Commit 4751db93 authored by Cherry Zhang's avatar Cherry Zhang

cmd/internal/obj/s390x: mark unsafe points

For async preemption, we will be using REGTMP as a temporary
register in injected call on S390X, which will clobber it. So any
code that uses REGTMP is not safe for async preemption.

In the assembler backend, we expand a Prog to multiple machine
instructions and use REGTMP as a temporary register if necessary.
These need to be marked unsafe. Unlike ARM64 and MIPS,
instructions on S390X are variable length so we don't use the
length as a condition. Instead, we set a bit on the Prog whenever
REGTMP is used.

Change-Id: Ie5d14068a950f4c7cea51dff2c4a8bdc19ec9348
Reviewed-on: https://go-review.googlesource.com/c/go/+/204105
Run-TryBot: Cherry Zhang <cherryyz@google.com>
Reviewed-by: default avatarKeith Randall <khr@golang.org>
parent 689f6f77
...@@ -186,6 +186,7 @@ const ( ...@@ -186,6 +186,7 @@ const (
// mark flags // mark flags
LEAF = 1 << iota LEAF = 1 << iota
BRANCH BRANCH
USETMP // generated code of this Prog uses REGTMP
) )
const ( // comments from func aclass in asmz.go const ( // comments from func aclass in asmz.go
......
...@@ -490,6 +490,25 @@ func spanz(ctxt *obj.Link, cursym *obj.LSym, newprog obj.ProgAlloc) { ...@@ -490,6 +490,25 @@ func spanz(ctxt *obj.Link, cursym *obj.LSym, newprog obj.ProgAlloc) {
} }
c.cursym.Grow(c.cursym.Size) c.cursym.Grow(c.cursym.Size)
copy(c.cursym.P, buffer) copy(c.cursym.P, buffer)
// Mark nonpreemptible instruction sequences.
// We use REGTMP as a scratch register during call injection,
// so instruction sequences that use REGTMP are unsafe to
// preempt asynchronously.
obj.MarkUnsafePoints(c.ctxt, c.cursym.Func.Text, c.newprog, c.isUnsafePoint)
}
// Return whether p is an unsafe point.
func (c *ctxtz) isUnsafePoint(p *obj.Prog) bool {
if p.From.Reg == REGTMP || p.To.Reg == REGTMP || p.Reg == REGTMP {
return true
}
for _, a := range p.RestArgs {
if a.Reg == REGTMP {
return true
}
}
return p.Mark&USETMP != 0
} }
func isint32(v int64) bool { func isint32(v int64) bool {
...@@ -2679,6 +2698,11 @@ func (c *ctxtz) branchMask(p *obj.Prog) CCMask { ...@@ -2679,6 +2698,11 @@ func (c *ctxtz) branchMask(p *obj.Prog) CCMask {
return Always return Always
} }
func regtmp(p *obj.Prog) uint32 {
p.Mark |= USETMP
return REGTMP
}
func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) { func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) {
o := c.oplook(p) o := c.oplook(p)
...@@ -2686,6 +2710,9 @@ func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) { ...@@ -2686,6 +2710,9 @@ func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) {
return return
} }
// If REGTMP is used in generated code, we need to set USETMP on p.Mark.
// So we use regtmp(p) for REGTMP.
switch o.i { switch o.i {
default: default:
c.ctxt.Diag("unknown index %d", o.i) c.ctxt.Diag("unknown index %d", o.i)
...@@ -2778,19 +2805,19 @@ func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) { ...@@ -2778,19 +2805,19 @@ func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) {
case ADIVW, ADIVWU, ADIVD, ADIVDU: case ADIVW, ADIVWU, ADIVD, ADIVDU:
if p.As == ADIVWU || p.As == ADIVDU { if p.As == ADIVWU || p.As == ADIVDU {
zRI(op_LGHI, REGTMP, 0, asm) zRI(op_LGHI, regtmp(p), 0, asm)
} }
zRRE(op_LGR, REGTMP2, uint32(r), asm) zRRE(op_LGR, REGTMP2, uint32(r), asm)
zRRE(opcode, REGTMP, uint32(p.From.Reg), asm) zRRE(opcode, regtmp(p), uint32(p.From.Reg), asm)
zRRE(op_LGR, uint32(p.To.Reg), REGTMP2, asm) zRRE(op_LGR, uint32(p.To.Reg), REGTMP2, asm)
case AMODW, AMODWU, AMODD, AMODDU: case AMODW, AMODWU, AMODD, AMODDU:
if p.As == AMODWU || p.As == AMODDU { if p.As == AMODWU || p.As == AMODDU {
zRI(op_LGHI, REGTMP, 0, asm) zRI(op_LGHI, regtmp(p), 0, asm)
} }
zRRE(op_LGR, REGTMP2, uint32(r), asm) zRRE(op_LGR, REGTMP2, uint32(r), asm)
zRRE(opcode, REGTMP, uint32(p.From.Reg), asm) zRRE(opcode, regtmp(p), uint32(p.From.Reg), asm)
zRRE(op_LGR, uint32(p.To.Reg), REGTMP, asm) zRRE(op_LGR, uint32(p.To.Reg), regtmp(p), asm)
} }
...@@ -2835,20 +2862,20 @@ func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) { ...@@ -2835,20 +2862,20 @@ func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) {
r = p.To.Reg r = p.To.Reg
} }
zRRE(op_LGR, REGTMP2, uint32(r), asm) zRRE(op_LGR, REGTMP2, uint32(r), asm)
zRRE(op_MLGR, REGTMP, uint32(p.From.Reg), asm) zRRE(op_MLGR, regtmp(p), uint32(p.From.Reg), asm)
switch p.As { switch p.As {
case AMULHDU: case AMULHDU:
// Unsigned: move result into correct register. // Unsigned: move result into correct register.
zRRE(op_LGR, uint32(p.To.Reg), REGTMP, asm) zRRE(op_LGR, uint32(p.To.Reg), regtmp(p), asm)
case AMULHD: case AMULHD:
// Signed: need to convert result. // Signed: need to convert result.
// See Hacker's Delight 8-3. // See Hacker's Delight 8-3.
zRSY(op_SRAG, REGTMP2, uint32(p.From.Reg), 0, 63, asm) zRSY(op_SRAG, REGTMP2, uint32(p.From.Reg), 0, 63, asm)
zRRE(op_NGR, REGTMP2, uint32(r), asm) zRRE(op_NGR, REGTMP2, uint32(r), asm)
zRRE(op_SGR, REGTMP, REGTMP2, asm) zRRE(op_SGR, regtmp(p), REGTMP2, asm)
zRSY(op_SRAG, REGTMP2, uint32(r), 0, 63, asm) zRSY(op_SRAG, REGTMP2, uint32(r), 0, 63, asm)
zRRE(op_NGR, REGTMP2, uint32(p.From.Reg), asm) zRRE(op_NGR, REGTMP2, uint32(p.From.Reg), asm)
zRRF(op_SGRK, REGTMP2, 0, uint32(p.To.Reg), REGTMP, asm) zRRF(op_SGRK, REGTMP2, 0, uint32(p.To.Reg), regtmp(p), asm)
} }
case 5: // syscall case 5: // syscall
...@@ -2950,9 +2977,9 @@ func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) { ...@@ -2950,9 +2977,9 @@ func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) {
if r == int(p.To.Reg) { if r == int(p.To.Reg) {
zRRE(op_SLBGR, uint32(p.To.Reg), uint32(p.From.Reg), asm) zRRE(op_SLBGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
} else if p.From.Reg == p.To.Reg { } else if p.From.Reg == p.To.Reg {
zRRE(op_LGR, REGTMP, uint32(p.From.Reg), asm) zRRE(op_LGR, regtmp(p), uint32(p.From.Reg), asm)
zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm) zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
zRRE(op_SLBGR, uint32(p.To.Reg), REGTMP, asm) zRRE(op_SLBGR, uint32(p.To.Reg), regtmp(p), asm)
} else { } else {
zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm) zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
zRRE(op_SLBGR, uint32(p.To.Reg), uint32(p.From.Reg), asm) zRRE(op_SLBGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
...@@ -2994,11 +3021,11 @@ func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) { ...@@ -2994,11 +3021,11 @@ func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) {
} }
x2 := p.From.Index x2 := p.From.Index
if -DISP20/2 > d2 || d2 >= DISP20/2 { if -DISP20/2 > d2 || d2 >= DISP20/2 {
zRIL(_a, op_LGFI, REGTMP, uint32(d2), asm) zRIL(_a, op_LGFI, regtmp(p), uint32(d2), asm)
if x2 != 0 { if x2 != 0 {
zRX(op_LA, REGTMP, REGTMP, uint32(x2), 0, asm) zRX(op_LA, regtmp(p), regtmp(p), uint32(x2), 0, asm)
} }
x2 = REGTMP x2 = int16(regtmp(p))
d2 = 0 d2 = 0
} }
var opx, opxy uint32 var opx, opxy uint32
...@@ -3128,8 +3155,8 @@ func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) { ...@@ -3128,8 +3155,8 @@ func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) {
} }
switch p.As { switch p.As {
case ASUB: case ASUB:
zRIL(_a, op_LGFI, uint32(REGTMP), uint32(v), asm) zRIL(_a, op_LGFI, uint32(regtmp(p)), uint32(v), asm)
zRRF(op_SLGRK, uint32(REGTMP), 0, uint32(p.To.Reg), uint32(r), asm) zRRF(op_SLGRK, uint32(regtmp(p)), 0, uint32(p.To.Reg), uint32(r), asm)
case ASUBC: case ASUBC:
if r != p.To.Reg { if r != p.To.Reg {
zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm) zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
...@@ -3193,8 +3220,8 @@ func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) { ...@@ -3193,8 +3220,8 @@ func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) {
c.ctxt.Diag("%v is not supported", p) c.ctxt.Diag("%v is not supported", p)
case AAND: case AAND:
if v >= 0 { // needs zero extend if v >= 0 { // needs zero extend
zRIL(_a, op_LGFI, REGTMP, uint32(v), asm) zRIL(_a, op_LGFI, regtmp(p), uint32(v), asm)
zRRE(op_NGR, uint32(p.To.Reg), REGTMP, asm) zRRE(op_NGR, uint32(p.To.Reg), regtmp(p), asm)
} else if int64(int16(v)) == v { } else if int64(int16(v)) == v {
zRI(op_NILL, uint32(p.To.Reg), uint32(v), asm) zRI(op_NILL, uint32(p.To.Reg), uint32(v), asm)
} else { // r.To.Reg & 0xffffffff00000000 & uint32(v) } else { // r.To.Reg & 0xffffffff00000000 & uint32(v)
...@@ -3202,8 +3229,8 @@ func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) { ...@@ -3202,8 +3229,8 @@ func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) {
} }
case AOR: case AOR:
if int64(uint32(v)) != v { // needs sign extend if int64(uint32(v)) != v { // needs sign extend
zRIL(_a, op_LGFI, REGTMP, uint32(v), asm) zRIL(_a, op_LGFI, regtmp(p), uint32(v), asm)
zRRE(op_OGR, uint32(p.To.Reg), REGTMP, asm) zRRE(op_OGR, uint32(p.To.Reg), regtmp(p), asm)
} else if int64(uint16(v)) == v { } else if int64(uint16(v)) == v {
zRI(op_OILL, uint32(p.To.Reg), uint32(v), asm) zRI(op_OILL, uint32(p.To.Reg), uint32(v), asm)
} else { } else {
...@@ -3211,8 +3238,8 @@ func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) { ...@@ -3211,8 +3238,8 @@ func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) {
} }
case AXOR: case AXOR:
if int64(uint32(v)) != v { // needs sign extend if int64(uint32(v)) != v { // needs sign extend
zRIL(_a, op_LGFI, REGTMP, uint32(v), asm) zRIL(_a, op_LGFI, regtmp(p), uint32(v), asm)
zRRE(op_XGR, uint32(p.To.Reg), REGTMP, asm) zRRE(op_XGR, uint32(p.To.Reg), regtmp(p), asm)
} else { } else {
zRIL(_a, op_XILF, uint32(p.To.Reg), uint32(v), asm) zRIL(_a, op_XILF, uint32(p.To.Reg), uint32(v), asm)
} }
...@@ -3264,8 +3291,8 @@ func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) { ...@@ -3264,8 +3291,8 @@ func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) {
} else if v >= -DISP20/2 && v < DISP20/2 { } else if v >= -DISP20/2 && v < DISP20/2 {
zRXY(op_LAY, uint32(p.To.Reg), uint32(r), uint32(i), uint32(v), asm) zRXY(op_LAY, uint32(p.To.Reg), uint32(r), uint32(i), uint32(v), asm)
} else { } else {
zRIL(_a, op_LGFI, REGTMP, uint32(v), asm) zRIL(_a, op_LGFI, regtmp(p), uint32(v), asm)
zRX(op_LA, uint32(p.To.Reg), uint32(r), REGTMP, uint32(i), asm) zRX(op_LA, uint32(p.To.Reg), uint32(r), regtmp(p), uint32(i), asm)
} }
case 31: // dword case 31: // dword
...@@ -3359,11 +3386,11 @@ func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) { ...@@ -3359,11 +3386,11 @@ func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) {
} }
x2 := p.To.Index x2 := p.To.Index
if d2 < -DISP20/2 || d2 >= DISP20/2 { if d2 < -DISP20/2 || d2 >= DISP20/2 {
zRIL(_a, op_LGFI, REGTMP, uint32(d2), asm) zRIL(_a, op_LGFI, regtmp(p), uint32(d2), asm)
if x2 != 0 { if x2 != 0 {
zRX(op_LA, REGTMP, REGTMP, uint32(x2), 0, asm) zRX(op_LA, regtmp(p), regtmp(p), uint32(x2), 0, asm)
} }
x2 = REGTMP x2 = int16(regtmp(p))
d2 = 0 d2 = 0
} }
// Emits an RX instruction if an appropriate one exists and the displacement fits in 12 bits. Otherwise use an RXY instruction. // Emits an RX instruction if an appropriate one exists and the displacement fits in 12 bits. Otherwise use an RXY instruction.
...@@ -3381,11 +3408,11 @@ func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) { ...@@ -3381,11 +3408,11 @@ func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) {
} }
x2 := p.From.Index x2 := p.From.Index
if d2 < -DISP20/2 || d2 >= DISP20/2 { if d2 < -DISP20/2 || d2 >= DISP20/2 {
zRIL(_a, op_LGFI, REGTMP, uint32(d2), asm) zRIL(_a, op_LGFI, regtmp(p), uint32(d2), asm)
if x2 != 0 { if x2 != 0 {
zRX(op_LA, REGTMP, REGTMP, uint32(x2), 0, asm) zRX(op_LA, regtmp(p), regtmp(p), uint32(x2), 0, asm)
} }
x2 = REGTMP x2 = int16(regtmp(p))
d2 = 0 d2 = 0
} }
// Emits an RX instruction if an appropriate one exists and the displacement fits in 12 bits. Otherwise use an RXY instruction. // Emits an RX instruction if an appropriate one exists and the displacement fits in 12 bits. Otherwise use an RXY instruction.
...@@ -3539,21 +3566,21 @@ func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) { ...@@ -3539,21 +3566,21 @@ func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) {
opcode = op_MVI opcode = op_MVI
} }
if d < 0 || d >= DISP12 { if d < 0 || d >= DISP12 {
if r == REGTMP { if r == int16(regtmp(p)) {
c.ctxt.Diag("displacement must be in range [0, 4096) to use %v", r) c.ctxt.Diag("displacement must be in range [0, 4096) to use %v", r)
} }
if d >= -DISP20/2 && d < DISP20/2 { if d >= -DISP20/2 && d < DISP20/2 {
if opcode == op_MVI { if opcode == op_MVI {
opcode = op_MVIY opcode = op_MVIY
} else { } else {
zRXY(op_LAY, uint32(REGTMP), 0, uint32(r), uint32(d), asm) zRXY(op_LAY, uint32(regtmp(p)), 0, uint32(r), uint32(d), asm)
r = REGTMP r = int16(regtmp(p))
d = 0 d = 0
} }
} else { } else {
zRIL(_a, op_LGFI, REGTMP, uint32(d), asm) zRIL(_a, op_LGFI, regtmp(p), uint32(d), asm)
zRX(op_LA, REGTMP, REGTMP, uint32(r), 0, asm) zRX(op_LA, regtmp(p), regtmp(p), uint32(r), 0, asm)
r = REGTMP r = int16(regtmp(p))
d = 0 d = 0
} }
} }
...@@ -3576,19 +3603,19 @@ func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) { ...@@ -3576,19 +3603,19 @@ func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) {
case AMOVH, AMOVHZ: // The zero extension doesn't affect store instructions case AMOVH, AMOVHZ: // The zero extension doesn't affect store instructions
zRIL(_b, op_STHRL, uint32(p.From.Reg), 0, asm) zRIL(_b, op_STHRL, uint32(p.From.Reg), 0, asm)
case AMOVB, AMOVBZ: // The zero extension doesn't affect store instructions case AMOVB, AMOVBZ: // The zero extension doesn't affect store instructions
zRIL(_b, op_LARL, REGTMP, 0, asm) zRIL(_b, op_LARL, regtmp(p), 0, asm)
adj := uint32(0) // adjustment needed for odd addresses adj := uint32(0) // adjustment needed for odd addresses
if i2&1 != 0 { if i2&1 != 0 {
i2 -= 1 i2 -= 1
adj = 1 adj = 1
} }
zRX(op_STC, uint32(p.From.Reg), 0, REGTMP, adj, asm) zRX(op_STC, uint32(p.From.Reg), 0, regtmp(p), adj, asm)
case AFMOVD: case AFMOVD:
zRIL(_b, op_LARL, REGTMP, 0, asm) zRIL(_b, op_LARL, regtmp(p), 0, asm)
zRX(op_STD, uint32(p.From.Reg), 0, REGTMP, 0, asm) zRX(op_STD, uint32(p.From.Reg), 0, regtmp(p), 0, asm)
case AFMOVS: case AFMOVS:
zRIL(_b, op_LARL, REGTMP, 0, asm) zRIL(_b, op_LARL, regtmp(p), 0, asm)
zRX(op_STE, uint32(p.From.Reg), 0, REGTMP, 0, asm) zRX(op_STE, uint32(p.From.Reg), 0, regtmp(p), 0, asm)
} }
c.addrilreloc(p.To.Sym, int64(i2)) c.addrilreloc(p.To.Sym, int64(i2))
...@@ -3597,8 +3624,8 @@ func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) { ...@@ -3597,8 +3624,8 @@ func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) {
switch p.As { switch p.As {
case AMOVD: case AMOVD:
if i2&1 != 0 { if i2&1 != 0 {
zRIL(_b, op_LARL, REGTMP, 0, asm) zRIL(_b, op_LARL, regtmp(p), 0, asm)
zRXY(op_LG, uint32(p.To.Reg), REGTMP, 0, 1, asm) zRXY(op_LG, uint32(p.To.Reg), regtmp(p), 0, 1, asm)
i2 -= 1 i2 -= 1
} else { } else {
zRIL(_b, op_LGRL, uint32(p.To.Reg), 0, asm) zRIL(_b, op_LGRL, uint32(p.To.Reg), 0, asm)
...@@ -3612,7 +3639,7 @@ func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) { ...@@ -3612,7 +3639,7 @@ func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) {
case AMOVHZ: case AMOVHZ:
zRIL(_b, op_LLGHRL, uint32(p.To.Reg), 0, asm) zRIL(_b, op_LLGHRL, uint32(p.To.Reg), 0, asm)
case AMOVB, AMOVBZ: case AMOVB, AMOVBZ:
zRIL(_b, op_LARL, REGTMP, 0, asm) zRIL(_b, op_LARL, regtmp(p), 0, asm)
adj := uint32(0) // adjustment needed for odd addresses adj := uint32(0) // adjustment needed for odd addresses
if i2&1 != 0 { if i2&1 != 0 {
i2 -= 1 i2 -= 1
...@@ -3620,16 +3647,16 @@ func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) { ...@@ -3620,16 +3647,16 @@ func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) {
} }
switch p.As { switch p.As {
case AMOVB: case AMOVB:
zRXY(op_LGB, uint32(p.To.Reg), 0, REGTMP, adj, asm) zRXY(op_LGB, uint32(p.To.Reg), 0, regtmp(p), adj, asm)
case AMOVBZ: case AMOVBZ:
zRXY(op_LLGC, uint32(p.To.Reg), 0, REGTMP, adj, asm) zRXY(op_LLGC, uint32(p.To.Reg), 0, regtmp(p), adj, asm)
} }
case AFMOVD: case AFMOVD:
zRIL(_a, op_LARL, REGTMP, 0, asm) zRIL(_a, op_LARL, regtmp(p), 0, asm)
zRX(op_LD, uint32(p.To.Reg), 0, REGTMP, 0, asm) zRX(op_LD, uint32(p.To.Reg), 0, regtmp(p), 0, asm)
case AFMOVS: case AFMOVS:
zRIL(_a, op_LARL, REGTMP, 0, asm) zRIL(_a, op_LARL, regtmp(p), 0, asm)
zRX(op_LE, uint32(p.To.Reg), 0, REGTMP, 0, asm) zRX(op_LE, uint32(p.To.Reg), 0, regtmp(p), 0, asm)
} }
c.addrilreloc(p.From.Sym, int64(i2)) c.addrilreloc(p.From.Sym, int64(i2))
...@@ -3744,19 +3771,19 @@ func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) { ...@@ -3744,19 +3771,19 @@ func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) {
d1 := c.regoff(&p.To) d1 := c.regoff(&p.To)
d2 := c.regoff(p.GetFrom3()) d2 := c.regoff(p.GetFrom3())
if d1 < 0 || d1 >= DISP12 { if d1 < 0 || d1 >= DISP12 {
if b2 == REGTMP { if b2 == int16(regtmp(p)) {
c.ctxt.Diag("REGTMP conflict") c.ctxt.Diag("regtmp(p) conflict")
} }
if b1 != REGTMP { if b1 != int16(regtmp(p)) {
zRRE(op_LGR, REGTMP, uint32(b1), asm) zRRE(op_LGR, regtmp(p), uint32(b1), asm)
} }
zRIL(_a, op_AGFI, REGTMP, uint32(d1), asm) zRIL(_a, op_AGFI, regtmp(p), uint32(d1), asm)
if d1 == d2 && b1 == b2 { if d1 == d2 && b1 == b2 {
d2 = 0 d2 = 0
b2 = REGTMP b2 = int16(regtmp(p))
} }
d1 = 0 d1 = 0
b1 = REGTMP b1 = int16(regtmp(p))
} }
if d2 < 0 || d2 >= DISP12 { if d2 < 0 || d2 >= DISP12 {
if b1 == REGTMP2 { if b1 == REGTMP2 {
...@@ -3962,8 +3989,8 @@ func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) { ...@@ -3962,8 +3989,8 @@ func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) {
rel.Add = 2 + int64(rel.Siz) rel.Add = 2 + int64(rel.Siz)
case 94: // TLS local exec model case 94: // TLS local exec model
zRIL(_b, op_LARL, REGTMP, (sizeRIL+sizeRXY+sizeRI)>>1, asm) zRIL(_b, op_LARL, regtmp(p), (sizeRIL+sizeRXY+sizeRI)>>1, asm)
zRXY(op_LG, uint32(p.To.Reg), REGTMP, 0, 0, asm) zRXY(op_LG, uint32(p.To.Reg), regtmp(p), 0, 0, asm)
zRI(op_BRC, 0xF, (sizeRI+8)>>1, asm) zRI(op_BRC, 0xF, (sizeRI+8)>>1, asm)
*asm = append(*asm, 0, 0, 0, 0, 0, 0, 0, 0) *asm = append(*asm, 0, 0, 0, 0, 0, 0, 0, 0)
rel := obj.Addrel(c.cursym) rel := obj.Addrel(c.cursym)
...@@ -3985,7 +4012,7 @@ func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) { ...@@ -3985,7 +4012,7 @@ func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) {
// -------------------------------------------------------------- // --------------------------------------------------------------
// R_390_TLS_IEENT // R_390_TLS_IEENT
zRIL(_b, op_LARL, REGTMP, 0, asm) zRIL(_b, op_LARL, regtmp(p), 0, asm)
ieent := obj.Addrel(c.cursym) ieent := obj.Addrel(c.cursym)
ieent.Off = int32(c.pc + 2) ieent.Off = int32(c.pc + 2)
ieent.Siz = 4 ieent.Siz = 4
...@@ -3994,7 +4021,7 @@ func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) { ...@@ -3994,7 +4021,7 @@ func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) {
ieent.Add = 2 + int64(ieent.Siz) ieent.Add = 2 + int64(ieent.Siz)
// R_390_TLS_LOAD // R_390_TLS_LOAD
zRXY(op_LGF, uint32(p.To.Reg), REGTMP, 0, 0, asm) zRXY(op_LGF, uint32(p.To.Reg), regtmp(p), 0, 0, asm)
// TODO(mundaym): add R_390_TLS_LOAD relocation here // TODO(mundaym): add R_390_TLS_LOAD relocation here
// not strictly required but might allow the linker to optimize // not strictly required but might allow the linker to optimize
...@@ -4011,14 +4038,14 @@ func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) { ...@@ -4011,14 +4038,14 @@ func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) {
for length > 0 { for length > 0 {
if offset < 0 || offset >= DISP12 { if offset < 0 || offset >= DISP12 {
if offset >= -DISP20/2 && offset < DISP20/2 { if offset >= -DISP20/2 && offset < DISP20/2 {
zRXY(op_LAY, REGTMP, uint32(reg), 0, uint32(offset), asm) zRXY(op_LAY, regtmp(p), uint32(reg), 0, uint32(offset), asm)
} else { } else {
if reg != REGTMP { if reg != int16(regtmp(p)) {
zRRE(op_LGR, REGTMP, uint32(reg), asm) zRRE(op_LGR, regtmp(p), uint32(reg), asm)
} }
zRIL(_a, op_AGFI, REGTMP, uint32(offset), asm) zRIL(_a, op_AGFI, regtmp(p), uint32(offset), asm)
} }
reg = REGTMP reg = int16(regtmp(p))
offset = 0 offset = 0
} }
size := length size := length
...@@ -4052,11 +4079,11 @@ func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) { ...@@ -4052,11 +4079,11 @@ func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) {
reg = REGSP reg = REGSP
} }
if offset < -DISP20/2 || offset >= DISP20/2 { if offset < -DISP20/2 || offset >= DISP20/2 {
if reg != REGTMP { if reg != int16(regtmp(p)) {
zRRE(op_LGR, REGTMP, uint32(reg), asm) zRRE(op_LGR, regtmp(p), uint32(reg), asm)
} }
zRIL(_a, op_AGFI, REGTMP, uint32(offset), asm) zRIL(_a, op_AGFI, regtmp(p), uint32(offset), asm)
reg = REGTMP reg = int16(regtmp(p))
offset = 0 offset = 0
} }
switch p.As { switch p.As {
...@@ -4079,11 +4106,11 @@ func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) { ...@@ -4079,11 +4106,11 @@ func (c *ctxtz) asmout(p *obj.Prog, asm *[]byte) {
reg = REGSP reg = REGSP
} }
if offset < -DISP20/2 || offset >= DISP20/2 { if offset < -DISP20/2 || offset >= DISP20/2 {
if reg != REGTMP { if reg != int16(regtmp(p)) {
zRRE(op_LGR, REGTMP, uint32(reg), asm) zRRE(op_LGR, regtmp(p), uint32(reg), asm)
} }
zRIL(_a, op_AGFI, REGTMP, uint32(offset), asm) zRIL(_a, op_AGFI, regtmp(p), uint32(offset), asm)
reg = REGTMP reg = int16(regtmp(p))
offset = 0 offset = 0
} }
switch p.As { switch p.As {
......
...@@ -344,7 +344,11 @@ func preprocess(ctxt *obj.Link, cursym *obj.LSym, newprog obj.ProgAlloc) { ...@@ -344,7 +344,11 @@ func preprocess(ctxt *obj.Link, cursym *obj.LSym, newprog obj.ProgAlloc) {
// Store link register before decrementing SP, so if a signal comes // Store link register before decrementing SP, so if a signal comes
// during the execution of the function prologue, the traceback // during the execution of the function prologue, the traceback
// code will not see a half-updated stack frame. // code will not see a half-updated stack frame.
q = obj.Appendp(p, c.newprog) // This sequence is not async preemptible, as if we open a frame
// at the current SP, it will clobber the saved LR.
q = c.ctxt.StartUnsafePoint(p, c.newprog)
q = obj.Appendp(q, c.newprog)
q.As = AMOVD q.As = AMOVD
q.From.Type = obj.TYPE_REG q.From.Type = obj.TYPE_REG
q.From.Reg = REG_LR q.From.Reg = REG_LR
...@@ -360,6 +364,8 @@ func preprocess(ctxt *obj.Link, cursym *obj.LSym, newprog obj.ProgAlloc) { ...@@ -360,6 +364,8 @@ func preprocess(ctxt *obj.Link, cursym *obj.LSym, newprog obj.ProgAlloc) {
q.To.Type = obj.TYPE_REG q.To.Type = obj.TYPE_REG
q.To.Reg = REGSP q.To.Reg = REGSP
q.Spadj = autosize q.Spadj = autosize
q = c.ctxt.EndUnsafePoint(q, c.newprog, -1)
} else if c.cursym.Func.Text.Mark&LEAF == 0 { } else if c.cursym.Func.Text.Mark&LEAF == 0 {
// A very few functions that do not return to their caller // A very few functions that do not return to their caller
// (e.g. gogo) are not identified as leaves but still have // (e.g. gogo) are not identified as leaves but still have
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment