
// TODO(austin) Comparing two remote pointers for equality in the
// interpreter will crash it because the Value's returned from
// remotePtr.Get() will be structs.
type remotePtr struct {
r remote;
elemType *remoteType;
}
func (v remotePtr) String() string {
e := v.Get();
if e == nil {
return "<nil>";
}
return "&" + e.String();
}
func (v remotePtr) Assign(o eval.Value) {
v.Set(o.(eval.PtrValue).Get());
}
func (v remotePtr) Get() eval.Value {
addr := ptrace.Word(v.r.Get(v.r.p.PtrSize()));
if addr == 0 {
return nil;
}
return v.elemType.mk(remote{addr, v.r.p});
}
func (v remotePtr) Set(x eval.Value) {
if x == nil {
v.r.Set(v.r.p.PtrSize(), 0);
return;
}
xr, ok := x.(remoteValue);
if !ok || v.r.p != xr.addr().p {
eval.Abort(RemoteMismatchError("remote pointer must point within the same process"));
}
v.r.Set(v.r.p.PtrSize(), uint64(xr.addr().base));
}
func (v remotePtr) addr() remote {
return v.r;
}
/*
* Slice
*/
type remoteSlice struct {
r remote;
elemType *remoteType;
}
func (v remoteSlice) String() string {
b := v.Get().Base;
if b == nil {
return "<nil>";
}
return b.String();
}
func (v remoteSlice) Assign(o eval.Value) {
v.Set(o.(eval.SliceValue).Get());
}
func (v remoteSlice) Get() eval.Slice {
rs := v.r.p.runtime.Slice.mk(v.r).(remoteStruct);
base := ptrace.Word(rs.Field(v.r.p.f.Slice.Array).(remoteUint).Get());
nel := rs.Field(v.r.p.f.Slice.Len).(remoteInt).Get();
cap := rs.Field(v.r.p.f.Slice.Cap).(remoteInt).Get();
if base == 0 {
return eval.Slice{nil, nel, cap};
}
return eval.Slice{remoteArray{remote{base, v.r.p}, nel, v.elemType}, nel, cap};
}
func (v remoteSlice) Set(x eval.Slice) {
rs := v.r.p.runtime.Slice.mk(v.r).(remoteStruct);
if x.Base == nil {
rs.Field(v.r.p.f.Slice.Array).(remoteUint).Set(0);
} else {
ar, ok := x.Base.(remoteArray);
if !ok || v.r.p != ar.r.p {
eval.Abort(RemoteMismatchError("remote slice must point within the same process"));
}
rs.Field(v.r.p.f.Slice.Array).(remoteUint).Set(uint64(ar.r.base));
}
rs.Field(v.r.p.f.Slice.Len).(remoteInt).Set(x.Len);
rs.Field(v.r.p.f.Slice.Cap).(remoteInt).Set(x.Cap);
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment