Commit 363617c7 authored by Robert Griesemer's avatar Robert Griesemer

math/big: added (internal) Float.form field for easier case distinctions

This is a fairly significant _internal_ representation change. Instead
of encoding 0, finite, infinite, and NaN values with special mantissa
and exponent values, a new (1 byte) 'form' field is used (without making
the Float struct bigger). The form field permits simpler and faster
case distinctions. As a side benefit, for zero and non-finite floats,
fewer fields need to be set. Also, the exponent range is not the full
int32 range (in the old format, infExp and nanExp were used to represent
Inf and NaN values and tests for those values sometimes didn't test
for the empty mantissa, so the range was reduced by 2 values).

The correspondence between the old and new fields is as follows.
Old representation:

x                 neg      mant         exp
---------------------------------------------------------------
+/-0              sign     empty        0
0 < |x| < +Inf    sign     mantissa     exponent
+/-Inf            sign     empty        infExp
NaN               false    empty        nanExp

New representation (- stands for ignored fields):

x                 neg      mant         exp         form
---------------------------------------------------------------
+/-0              sign     -            -           zero
0 < |x| < +Inf    sign     mantissa     exponent    finite
+/-Inf            sign     -            -           inf
NaN               -        -            -           nan

Client should not be affected by this change.

Change-Id: I7e355894d602ceb23f9ec01da755fe6e0386b101
Reviewed-on: https://go-review.googlesource.com/6870Reviewed-by: default avatarAlan Donovan <adonovan@google.com>
parent 0ff7c3ea
......@@ -37,6 +37,9 @@ const maxShift = _W - 4
// precision argument and keeping track of when a number was truncated early
// (equivalent of "sticky bit" in binary rounding).
// TODO(gri) Along the same lines, enforce some limit to shift magnitudes
// to avoid "infinitely" long running conversions (until we run out of space).
// Init initializes x to the decimal representation of m << shift (for
// shift >= 0), or m >> -shift (for shift < 0).
func (x *decimal) init(m nat, shift int) {
......
......@@ -24,7 +24,9 @@ const debugFloat = true // enable for debugging
//
// with 0.5 <= mantissa < 1.0, and MinExp <= exponent <= MaxExp.
// A Float may also be zero (+0, -0), infinite (+Inf, -Inf) or
// not-a-number (NaN).
// not-a-number (NaN). Except for NaNs, all Floats are ordered,
// and the ordering of two Floats x and y is defined by x.Cmp(y).
// NaNs are always different from any other Float value.
//
// Each Float value also has a precision, rounding mode, and accuracy.
// The precision is the maximum number of mantissa bits available to
......@@ -57,27 +59,47 @@ type Float struct {
prec uint32
mode RoundingMode
acc Accuracy
form form
neg bool
mant nat
exp int32
}
// Internal representation: The mantissa bits x.mant of a Float x are stored
// in a nat slice long enough to hold up to x.prec bits; the slice may (but
// doesn't have to) be shorter if the mantissa contains trailing 0 bits.
// Unless x is a zero, infinity, or NaN, x.mant is normalized such that the
// msb of x.mant == 1 (i.e., the msb is shifted all the way "to the left").
// Thus, if the mantissa has trailing 0 bits or x.prec is not a multiple
// of the the Word size _W, x.mant[0] has trailing zero bits. Zero, Inf, and
// NaN values have an empty mantissa and a 0, infExp, or NanExp exponent,
// respectively.
// Exponent and precision limits.
const (
MaxExp = math.MaxInt32 // largest supported exponent
MinExp = math.MinInt32 // smallest supported exponent
MaxPrec = math.MaxUint32 // largest (theoretically) supported precision; likely memory-limited
)
// Internal representation: The mantissa bits x.mant of a nonzero finite
// Float x are stored in a nat slice long enough to hold up to x.prec bits;
// the slice may (but doesn't have to) be shorter if the mantissa contains
// trailing 0 bits. x.mant is normalized if the msb of x.mant == 1 (i.e.,
// the msb is shifted all the way "to the left"). Thus, if the mantissa has
// trailing 0 bits or x.prec is not a multiple of the the Word size _W,
// x.mant[0] has trailing zero bits. The msb of the mantissa corresponds
// to the value 0.5; the exponent x.exp shifts the binary point as needed.
//
// A zero or non-finite Float x ignores x.mant and x.exp. A NaN x ignores
// the sign x.neg.
//
// x form neg mant exp
// ----------------------------------------------------------
// ±0 zero sign - -
// 0 < |x| < +Inf finite sign mantissa exponent
// ±Inf inf sign - -
// NaN nan - - -
// A form value describes the internal representation.
type form byte
// The form value order is relevant - do not change!
const (
MaxExp = math.MaxInt32 // largest supported exponent
MinExp = math.MinInt32 + 2 // smallest supported exponent
infExp = math.MinInt32 + 1 // exponent for Inf values
nanExp = math.MinInt32 + 0 // exponent for NaN values
MaxPrec = math.MaxUint32 // largest (theoretically) supported precision; likely memory-limited
zero form = iota
finite
inf
nan
)
// RoundingMode determines how a Float value is rounded to the
......@@ -113,6 +135,13 @@ const (
//go:generate stringer -type=Accuracy
func (x *Float) cmpZero() Accuracy {
if x.neg {
return Above
}
return Below
}
// SetPrec sets z's precision to prec and returns the (possibly) rounded
// value of z. Rounding occurs according to z's rounding mode if the mantissa
// cannot be represented in prec bits without loss of precision.
......@@ -124,14 +153,10 @@ func (z *Float) SetPrec(prec uint) *Float {
// special case
if prec == 0 {
z.prec = 0
if len(z.mant) != 0 {
// truncate and compute accuracy
z.setZero()
acc := Below
if z.neg {
acc = Above
}
z.acc = acc
if z.form == finite {
// truncate z to 0
z.acc = z.cmpZero()
z.form = zero
}
return z
}
......@@ -165,8 +190,11 @@ func (x *Float) Prec() uint {
// MinPrec returns the minimum precision required to represent x exactly
// (i.e., the smallest prec before x.SetPrec(prec) would start rounding x).
// The result is 0 for ±0, ±Inf, and NaN.
// The result is 0 if x is 0 or not finite.
func (x *Float) MinPrec() uint {
if x.form != finite {
return 0
}
return uint(len(x.mant))*_W - x.mant.trailingZeroBits()
}
......@@ -190,7 +218,7 @@ func (x *Float) Sign() int {
if debugFloat {
x.validate()
}
if len(x.mant) == 0 && x.exp != infExp {
if x.form == zero || x.form == nan {
return 0
}
if x.neg {
......@@ -219,18 +247,36 @@ func (x *Float) MantExp(mant *Float) (exp int) {
if debugFloat {
x.validate()
}
if len(x.mant) != 0 {
if x.form == finite {
exp = int(x.exp)
}
if mant != nil {
mant.Copy(x)
if x.exp >= MinExp {
if mant.form == finite {
mant.exp = 0
}
}
return
}
// setExp sets the exponent for z.
// If e < MinExp, z becomes ±0; if e > MaxExp, z becomes ±Inf.
func (z *Float) setExp(e int64) {
if debugFloat && z.form != finite {
panic("setExp called for non-finite Float")
}
switch {
case e < MinExp:
// TODO(gri) check that accuracy is adjusted if necessary
z.form = zero // underflow
default:
z.exp = int32(e)
case e > MaxExp:
// TODO(gri) check that accuracy is adjusted if necessary
z.form = inf // overflow
}
}
// SetMantExp sets z to mant × 2**exp and and returns z.
// The result z has the same precision and rounding mode
// as mant. SetMantExp is an inverse of MantExp but does
......@@ -253,7 +299,7 @@ func (z *Float) SetMantExp(mant *Float, exp int) *Float {
mant.validate()
}
z.Copy(mant)
if len(z.mant) == 0 {
if z.form != finite {
return z
}
z.setExp(int64(z.exp) + int64(exp))
......@@ -263,28 +309,28 @@ func (z *Float) SetMantExp(mant *Float, exp int) *Float {
// IsNeg reports whether x is negative.
// A NaN value is not negative.
func (x *Float) IsNeg() bool {
return x.neg && x.exp != nanExp
return x.neg && x.form != nan
}
// IsZero reports whether x is +0 or -0.
func (x *Float) IsZero() bool {
return len(x.mant) == 0 && x.exp == 0
return x.form == zero
}
// IsFinite reports whether -Inf < x < Inf.
// A NaN value is not finite.
func (x *Float) IsFinite() bool {
return len(x.mant) != 0 || x.exp == 0
return x.form <= finite
}
// IsInf reports whether x is +Inf or -Inf.
func (x *Float) IsInf() bool {
return x.exp == infExp
return x.form == inf
}
// IsNaN reports whether x is a NaN value.
func (x *Float) IsNaN() bool {
return x.exp == nanExp
return x.form == nan
}
// IsInt reports whether x is an integer.
......@@ -293,56 +339,32 @@ func (x *Float) IsInt() bool {
if debugFloat {
x.validate()
}
// pick off easy cases
// special cases
if x.form != finite {
return x.form == zero
}
// x.form == finite
if x.exp <= 0 {
// |x| < 1 || |x| == Inf || x is NaN
return len(x.mant) == 0 && x.exp == 0 // x == 0
return false
}
// x.exp > 0
return x.prec <= uint32(x.exp) || x.MinPrec() <= uint(x.exp) // not enough bits for fractional mantissa
}
func (z *Float) setZero() {
z.mant = z.mant[:0]
z.exp = 0
}
func (z *Float) setInf() {
z.mant = z.mant[:0]
z.exp = infExp
}
// setExp sets the exponent for z.
// If e < MinExp, z becomes ±0; if e > MaxExp, z becomes ±Inf.
func (z *Float) setExp(e int64) {
switch {
case e < MinExp:
z.setZero()
default:
if len(z.mant) == 0 {
e = 0
}
z.exp = int32(e)
case e > MaxExp:
z.setInf()
}
}
// debugging support
func (x *Float) validate() {
if !debugFloat {
// avoid performance bugs
panic("validate called but debugFloat is not set")
}
const msb = 1 << (_W - 1)
if x.form != finite {
return
}
m := len(x.mant)
if m == 0 {
// 0.0, Inf, or NaN
if x.exp != 0 && x.exp >= MinExp {
panic(fmt.Sprintf("empty matissa with invalid exponent %d", x.exp))
}
return
panic("nonzero finite x with empty mantissa")
}
const msb = 1 << (_W - 1)
if x.mant[m-1]&msb == 0 {
panic(fmt.Sprintf("msb not set in last word %#x of %s", x.mant[m-1], x.Format('p', 0)))
}
......@@ -362,21 +384,21 @@ func (x *Float) validate() {
func (z *Float) round(sbit uint) {
if debugFloat {
z.validate()
if z.form > finite {
panic(fmt.Sprintf("round called for non-finite value %s", z))
}
}
// z.form <= finite
z.acc = Exact
// handle zero, Inf, and NaN
m := uint32(len(z.mant)) // present mantissa length in words
if m == 0 {
if z.exp == nanExp {
z.acc = Undef
}
if z.form == zero {
return
}
// z.form == finite && len(z.mant) > 0
// m > 0 implies z.prec > 0 (checked by validate)
bits := m * _W // present mantissa bits
m := uint32(len(z.mant)) // present mantissa length in words
bits := m * _W // present mantissa bits
if bits <= z.prec {
// mantissa fits => nothing to do
return
......@@ -487,6 +509,8 @@ func (z *Float) round(sbit uint) {
// zero out trailing bits in least-significant word
z.mant[0] &^= lsb - 1
// TODO(gri) can z.mant be all 0s at this point?
// update accuracy
if z.acc != Exact && z.neg {
z.acc ^= Below | Above
......@@ -525,10 +549,11 @@ func (z *Float) setBits64(neg bool, x uint64) *Float {
z.acc = Exact
z.neg = neg
if x == 0 {
z.setZero()
z.form = zero
return z
}
// x != 0
z.form = finite
s := nlz64(x)
z.mant = z.mant.setUint64(x << s)
z.exp = int32(64 - s) // always fits
......@@ -566,20 +591,20 @@ func (z *Float) SetFloat64(x float64) *Float {
z.prec = 53
}
if math.IsNaN(x) {
z.SetNaN()
return z
return z.SetNaN()
}
z.acc = Exact
z.neg = math.Signbit(x) // handle -0, -Inf correctly
if math.IsInf(x, 0) {
z.setInf()
if x == 0 {
z.form = zero
return z
}
if x == 0 {
z.setZero()
if math.IsInf(x, 0) {
z.form = inf
return z
}
// normalized x != 0
z.form = finite
fmant, exp := math.Frexp(x) // get normalized mantissa
z.mant = z.mant.setUint64(1<<63 | math.Float64bits(fmant)<<11)
z.exp = int32(exp) // always fits
......@@ -620,11 +645,11 @@ func (z *Float) SetInt(x *Int) *Float {
z.acc = Exact
z.neg = x.neg
if len(x.abs) == 0 {
z.mant = z.mant[:0]
z.exp = 0
z.form = zero
return z
}
// x != 0
z.form = finite
z.mant = z.mant.set(x.abs)
fnorm(z.mant)
z.setExp(int64(bits))
......@@ -655,18 +680,16 @@ func (z *Float) SetRat(x *Rat) *Float {
// z is unchanged and the result is always Exact.
func (z *Float) SetInf(sign int) *Float {
z.acc = Exact
z.form = inf
z.neg = sign < 0
z.setInf()
return z
}
// SetNaN sets z to a NaN value, and returns z.
// The precision of z is unchanged and the result is always Exact.
// The precision of z is unchanged and the result is always Undef.
func (z *Float) SetNaN() *Float {
z.acc = Exact
z.neg = false
z.mant = z.mant[:0]
z.exp = nanExp
z.acc = Undef
z.form = nan
return z
}
......@@ -685,6 +708,7 @@ func (z *Float) Set(x *Float) *Float {
if z.prec == 0 {
z.prec = x.prec
}
z.form = x.form
z.neg = x.neg
z.exp = x.exp
z.mant = z.mant.set(x.mant)
......@@ -706,6 +730,7 @@ func (z *Float) Copy(x *Float) *Float {
z.prec = x.prec
z.mode = x.mode
z.acc = x.acc
z.form = x.form
z.neg = x.neg
z.mant = z.mant.set(x.mant)
z.exp = x.exp
......@@ -739,41 +764,42 @@ func (x *Float) Uint64() (uint64, Accuracy) {
x.validate()
}
// special cases
if len(x.mant) == 0 {
switch x.exp {
case 0:
return 0, Exact // ±0
case infExp:
if x.neg {
return 0, Above // -Inf
switch x.form {
case finite:
if x.neg {
return 0, Above
}
// 0 < x < +Inf
if x.exp <= 0 {
// 0 < x < 1
return 0, Below
}
// 1 <= x < Inf
if x.exp <= 64 {
// u = trunc(x) fits into a uint64
u := high64(x.mant) >> (64 - uint32(x.exp))
if x.MinPrec() <= 64 {
return u, Exact
}
return math.MaxUint64, Below // +Inf
case nanExp:
return 0, Undef // NaN
return u, Below // x truncated
}
panic("unreachable")
}
// x too large
return math.MaxUint64, Below
if x.neg {
return 0, Above
}
// x > 0
if x.exp <= 0 {
// 0 < x < 1
return 0, Below
}
// 1 <= x
if x.exp <= 64 {
// u = trunc(x) fits into a uint64
u := high64(x.mant) >> (64 - uint32(x.exp))
if x.MinPrec() <= 64 {
return u, Exact
case zero:
return 0, Exact
case inf:
if x.neg {
return 0, Above
}
return u, Below // x truncated
return math.MaxUint64, Below
case nan:
return 0, Undef
}
// x too large
return math.MaxUint64, Below
panic("unreachable")
}
// Int64 returns the integer resulting from truncating x towards zero.
......@@ -786,54 +812,52 @@ func (x *Float) Int64() (int64, Accuracy) {
x.validate()
}
// special cases
if len(x.mant) == 0 {
switch x.exp {
case 0:
return 0, Exact // ±0
case infExp:
switch x.form {
case finite:
// 0 < |x| < +Inf
acc := x.cmpZero()
if x.exp <= 0 {
// 0 < |x| < 1
return 0, acc
}
// x.exp > 0
// 1 <= |x| < +Inf
if x.exp <= 63 {
// i = trunc(x) fits into an int64 (excluding math.MinInt64)
i := int64(high64(x.mant) >> (64 - uint32(x.exp)))
if x.neg {
return math.MinInt64, Above // -Inf
i = -i
}
return math.MaxInt64, Below // +Inf
case nanExp:
return 0, Undef // NaN
if x.MinPrec() <= 63 {
return i, Exact
}
return i, acc // x truncated
}
panic("unreachable")
}
if x.neg {
// check for special case x == math.MinInt64 (i.e., x == -(0.5 << 64))
if x.exp == 64 && x.MinPrec() == 1 {
acc = Exact
}
return math.MinInt64, acc
}
// x too large
return math.MaxInt64, Below
// 0 < |x| < +Inf
acc := Below
if x.neg {
acc = Above
}
if x.exp <= 0 {
// 0 < |x| < 1
return 0, acc
}
// x.exp > 0
case zero:
return 0, Exact
// 1 <= |x| < +Inf
if x.exp <= 63 {
// i = trunc(x) fits into an int64 (excluding math.MinInt64)
i := int64(high64(x.mant) >> (64 - uint32(x.exp)))
case inf:
if x.neg {
i = -i
}
if x.MinPrec() <= 63 {
return i, Exact
return math.MinInt64, Above
}
return i, acc // x truncated
}
if x.neg {
// check for special case x == math.MinInt64 (i.e., x == -(0.5 << 64))
if x.exp == 64 && x.MinPrec() == 1 {
acc = Exact
}
return math.MinInt64, acc
return math.MaxInt64, Below
case nan:
return 0, Undef
}
// x == +Inf
return math.MaxInt64, Below
panic("unreachable")
}
// Float64 returns the closest float64 value of x
......@@ -844,38 +868,39 @@ func (x *Float) Float64() (float64, Accuracy) {
x.validate()
}
// special cases
if len(x.mant) == 0 {
switch x.exp {
case 0:
if x.neg {
var zero float64
return -zero, Exact
}
return 0, Exact
case infExp:
var sign int
if x.neg {
sign = -1
}
return math.Inf(sign), Exact
case nanExp:
return math.NaN(), Undef
switch x.form {
case finite:
// 0 < |x| < +Inf
var r Float
r.prec = 53
r.Set(x)
var s uint64
if r.neg {
s = 1 << 63
}
panic("unreachable")
}
e := uint64(1022+r.exp) & 0x7ff // TODO(gri) check for overflow
m := high64(r.mant) >> 11 & (1<<52 - 1)
return math.Float64frombits(s | e<<52 | m), r.acc
case zero:
z := 0.0
if x.neg {
z = -z
}
return z, Exact
case inf:
sign := +1
if x.neg {
sign = -1
}
return math.Inf(sign), Exact
// 0 < |x| < +Inf
var r Float
r.prec = 53
r.Set(x)
var s uint64
if r.neg {
s = 1 << 63
case nan:
return math.NaN(), Undef
}
e := uint64(1022+r.exp) & 0x7ff // TODO(gri) check for overflow
m := high64(r.mant) >> 11 & (1<<52 - 1)
return math.Float64frombits(s | e<<52 | m), r.acc
panic("unreachable")
}
// Int returns the result of truncating x towards zero;
......@@ -889,61 +914,53 @@ func (x *Float) Int(z *Int) (*Int, Accuracy) {
x.validate()
}
if z == nil {
// no need to do this for Inf and NaN
// but those are rare enough that we
// don't care
if z == nil && x.form <= finite {
z = new(Int)
}
// special cases
if len(x.mant) == 0 {
switch x.exp {
case 0:
return z.SetInt64(0), Exact // 0
case infExp:
if x.neg {
return nil, Above
}
return nil, Below
case nanExp:
return nil, Undef
switch x.form {
case finite:
// 0 < |x| < +Inf
acc := x.cmpZero()
if x.exp <= 0 {
// 0 < |x| < 1
return z.SetInt64(0), acc
}
panic("unreachable")
}
// x.exp > 0
// 0 < |x| < +Inf
acc := Below
if x.neg {
acc = Above
}
if x.exp <= 0 {
// 0 < |x| < 1
return z.SetInt64(0), acc
}
// x.exp > 0
// 1 <= |x| < +Inf
// determine minimum required precision for x
allBits := uint(len(x.mant)) * _W
exp := uint(x.exp)
if x.MinPrec() <= exp {
acc = Exact
}
// shift mantissa as needed
if z == nil {
z = new(Int)
}
z.neg = x.neg
switch {
case exp > allBits:
z.abs = z.abs.shl(x.mant, exp-allBits)
default:
z.abs = z.abs.set(x.mant)
case exp < allBits:
z.abs = z.abs.shr(x.mant, allBits-exp)
}
return z, acc
// 1 <= |x| < +Inf
// determine minimum required precision for x
allBits := uint(len(x.mant)) * _W
exp := uint(x.exp)
if x.MinPrec() <= exp {
acc = Exact
}
// shift mantissa as needed
if z == nil {
z = new(Int)
}
z.neg = x.neg
switch {
case exp > allBits:
z.abs = z.abs.shl(x.mant, exp-allBits)
default:
z.abs = z.abs.set(x.mant)
case exp < allBits:
z.abs = z.abs.shr(x.mant, allBits-exp)
case zero:
return z.SetInt64(0), Exact
case inf:
return nil, x.cmpZero()
case nan:
return nil, Undef
}
return z, acc
panic("unreachable")
}
// Rat returns the rational number corresponding to x;
......@@ -956,49 +973,44 @@ func (x *Float) Rat(z *Rat) (*Rat, Accuracy) {
x.validate()
}
if z == nil {
// no need to do this for Inf and NaN
// but those are rare enough that we
// don't care
if z == nil && x.form <= finite {
z = new(Rat)
}
// special cases
if len(x.mant) == 0 {
switch x.exp {
case 0:
return z.SetInt64(0), Exact // 0
case infExp:
if x.neg {
return nil, Above
}
return nil, Below
case nanExp:
return nil, Undef
switch x.form {
case finite:
// 0 < |x| < +Inf
allBits := int32(len(x.mant)) * _W
// build up numerator and denominator
z.a.neg = x.neg
switch {
case x.exp > allBits:
z.a.abs = z.a.abs.shl(x.mant, uint(x.exp-allBits))
z.b.abs = z.b.abs[:0] // == 1 (see Rat)
// z already in normal form
default:
z.a.abs = z.a.abs.set(x.mant)
z.b.abs = z.b.abs[:0] // == 1 (see Rat)
// z already in normal form
case x.exp < allBits:
z.a.abs = z.a.abs.set(x.mant)
t := z.b.abs.setUint64(1)
z.b.abs = t.shl(t, uint(allBits-x.exp))
z.norm()
}
panic("unreachable")
return z, Exact
case zero:
return z.SetInt64(0), Exact
case inf:
return nil, x.cmpZero()
case nan:
return nil, Undef
}
// 0 <= |x| < Inf
allBits := int32(len(x.mant)) * _W
// build up numerator and denominator
z.a.neg = x.neg
switch {
case x.exp > allBits:
z.a.abs = z.a.abs.shl(x.mant, uint(x.exp-allBits))
z.b.abs = z.b.abs[:0] // == 1 (see Rat)
// z already in normal form
default:
z.a.abs = z.a.abs.set(x.mant)
z.b.abs = z.b.abs[:0] // == 1 (see Rat)
// z already in normal form
case x.exp < allBits:
z.a.abs = z.a.abs.set(x.mant)
t := z.b.abs.setUint64(1)
z.b.abs = t.shl(t, uint(allBits-x.exp))
z.norm()
}
return z, Exact
panic("unreachable")
}
// Abs sets z to the (possibly rounded) value |x| (the absolute value of x)
......@@ -1031,7 +1043,7 @@ func (z *Float) uadd(x, y *Float) {
// http://www.vinc17.net/research/papers/rnc6.pdf
if debugFloat && (len(x.mant) == 0 || len(y.mant) == 0) {
panic("uadd called with 0 argument")
panic("uadd called with empty mantissa")
}
// compute exponents ex, ey for mantissa with "binary point"
......@@ -1070,7 +1082,7 @@ func (z *Float) usub(x, y *Float) {
// by special-casing, and the code will diverge.
if debugFloat && (len(x.mant) == 0 || len(y.mant) == 0) {
panic("usub called with 0 argument")
panic("usub called with empty mantissa")
}
ex := int64(x.exp) - int64(len(x.mant))*_W
......@@ -1094,7 +1106,7 @@ func (z *Float) usub(x, y *Float) {
// operands may have cancelled each other out
if len(z.mant) == 0 {
z.acc = Exact
z.setZero()
z.form = zero
return
}
// len(z.mant) > 0
......@@ -1107,7 +1119,7 @@ func (z *Float) usub(x, y *Float) {
// x and y must not be 0, Inf, or NaN.
func (z *Float) umul(x, y *Float) {
if debugFloat && (len(x.mant) == 0 || len(y.mant) == 0) {
panic("umul called with 0 argument")
panic("umul called with empty mantissa")
}
// Note: This is doing too much work if the precision
......@@ -1128,7 +1140,7 @@ func (z *Float) umul(x, y *Float) {
// x and y must not be 0, Inf, or NaN.
func (z *Float) uquo(x, y *Float) {
if debugFloat && (len(x.mant) == 0 || len(y.mant) == 0) {
panic("uquo called with 0 argument")
panic("uquo called with empty mantissa")
}
// mantissa length in words for desired result precision + 1
......@@ -1176,7 +1188,7 @@ func (z *Float) uquo(x, y *Float) {
// while ignoring the signs of x and y. x and y must not be 0, Inf, or NaN.
func (x *Float) ucmp(y *Float) int {
if debugFloat && (len(x.mant) == 0 || len(y.mant) == 0) {
panic("ucmp called with 0 argument")
panic("ucmp called with empty mantissa")
}
switch {
......@@ -1248,14 +1260,14 @@ func (z *Float) Add(x, y *Float) *Float {
}
// special cases
if len(x.mant) == 0 || len(y.mant) == 0 {
if x.exp <= infExp || y.exp <= infExp {
if x.form != finite || y.form != finite {
if x.form > finite || y.form > finite {
// TODO(gri) handle Inf separately
return z.SetNaN()
}
if len(x.mant) == 0 { // x == ±0
if x.form == zero {
z.Set(y)
if len(z.mant) == 0 && z.exp == 0 {
if z.form == zero {
z.neg = x.neg && y.neg // -0 + -0 == -0
}
return z
......@@ -1265,6 +1277,7 @@ func (z *Float) Add(x, y *Float) *Float {
}
// x, y != 0
z.form = finite
z.neg = x.neg
if x.neg == y.neg {
// x + y == x + y
......@@ -1282,7 +1295,7 @@ func (z *Float) Add(x, y *Float) *Float {
}
// -0 is only possible for -0 + -0
if len(z.mant) == 0 {
if z.form == zero {
z.neg = false
}
......@@ -1303,14 +1316,14 @@ func (z *Float) Sub(x, y *Float) *Float {
}
// special cases
if len(x.mant) == 0 || len(y.mant) == 0 {
if x.exp <= infExp || y.exp <= infExp {
if x.form != finite || y.form != finite {
if x.form > finite || y.form > finite {
// TODO(gri) handle Inf separately
return z.SetNaN()
}
if len(x.mant) == 0 { // x == ±0
if x.form == zero {
z.Neg(y)
if len(z.mant) == 0 && z.exp == 0 {
if z.form == zero {
z.neg = x.neg && !y.neg // -0 - 0 == -0
}
return z
......@@ -1320,6 +1333,7 @@ func (z *Float) Sub(x, y *Float) *Float {
}
// x, y != 0
z.form = finite
z.neg = x.neg
if x.neg != y.neg {
// x - (-y) == x + y
......@@ -1337,7 +1351,7 @@ func (z *Float) Sub(x, y *Float) *Float {
}
// -0 is only possible for -0 - 0
if len(z.mant) == 0 {
if z.form == zero {
z.neg = false
}
......@@ -1360,24 +1374,25 @@ func (z *Float) Mul(x, y *Float) *Float {
z.neg = x.neg != y.neg
// special cases
if len(x.mant) == 0 || len(y.mant) == 0 {
if x.exp <= infExp || y.exp <= infExp {
if x.form != finite || y.form != finite {
if x.form > finite || y.form > finite {
// TODO(gri) handle Inf separately
return z.SetNaN()
}
// x == ±0 || y == ±0
z.acc = Exact
z.setZero()
z.form = zero
return z
}
if len(x.mant) == 0 || len(y.mant) == 0 {
if x.form == zero || y.form == zero {
z.acc = Exact
z.setZero()
z.form = zero
return z
}
// x, y != 0
z.form = finite
z.umul(x, y)
return z
}
......@@ -1399,26 +1414,27 @@ func (z *Float) Quo(x, y *Float) *Float {
// special cases
z.acc = Exact
if len(x.mant) == 0 || len(y.mant) == 0 {
if x.exp <= infExp || y.exp <= infExp {
if x.form != finite || y.form != finite {
if x.form > finite || y.form > finite {
// TODO(gri) handle Inf separately
return z.SetNaN()
}
if len(x.mant) == 0 {
if len(y.mant) == 0 {
if x.form == zero {
if y.form == zero {
return z.SetNaN()
}
z.setZero()
z.form = zero
return z
}
// x != 0
if len(y.mant) == 0 {
z.setInf()
if y.form == zero {
z.form = inf
return z
}
}
// x, y != 0
z.form = finite
z.uquo(x, y)
return z
}
......@@ -1475,15 +1491,16 @@ func umax32(x, y uint32) uint32 {
// +2 if x == +Inf
//
func (x *Float) ord() int {
m := 1 // common case
if len(x.mant) == 0 {
m = 0
if x.exp == infExp {
m = 2
}
if x.exp == nanExp {
panic("unimplemented")
}
var m int
switch x.form {
case finite:
m = 1
case zero:
return 0
case inf:
m = 2
case nan:
panic("unimplemented")
}
if x.neg {
m = -m
......
......@@ -90,15 +90,20 @@ func TestFloatZeroValue(t *testing.T) {
func makeFloat(s string) *Float {
var x Float
if s == "Inf" || s == "+Inf" {
switch s {
case "0":
return &x
case "-0":
return x.Neg(&x)
case "Inf", "+Inf":
return x.SetInf(+1)
}
if s == "-Inf" {
case "-Inf":
return x.SetInf(-1)
}
if s == "NaN" || s == "-NaN" {
case "NaN", "-NaN":
return x.SetNaN()
}
x.SetPrec(1000)
if _, ok := x.SetString(s); !ok {
panic(fmt.Sprintf("%q is not a valid float", s))
......@@ -146,13 +151,6 @@ func TestFloatSetPrec(t *testing.T) {
if got, acc := x.String(), x.Acc(); got != test.want || acc != test.acc {
t.Errorf("%s.SetPrec(%d) = %s (%s); want %s (%s)", test.x, test.prec, got, acc, test.want, test.acc)
}
// look inside x and check correct value for x.exp
if len(x.mant) == 0 {
// ±0, ±Inf, or NaN
if x.exp != 0 && x.exp > MinExp {
t.Errorf("%s.SetPrec(%d): incorrect exponent %d", test.x, test.prec, x.exp)
}
}
}
}
......@@ -209,7 +207,7 @@ func feq(x, y *Float) bool {
if x.IsNaN() || y.IsNaN() {
return x.IsNaN() && y.IsNaN()
}
return x.Cmp(y) == 0 && x.neg == y.neg
return x.Cmp(y) == 0 && x.IsNeg() == y.IsNeg()
}
func TestFloatMantExp(t *testing.T) {
......@@ -261,11 +259,11 @@ func TestFloatSetMantExp(t *testing.T) {
{"Inf", 1234, "+Inf"},
{"+Inf", -1234, "+Inf"},
{"-Inf", -1234, "-Inf"},
{"0", -MaxExp - 1, "0"},
{"0.5", -MaxExp - 1, "+0"}, // exponent underflow
{"-0.5", -MaxExp - 1, "-0"}, // exponent underflow
{"1", MaxExp, "+Inf"}, // exponent overflow
{"2", MaxExp - 1, "+Inf"}, // exponent overflow
{"0", MinExp, "0"},
{"0.25", MinExp, "+0"}, // exponent underflow
{"-0.25", MinExp, "-0"}, // exponent underflow
{"1", MaxExp, "+Inf"}, // exponent overflow
{"2", MaxExp - 1, "+Inf"}, // exponent overflow
{"0.75", 1, "1.5"},
{"0.5", 11, "1024"},
{"-0.5", -2, "-0.125"},
......
......@@ -96,11 +96,13 @@ func (z *Float) Scan(r io.ByteScanner, base int) (f *Float, b int, err error) {
// special-case 0
if len(z.mant) == 0 {
z.acc = Exact
z.exp = 0
z.form = zero
return
}
// len(z.mant) > 0
z.form = finite
// The mantissa may have a decimal point (fcount <= 0) and there
// may be a nonzero exponent exp. The decimal point amounts to a
// division by b**(-fcount). An exponent means multiplication by
......@@ -275,9 +277,13 @@ func (x *Float) bstring(buf []byte) []byte {
if x.neg {
buf = append(buf, '-')
}
if len(x.mant) == 0 {
if x.form == zero {
return append(buf, '0')
}
if debugFloat && x.form != finite {
panic("non-finite float")
}
// x != 0
// adjust mantissa to use exactly x.prec bits
......@@ -306,9 +312,13 @@ func (x *Float) pstring(buf []byte) []byte {
if x.neg {
buf = append(buf, '-')
}
if len(x.mant) == 0 {
if x.form == zero {
return append(buf, '0')
}
if debugFloat && x.form != finite {
panic("non-finite float")
}
// x != 0
// remove trailing 0 words early
......
......@@ -19,11 +19,17 @@ import "strconv"
// bigFtoa formats a float for the %e, %E, %f, %g, and %G formats.
func (f *Float) bigFtoa(buf []byte, fmt byte, prec int) []byte {
// TODO(gri) handle Inf.
if debugFloat && !f.IsFinite() {
panic("non-finite float")
}
// 1) convert Float to multiprecision decimal
var mant nat
if f.form == finite {
mant = f.mant
}
var d decimal
d.init(f.mant, int(f.exp)-f.mant.bitLen())
d.init(mant, int(f.exp)-f.mant.bitLen())
// 2) round to desired precision
shortest := false
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment