Commit 3479b065 authored by Rick Hudson's avatar Rick Hudson

[dev.garbage] runtime: allocate directly from GC mark bits

Instead of building a freelist from the mark bits generated
by the GC this CL allocates directly from the mark bits.

The approach moves the mark bits from the pointer/no pointer
heap structures into their own per span data structures. The
mark/allocation vectors consist of a single mark bit per
object. Two vectors are maintained, one for allocation and
one for the GC's mark phase. During the GC cycle's sweep
phase the interpretation of the vectors is swapped. The
mark vector becomes the allocation vector and the old
allocation vector is cleared and becomes the mark vector that
the next GC cycle will use.

Marked entries in the allocation vector indicate that the
object is not free. Each allocation vector maintains a boundary
between areas of the span already allocated from and areas
not yet allocated from. As objects are allocated this boundary
is moved until it reaches the end of the span. At this point
further allocations will be done from another span.

Since we no longer sweep a span inspecting each freed object
the responsibility for maintaining pointer/scalar bits in
the heapBitMap containing is now the responsibility of the
the routines doing the actual allocation.

This CL is functionally complete and ready for performance
tuning.

Change-Id: I336e0fc21eef1066e0b68c7067cc71b9f3d50e04
Reviewed-on: https://go-review.googlesource.com/19470Reviewed-by: default avatarAustin Clements <austin@google.com>
parent dc65a82e
......@@ -472,9 +472,13 @@ func dumpobjs() {
if n > uintptr(len(freemark)) {
throw("freemark array doesn't have enough entries")
}
for l := s.freelist; l.ptr() != nil; l = l.ptr().next {
freemark[(uintptr(l)-p)/size] = true
for freeIndex := s.freeindex; freeIndex < s.nelems; freeIndex++ {
if s.isFree(freeIndex) {
freemark[freeIndex] = true
}
}
for j := uintptr(0); j < n; j, p = j+1, p+size {
if freemark[j] {
freemark[j] = false
......@@ -709,7 +713,7 @@ func makeheapobjbv(p uintptr, size uintptr) bitvector {
i := uintptr(0)
hbits := heapBitsForAddr(p)
for ; i < nptr; i++ {
if i >= 2 && !hbits.isMarked() {
if i >= 2 && !hbits.morePointers() {
break // end of object
}
if hbits.isPointer() {
......
......@@ -502,23 +502,34 @@ const (
// weight allocation. If it is a heavy weight allocation the caller must
// determine whether a new GC cycle needs to be started or if the GC is active
// whether this goroutine needs to assist the GC.
// https://golang.org/cl/5350 motivates why this routine should preform a
// prefetch.
func (c *mcache) nextFree(sizeclass int8) (v gclinkptr, shouldhelpgc bool) {
s := c.alloc[sizeclass]
v = s.freelist
if v.ptr() == nil {
shouldhelpgc = false
freeIndex := s.nextFreeIndex(s.freeindex)
if freeIndex == s.nelems {
// The span is full.
if uintptr(s.ref) != s.nelems {
throw("s.ref != s.nelems && freeIndex == s.nelems")
}
systemstack(func() {
c.refill(int32(sizeclass))
})
shouldhelpgc = true
s = c.alloc[sizeclass]
v = s.freelist
freeIndex = s.nextFreeIndex(s.freeindex)
}
if freeIndex >= s.nelems {
throw("freeIndex is not valid")
}
s.freelist = v.ptr().next
v = gclinkptr(freeIndex*s.elemsize + s.base())
// Advance the freeIndex.
s.freeindex = freeIndex + 1
s.ref++
// prefetchnta offers best performance, see change list message.
prefetchnta(uintptr(v.ptr().next))
if uintptr(s.ref) > s.nelems {
throw("s.ref > s.nelems")
}
return
}
......@@ -655,10 +666,8 @@ func mallocgc(size uintptr, typ *_type, flags uint32) unsafe.Pointer {
v, shouldhelpgc = c.nextFree(sizeclass)
x = unsafe.Pointer(v)
if flags&flagNoZero == 0 {
v.ptr().next = 0
if size > 2*sys.PtrSize && ((*[2]uintptr)(x))[1] != 0 {
memclr(unsafe.Pointer(v), size)
}
// TODO:(rlh) Only clear if object is not known to be zeroed.
}
}
} else {
......@@ -667,12 +676,13 @@ func mallocgc(size uintptr, typ *_type, flags uint32) unsafe.Pointer {
systemstack(func() {
s = largeAlloc(size, flags)
})
s.freeindex = 1
x = unsafe.Pointer(uintptr(s.start << pageShift))
size = s.elemsize
}
if flags&flagNoScan != 0 {
// All objects are pre-marked as noscan. Nothing to do.
heapBitsSetTypeNoScan(uintptr(x), size)
} else {
// If allocating a defer+arg block, now that we've picked a malloc size
// large enough to hold everything, cut the "asked for" size down to
......
......@@ -24,7 +24,7 @@
// In each 2-bit entry, the lower bit holds the same information as in the 1-bit
// bitmaps: 0 means uninteresting and 1 means live pointer to be visited during GC.
// The meaning of the high bit depends on the position of the word being described
// in its allocated object. In the first word, the high bit is the GC ``marked'' bit.
// in its allocated object. In the first word, the high bit is unused.
// In the second word, the high bit is the GC ``checkmarked'' bit (see below).
// In the third and later words, the high bit indicates that the object is still
// being described. In these words, if a bit pair with a high bit 0 is encountered,
......@@ -33,12 +33,13 @@
// in the object are uninteresting to the garbage collector.
//
// The 2-bit entries are split when written into the byte, so that the top half
// of the byte contains 4 mark bits and the bottom half contains 4 pointer bits.
// of the byte contains 4 high bits and the bottom half contains 4 low (pointer)
// bits.
// This form allows a copy from the 1-bit to the 4-bit form to keep the
// pointer bits contiguous, instead of having to space them out.
//
// The code makes use of the fact that the zero value for a heap bitmap
// has no live pointer bit set and is (depending on position), not marked,
// has no live pointer bit set and is (depending on position), not used,
// not checkmarked, and is the dead encoding.
// These properties must be preserved when modifying the encoding.
//
......@@ -63,6 +64,7 @@
// It is still used in general, except in checkmark the type bit is repurposed
// as the checkmark bit and then reinitialized (to 1) as the type bit when
// finished.
//
package runtime
......@@ -254,16 +256,20 @@ func markBitsForAddr(p uintptr) markBits {
func (s *mspan) markBitsForAddr(p uintptr) markBits {
byteOffset := p - s.base()
markBitIndex := byteOffset / s.elemsize // TODO if hot spot use fancy divide....
return s.markBitsForIndex(markBitIndex)
}
func (s *mspan) markBitsForIndex(markBitIndex uintptr) markBits {
markBitIndex := uintptr(0)
if byteOffset != 0 {
// markBitIndex := (p - s.base()) / s.elemsize, using division by multiplication
markBitIndex = uintptr(uint64(byteOffset) >> s.divShift * uint64(s.divMul) >> s.divShift2)
}
whichByte := markBitIndex / 8
whichBit := markBitIndex % 8
return markBits{&s.gcmarkBits[whichByte], uint8(1 << whichBit), markBitIndex}
}
func (s *mspan) markBitsForBase() markBits {
return markBits{&s.gcmarkBits[0], uint8(1), 0}
}
// isMarked reports whether mark bit m is set.
func (m markBits) isMarked() bool {
return *m.bytep&m.mask != 0
......@@ -307,6 +313,17 @@ func markBitsForSpan(base uintptr) (mbits markBits) {
return mbits
}
// advance advances the markBits to the next object in the span.
func (m *markBits) advance() {
if m.mask == 1<<7 {
m.bytep = (*uint8)(unsafe.Pointer(uintptr(unsafe.Pointer(m.bytep)) + 1))
m.mask = 1
} else {
m.mask = m.mask << 1
}
m.index++
}
// heapBitsForAddr returns the heapBits for the address addr.
// The caller must have already checked that addr is in the range [mheap_.arena_start, mheap_.arena_used).
//
......@@ -440,28 +457,13 @@ func (h heapBits) bits() uint32 {
return uint32(*h.bitp) >> (h.shift & 31)
}
// isMarked reports whether the heap bits have the marked bit set.
// h must describe the initial word of the object.
func (h heapBits) isMarked() bool {
// morePointers returns true if this word and all remaining words in this object
// are scalars.
// h must not describe the first or second word of the object.
func (h heapBits) morePointers() bool {
return *h.bitp&(bitMarked<<h.shift) != 0
}
// setMarked sets the marked bit in the heap bits, atomically.
// h must describe the initial word of the object.
func (h heapBits) setMarked() {
// Each byte of GC bitmap holds info for four words.
// Might be racing with other updates, so use atomic update always.
// We used to be clever here and use a non-atomic update in certain
// cases, but it's not worth the risk.
atomic.Or8(h.bitp, bitMarked<<h.shift)
}
// setMarkedNonAtomic sets the marked bit in the heap bits, non-atomically.
// h must describe the initial word of the object.
func (h heapBits) setMarkedNonAtomic() {
*h.bitp |= bitMarked << h.shift
}
// isPointer reports whether the heap bits describe a pointer word.
// h must describe the initial word of the object.
//
......@@ -733,106 +735,134 @@ func (h heapBits) clearCheckmarkSpan(size, n, total uintptr) {
}
}
// heapBitsSweepSpan coordinates the sweeping of a span by reading
// and updating the corresponding heap bitmap entries.
// For each free object in the span, heapBitsSweepSpan sets the type
// bits for the first four words (less for smaller objects) to scalar/dead
// and then calls f(p), where p is the object's base address.
// f is expected to add the object to a free list.
// For non-free objects, heapBitsSweepSpan turns off the marked bit.
func heapBitsSweepSpan(base, size, n uintptr, f func(uintptr)) {
// heapBitsSweepSpan coordinates the sweeping of a span and inspects
// each freed object. If objects are being traced or if msan is enabled
// then heapBitsSweepSpan calls f(p), where p is the object's base address.
// When not tracing and msan is not enabled heapBitsSweepSpan is lightweight.
// heapBitsSweepSpan never alters the pointer/scalar heapBit maps. HeapBit map
// maintenance is the responsibility of the allocation routines.
// TODO:(rlh) Deal with the checkmark bits but moving them
// out of heap bitmap thus enabling bulk clearing.
func heapBitsSweepSpan(s *mspan, f func(uintptr)) (nfree int) {
base := s.base()
size := s.elemsize
n := s.nelems
cl := s.sizeclass
doCall := debug.allocfreetrace != 0 || msanenabled || cl == 0
h := heapBitsForSpan(base)
switch {
default:
throw("heapBitsSweepSpan")
case sys.PtrSize == 8 && size == sys.PtrSize:
// Consider mark bits in all four 2-bit entries of each bitmap byte.
bitp := h.bitp
nfree = heapBitsSweep8BitPtrs(h, s, base, n, cl, doCall, f)
case size%(4*sys.PtrSize) == 0:
nfree = heapBitsSweepMap(h, s, base, size, n, cl, doCall, f)
case size%(4*sys.PtrSize) == 2*sys.PtrSize:
nfree = heapBitsSweepMap(h, s, base, size, n, cl, doCall, f)
}
return
}
func heapBitsSweep8BitPtrs(h heapBits, s *mspan, base, n uintptr, cl uint8, doCall bool, f func(uintptr)) (nfree int) {
mbits := s.markBitsForBase()
for i := uintptr(0); i < n; i += 4 {
x := uint32(*bitp)
// Note that unlike the other size cases, we leave the pointer bits set here.
// These are initialized during initSpan when the span is created and left
// in place the whole time the span is used for pointer-sized objects.
// That lets heapBitsSetType avoid an atomic update to set the pointer bit
// during allocation.
if x&bitMarked != 0 {
x &^= bitMarked
} else {
if !(mbits.isMarked() || mbits.index >= s.freeindex && s.allocBits[mbits.index/8]&mbits.mask == 0) {
if doCall {
f(base + i*sys.PtrSize)
}
if x&(bitMarked<<heapBitsShift) != 0 {
x &^= bitMarked << heapBitsShift
} else {
if cl != 0 {
nfree++
}
}
mbits.advance()
if !(mbits.isMarked() || mbits.index >= s.freeindex && s.allocBits[mbits.index/8]&mbits.mask == 0) {
if doCall {
f(base + (i+1)*sys.PtrSize)
}
if x&(bitMarked<<(2*heapBitsShift)) != 0 {
x &^= bitMarked << (2 * heapBitsShift)
} else {
if cl != 0 {
nfree++
}
}
mbits.advance()
if !(mbits.isMarked() || mbits.index >= s.freeindex && s.allocBits[mbits.index/8]&mbits.mask == 0) {
if doCall {
f(base + (i+2)*sys.PtrSize)
}
if x&(bitMarked<<(3*heapBitsShift)) != 0 {
x &^= bitMarked << (3 * heapBitsShift)
} else {
if cl != 0 {
nfree++
}
}
mbits.advance()
if !(mbits.isMarked() || mbits.index >= s.freeindex && s.allocBits[mbits.index/8]&mbits.mask == 0) {
if doCall {
f(base + (i+3)*sys.PtrSize)
}
*bitp = uint8(x)
bitp = subtract1(bitp)
if cl != 0 {
nfree++
}
case size%(4*sys.PtrSize) == 0:
// Mark bit is in first word of each object.
// Each object starts at bit 0 of a heap bitmap byte.
bitp := h.bitp
step := size / heapBitmapScale
for i := uintptr(0); i < n; i++ {
x := uint32(*bitp)
if x&bitMarked != 0 {
x &^= bitMarked
} else {
x = 0
f(base + i*size)
}
*bitp = uint8(x)
bitp = subtractb(bitp, step)
mbits.advance()
}
return
}
case size%(4*sys.PtrSize) == 2*sys.PtrSize:
// Mark bit is in first word of each object,
// but every other object starts halfway through a heap bitmap byte.
// Unroll loop 2x to handle alternating shift count and step size.
bitp := h.bitp
step := size / heapBitmapScale
var i uintptr
for i = uintptr(0); i < n; i += 2 {
x := uint32(*bitp)
if x&bitMarked != 0 {
x &^= bitMarked
} else {
x &^= bitMarked | bitPointer | (bitMarked|bitPointer)<<heapBitsShift
f(base + i*size)
if size > 2*sys.PtrSize {
x = 0
func (m *markBits) nextFreed(maxIndex uintptr, s *mspan) bool {
mByte := *m.bytep
for {
for mByte == 0xff {
if m.index >= maxIndex {
return false
}
m.index = (m.index + 8) &^ (8 - 1)
m.mask = 1
m.bytep = add1(m.bytep)
mByte = *m.bytep
}
*bitp = uint8(x)
if i+1 >= n {
break
if m.index >= maxIndex {
return false
}
for m.index < maxIndex {
if m.mask&mByte == 0 {
if m.index < s.freeindex {
return true
}
if s.allocBits[m.index/8]&m.mask != 0 {
return true
}
bitp = subtractb(bitp, step)
x = uint32(*bitp)
if x&(bitMarked<<(2*heapBitsShift)) != 0 {
x &^= bitMarked << (2 * heapBitsShift)
}
if m.mask == 1<<7 {
m.mask = 1
m.bytep = add1(m.bytep)
mByte = *m.bytep
m.index++
break
} else {
x &^= (bitMarked|bitPointer)<<(2*heapBitsShift) | (bitMarked|bitPointer)<<(3*heapBitsShift)
f(base + (i+1)*size)
if size > 2*sys.PtrSize {
*subtract1(bitp) = 0
m.mask = m.mask << 1
m.index++
}
}
*bitp = uint8(x)
bitp = subtractb(bitp, step+1)
}
return false
}
func heapBitsSweepMap(h heapBits, s *mspan, base, size, n uintptr, cl uint8, doCall bool, f func(uintptr)) (nfree int) {
twobits := s.markBitsForBase()
for twobits.nextFreed(n, s) {
if doCall {
f(base + twobits.index*size)
}
if cl != 0 {
nfree++
}
twobits.advance()
}
return
}
// heapBitsSetType records that the new allocation [x, x+size)
......@@ -862,7 +892,7 @@ func heapBitsSetType(x, size, dataSize uintptr, typ *_type) {
// size is sizeof(_defer{}) (at least 6 words) and dataSize may be
// arbitrarily larger.
//
// The checks for size == ptrSize and size == 2*ptrSize can therefore
// The checks for size == sys.PtrSize and size == 2*sys.PtrSize can therefore
// assume that dataSize == size without checking it explicitly.
if sys.PtrSize == 8 && size == sys.PtrSize {
......@@ -902,10 +932,13 @@ func heapBitsSetType(x, size, dataSize uintptr, typ *_type) {
// (In general the number of instances of typ being allocated is
// dataSize/typ.size.)
if sys.PtrSize == 4 && dataSize == sys.PtrSize {
// 1 pointer.
// 1 pointer object. On 32-bit machines clear the bit for the
// unused second word.
if gcphase == _GCoff {
*h.bitp &^= (bitPointer | bitMarked | ((bitPointer | bitMarked) << heapBitsShift)) << h.shift
*h.bitp |= bitPointer << h.shift
} else {
atomic.And8(h.bitp, ^uint8((bitPointer|bitMarked|((bitPointer|bitMarked)<<heapBitsShift))<<h.shift))
atomic.Or8(h.bitp, bitPointer<<h.shift)
}
} else {
......@@ -918,7 +951,8 @@ func heapBitsSetType(x, size, dataSize uintptr, typ *_type) {
}
return
}
// Otherwise typ.size must be 2*ptrSize, and typ.kind&kindGCProg == 0.
// Otherwise typ.size must be 2*sys.PtrSize,
// and typ.kind&kindGCProg == 0.
if doubleCheck {
if typ.size != 2*sys.PtrSize || typ.kind&kindGCProg != 0 {
print("runtime: heapBitsSetType size=", size, " but typ.size=", typ.size, " gcprog=", typ.kind&kindGCProg != 0, "\n")
......@@ -928,8 +962,19 @@ func heapBitsSetType(x, size, dataSize uintptr, typ *_type) {
b := uint32(*ptrmask)
hb := b & 3
if gcphase == _GCoff {
// bitPointer == 1, bitMarked is 1 << 4, heapBitsShift is 1.
// 110011 is shifted h.shift and complemented.
// This clears out the bits that are about to be
// ored into *h.hbitp in the next instructions.
*h.bitp &^= (bitPointer | bitMarked | ((bitPointer | bitMarked) << heapBitsShift)) << h.shift
*h.bitp |= uint8(hb << h.shift)
} else {
// TODO:(rlh) since the GC is not concurrently setting the
// mark bits in the heap map anymore and malloc
// owns the span we are allocating in why does this have
// to be atomic?
atomic.And8(h.bitp, ^uint8((bitPointer|bitMarked|((bitPointer|bitMarked)<<heapBitsShift))<<h.shift))
atomic.Or8(h.bitp, uint8(hb<<h.shift))
}
return
......@@ -1043,8 +1088,8 @@ func heapBitsSetType(x, size, dataSize uintptr, typ *_type) {
// Replicate ptrmask to fill entire pbits uintptr.
// Doubling and truncating is fewer steps than
// iterating by nb each time. (nb could be 1.)
// Since we loaded typ.ptrdata/ptrSize bits
// but are pretending to have typ.size/ptrSize,
// Since we loaded typ.ptrdata/sys.PtrSize bits
// but are pretending to have typ.size/sys.PtrSize,
// there might be no replication necessary/possible.
pbits = b
endnb = nb
......@@ -1135,13 +1180,15 @@ func heapBitsSetType(x, size, dataSize uintptr, typ *_type) {
// not with its mark bit. Since there is only one allocation
// from a given span at a time, we should be able to set
// these bits non-atomically. Not worth the risk right now.
hb = (b & 3) << (2 * heapBitsShift)
hb = (b & (bitPointer | bitPointer<<heapBitsShift)) << (2 * heapBitsShift)
b >>= 2
nb -= 2
// Note: no bitMarker in hb because the first two words don't get markers from us.
if gcphase == _GCoff {
*hbitp &^= uint8((bitPointer | (bitPointer << heapBitsShift)) << (2 * heapBitsShift))
*hbitp |= uint8(hb)
} else {
atomic.And8(hbitp, ^(uint8(bitPointer|bitPointer<<heapBitsShift) << (2 * heapBitsShift)))
atomic.Or8(hbitp, uint8(hb))
}
hbitp = subtract1(hbitp)
......@@ -1331,6 +1378,41 @@ Phase4:
}
}
// heapBitsSetTypeNoScan marks x as noscan. For objects with 1 or 2
// words set their bitPointers to off (0).
// All other objects have the first 3 bitPointers set to
// off (0) and the scan word in the third word
// also set to off (0).
func heapBitsSetTypeNoScan(x, size uintptr) {
h := heapBitsForAddr(uintptr(x))
bitp := h.bitp
if sys.PtrSize == 8 && size == sys.PtrSize {
// If this is truely noScan the tinyAlloc logic should have noticed
// and combined such objects.
throw("noscan object is too small")
} else if size%(4*sys.PtrSize) == 0 {
*bitp &^= bitPointer | bitPointer<<heapBitsShift | (bitMarked|bitPointer)<<(2*heapBitsShift)
} else if size%(4*sys.PtrSize) == 2*sys.PtrSize {
if h.shift == 0 {
*bitp &^= (bitPointer | bitPointer<<heapBitsShift)
if size > 2*sys.PtrSize {
*bitp &^= (bitPointer | bitMarked) << (2 * heapBitsShift)
}
} else if h.shift == 2 {
*bitp &^= bitPointer<<(2*heapBitsShift) | bitPointer<<(3*heapBitsShift)
if size > 2*sys.PtrSize {
bitp = subtract1(bitp)
*bitp &^= bitPointer | bitMarked
}
} else {
throw("Type has unrecognized size")
}
} else {
throw("Type has unrecognized size")
}
}
var debugPtrmask struct {
lock mutex
data *byte
......@@ -1424,7 +1506,7 @@ func heapBitsSetTypeGCProg(h heapBits, progSize, elemSize, dataSize, allocSize u
// progToPointerMask returns the 1-bit pointer mask output by the GC program prog.
// size the size of the region described by prog, in bytes.
// The resulting bitvector will have no more than size/ptrSize bits.
// The resulting bitvector will have no more than size/sys.PtrSize bits.
func progToPointerMask(prog *byte, size uintptr) bitvector {
n := (size/sys.PtrSize + 7) / 8
x := (*[1 << 30]byte)(persistentalloc(n+1, 1, &memstats.buckhash_sys))[:n+1]
......@@ -1560,7 +1642,7 @@ Run:
// into a register and use that register for the entire loop
// instead of repeatedly reading from memory.
// Handling fewer than 8 bits here makes the general loop simpler.
// The cutoff is ptrSize*8 - 7 to guarantee that when we add
// The cutoff is sys.PtrSize*8 - 7 to guarantee that when we add
// the pattern to a bit buffer holding at most 7 bits (a partial byte)
// it will not overflow.
src := dst
......@@ -1855,7 +1937,7 @@ func getgcmask(ep interface{}) (mask []byte) {
if hbits.isPointer() {
mask[i/sys.PtrSize] = 1
}
if i >= 2*sys.PtrSize && !hbits.isMarked() {
if i >= 2*sys.PtrSize && !hbits.morePointers() {
mask = mask[:i/sys.PtrSize]
break
}
......
......@@ -108,9 +108,11 @@ func (c *mcache) refill(sizeclass int32) *mspan {
_g_.m.locks++
// Return the current cached span to the central lists.
s := c.alloc[sizeclass]
if s.freelist.ptr() != nil {
throw("refill on a nonempty span")
if uintptr(s.ref) != s.nelems {
throw("refill of span with free space remaining")
}
if s != &emptymspan {
s.incache = false
}
......@@ -120,10 +122,11 @@ func (c *mcache) refill(sizeclass int32) *mspan {
if s == nil {
throw("out of memory")
}
if s.freelist.ptr() == nil {
println(s.ref, (s.npages<<_PageShift)/s.elemsize)
throw("empty span")
if uintptr(s.ref) == s.nelems {
throw("span has no free space")
}
c.alloc[sizeclass] = s
_g_.m.locks--
return s
......
......@@ -18,7 +18,7 @@ import "runtime/internal/atomic"
type mcentral struct {
lock mutex
sizeclass int32
nonempty mSpanList // list of spans with a free object
nonempty mSpanList // list of spans with a free object, ie a nonempty free list
empty mSpanList // list of spans with no free objects (or cached in an mcache)
}
......@@ -67,7 +67,9 @@ retry:
c.empty.insertBack(s)
unlock(&c.lock)
s.sweep(true)
if s.freelist.ptr() != nil {
freeIndex := s.nextFreeIndex(0)
if freeIndex != s.nelems {
s.freeindex = freeIndex
goto havespan
}
lock(&c.lock)
......@@ -115,9 +117,6 @@ havespan:
// heap_live changed.
gcController.revise()
}
if s.freelist.ptr() == nil {
throw("freelist empty")
}
s.incache = true
return s
}
......@@ -150,15 +149,11 @@ func (c *mcentral) uncacheSpan(s *mspan) {
// the latest generation.
// If preserve=true, don't return the span to heap nor relink in MCentral lists;
// caller takes care of it.
func (c *mcentral) freeSpan(s *mspan, n int32, start gclinkptr, end gclinkptr, preserve bool) bool {
func (c *mcentral) freeSpan(s *mspan, n int32, start gclinkptr, end gclinkptr, preserve bool, wasempty bool) bool {
if s.incache {
throw("freespan into cached span")
throw("freeSpan given cached span")
}
// Add the objects back to s's free list.
wasempty := s.freelist.ptr() == nil
end.ptr().next = s.freelist
s.freelist = start
s.ref -= uint16(n)
if preserve {
......@@ -190,16 +185,14 @@ func (c *mcentral) freeSpan(s *mspan, n int32, start gclinkptr, end gclinkptr, p
return false
}
// s is completely freed, return it to the heap.
c.nonempty.remove(s)
s.needzero = 1
s.freelist = 0
unlock(&c.lock)
mheap_.freeSpan(s, 0)
return true
}
// Fetch a new span from the heap and carve into objects for the free list.
// grow allocates a new empty span from the heap and initializes it for c's size class.
func (c *mcentral) grow() *mspan {
npages := uintptr(class_to_allocnpages[c.sizeclass])
size := uintptr(class_to_size[c.sizeclass])
......@@ -212,19 +205,7 @@ func (c *mcentral) grow() *mspan {
p := uintptr(s.start << _PageShift)
s.limit = p + size*n
head := gclinkptr(p)
tail := gclinkptr(p)
// i==0 iteration already done
for i := uintptr(1); i < n; i++ {
p += size
tail.ptr().next = gclinkptr(p)
tail = gclinkptr(p)
}
if s.freelist.ptr() != nil {
throw("freelist not empty")
}
tail.ptr().next = 0
s.freelist = head
heapBitsForSpan(s.base()).initSpan(s)
return s
}
......@@ -1044,9 +1044,9 @@ func greyobject(obj, base, off uintptr, hbits heapBits, span *mspan, gcw *gcWork
if obj&(sys.PtrSize-1) != 0 {
throw("greyobject: obj not pointer-aligned")
}
mbits := span.markBitsForAddr(obj)
if useCheckmark {
if !hbits.isMarked() {
if !mbits.isMarked() {
printlock()
print("runtime:greyobject: checkmarks finds unexpected unmarked object obj=", hex(obj), "\n")
print("runtime: found obj at *(", hex(base), "+", hex(off), ")\n")
......@@ -1068,10 +1068,10 @@ func greyobject(obj, base, off uintptr, hbits heapBits, span *mspan, gcw *gcWork
}
} else {
// If marked we have nothing to do.
if hbits.isMarked() {
if mbits.isMarked() {
return
}
hbits.setMarked()
mbits.setMarked()
// If this is a noscan object, fast-track it to black
// instead of greying it.
......@@ -1138,7 +1138,7 @@ func gcmarknewobject_m(obj, size uintptr) {
if useCheckmark && !gcBlackenPromptly { // The world should be stopped so this should not happen.
throw("gcmarknewobject called while doing checkmark")
}
heapBitsForAddr(obj).setMarked()
markBitsForAddr(obj).setMarked()
atomic.Xadd64(&work.bytesMarked, int64(size))
}
......
......@@ -192,16 +192,13 @@ func (s *mspan) sweep(preserve bool) bool {
c := _g_.m.mcache
freeToHeap := false
// Mark any free objects in this span so we don't collect them.
sstart := uintptr(s.start << _PageShift)
for link := s.freelist; link.ptr() != nil; link = link.ptr().next {
if uintptr(link) < sstart || s.limit <= uintptr(link) {
// Free list is corrupted.
dumpFreeList(s)
throw("free list corrupted")
}
heapBitsForAddr(uintptr(link)).setMarkedNonAtomic()
}
// The allocBits indicate which unmarked objects don't need to be
// processed since they were free at the end of the last GC cycle
// and were not allocated since then.
// If the allocBits index is >= s.freeindex and the bit
// is not marked then the object remains unallocated
// since the last GC.
// This situation is analogous to being on a freelist.
// Unlink & free special records for any objects we're about to free.
// Two complications here:
......@@ -216,8 +213,8 @@ func (s *mspan) sweep(preserve bool) bool {
for special != nil {
// A finalizer can be set for an inner byte of an object, find object beginning.
p := uintptr(s.start<<_PageShift) + uintptr(special.offset)/size*size
hbits := heapBitsForAddr(p)
if !hbits.isMarked() {
mbits := s.markBitsForAddr(p)
if !mbits.isMarked() {
// This object is not marked and has at least one special record.
// Pass 1: see if it has at least one finalizer.
hasFin := false
......@@ -225,7 +222,7 @@ func (s *mspan) sweep(preserve bool) bool {
for tmp := special; tmp != nil && uintptr(tmp.offset) < endOffset; tmp = tmp.next {
if tmp.kind == _KindSpecialFinalizer {
// Stop freeing of object if it has a finalizer.
hbits.setMarkedNonAtomic()
mbits.setMarkedNonAtomic()
hasFin = true
break
}
......@@ -259,8 +256,7 @@ func (s *mspan) sweep(preserve bool) bool {
// This thread owns the span now, so it can manipulate
// the block bitmap without atomic operations.
size, n, _ := s.layout()
heapBitsSweepSpan(s.base(), size, n, func(p uintptr) {
nfree = heapBitsSweepSpan(s, func(p uintptr) {
// At this point we know that we are looking at garbage object
// that needs to be collected.
if debug.allocfreetrace != 0 {
......@@ -288,17 +284,18 @@ func (s *mspan) sweep(preserve bool) bool {
} else if size > sys.PtrSize {
*(*uintptr)(unsafe.Pointer(p + sys.PtrSize)) = 0
}
if head.ptr() == nil {
head = gclinkptr(p)
} else {
end.ptr().next = gclinkptr(p)
}
end = gclinkptr(p)
end.ptr().next = gclinkptr(0x0bade5)
nfree++
}
})
wasempty := s.nextFreeIndex(s.freeindex) == s.nelems
s.freeindex = 0 // reset allocation index to start of span.
// Swap role of allocBits with gcmarkBits
// Clear gcmarkBits in preparation for next GC
s.allocBits, s.gcmarkBits = s.gcmarkBits, s.allocBits
s.clearGCMarkBits() // prepare for next GC
// We need to set s.sweepgen = h.sweepgen only when all blocks are swept,
// because of the potential for a concurrent free/SetFinalizer.
// But we need to set it before we make the span available for allocation
......@@ -311,11 +308,14 @@ func (s *mspan) sweep(preserve bool) bool {
print("MSpan_Sweep: state=", s.state, " sweepgen=", s.sweepgen, " mheap.sweepgen=", sweepgen, "\n")
throw("MSpan_Sweep: bad span state after sweep")
}
// Serialization point.
// At this point the mark bits are cleared and allocation ready
// to go so release the span.
atomic.Store(&s.sweepgen, sweepgen)
}
if nfree > 0 {
c.local_nsmallfree[cl] += uintptr(nfree)
res = mheap_.central[cl].mcentral.freeSpan(s, int32(nfree), head, end, preserve)
res = mheap_.central[cl].mcentral.freeSpan(s, int32(nfree), head, end, preserve, wasempty)
// MCentral_FreeSpan updates sweepgen
} else if freeToHeap {
// Free large span to heap
......@@ -399,27 +399,3 @@ func reimburseSweepCredit(unusableBytes uintptr) {
throw("spanBytesAlloc underflow")
}
}
func dumpFreeList(s *mspan) {
printlock()
print("runtime: free list of span ", s, ":\n")
sstart := uintptr(s.start << _PageShift)
link := s.freelist
for i := 0; i < int(s.npages*_PageSize/s.elemsize); i++ {
if i != 0 {
print(" -> ")
}
print(hex(link))
if link.ptr() == nil {
break
}
if uintptr(link) < sstart || s.limit <= uintptr(link) {
// Bad link. Stop walking before we crash.
print(" (BAD)")
break
}
link = link.ptr().next
}
print("\n")
printunlock()
}
......@@ -119,8 +119,7 @@ type mspan struct {
start pageID // starting page number
npages uintptr // number of pages in span
freelist gclinkptr // list of free objects for _MSpanInUse
stackfreelist gclinkptr // list of free stacks, avoids overloading freelist for _MSpanStack
stackfreelist gclinkptr // list of free stacks, avoids overloading freelist
// freeindex is the slot index between 0 and nelems at which to begin scanning
// for the next free object in this span.
......@@ -472,7 +471,6 @@ func (h *mheap) alloc_m(npage uintptr, sizeclass int32, large bool) *mspan {
// able to map interior pointer to containing span.
atomic.Store(&s.sweepgen, h.sweepgen)
s.state = _MSpanInUse
s.freelist = 0
s.ref = 0
s.sizeclass = uint8(sizeclass)
if sizeclass == 0 {
......@@ -914,7 +912,6 @@ func (span *mspan) init(start pageID, npages uintptr) {
span.list = nil
span.start = start
span.npages = npages
span.freelist = 0
span.ref = 0
span.sizeclass = 0
span.incache = false
......@@ -925,6 +922,17 @@ func (span *mspan) init(start pageID, npages uintptr) {
span.speciallock.key = 0
span.specials = nil
span.needzero = 0
span.freeindex = 0
span.allocBits = &span.markbits1
span.gcmarkBits = &span.markbits2
// determine if this is actually needed. It is once / span so it
// isn't expensive. This is to be replaced by an arena
// based system where things can be cleared all at once so
// don't worry about optimizing this.
for i := 0; i < len(span.markbits1); i++ {
span.allocBits[i] = 0
span.gcmarkBits[i] = 0
}
}
func (span *mspan) inList() bool {
......
......@@ -1137,7 +1137,6 @@ func freeStackSpans() {
next := s.next
if s.ref == 0 {
list.remove(s)
s.freelist = 0
s.stackfreelist = 0
mheap_.freeStack(s)
}
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment