Commit 4b3f04c6 authored by Michael Anthony Knyszek's avatar Michael Anthony Knyszek Committed by Michael Knyszek

runtime: make mTreap iterator bidirectional

This change makes mTreap's iterator type, treapIter, bidirectional
instead of unidirectional. This change helps support moving the find
operation on a treap to return an iterator instead of a treapNode, in
order to hide the details of the treap when accessing elements.

For #28479.

Change-Id: I5dbea4fd4fb9bede6e81bfd089f2368886f98943
Reviewed-on: https://go-review.googlesource.com/c/156918Reviewed-by: default avatarAustin Clements <austin@google.com>
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
parent 44cf595a
......@@ -337,7 +337,7 @@ func ReadMemStatsSlow() (base, slow MemStats) {
slow.BySize[i].Frees = bySize[i].Frees
}
for i := mheap_.scav.iter(); i.valid(); i = i.next() {
for i := mheap_.scav.start(); i.valid(); i = i.next() {
slow.HeapReleased += uint64(i.span().released())
}
......
......@@ -153,15 +153,14 @@ func checkTreapNode(t *treapNode) {
}
}
// treapIter is a unidirectional iterator type which may be used to iterate over a
// treapIter is a bidirectional iterator type which may be used to iterate over a
// an mTreap in-order forwards (increasing order) or backwards (decreasing order).
// Its purpose is to hide details about the treap from users when trying to iterate
// over it.
//
// To create iterators over the treap, call iter or rev on an mTreap.
// To create iterators over the treap, call start or end on an mTreap.
type treapIter struct {
t *treapNode
inc bool // if true, iterate in increasing order, otherwise decreasing order.
}
// span returns the span at the current position in the treap.
......@@ -179,42 +178,41 @@ func (i *treapIter) valid() bool {
// next moves the iterator forward by one. Once the iterator
// ceases to be valid, calling next will panic.
func (i treapIter) next() treapIter {
if i.inc {
i.t = i.t.succ()
} else {
return i
}
// prev moves the iterator backwards by one. Once the iterator
// ceases to be valid, calling prev will panic.
func (i treapIter) prev() treapIter {
i.t = i.t.pred()
}
return i
}
// iter returns an iterator which may be used to iterate over the treap
// in increasing order of span size ("forwards").
func (root *mTreap) iter() treapIter {
i := treapIter{inc: true}
// start returns an iterator which points to the start of the treap (the
// left-most node in the treap).
func (root *mTreap) start() treapIter {
t := root.treap
if t == nil {
return i
return treapIter{}
}
for t.left != nil {
t = t.left
}
i.t = t
return i
return treapIter{t: t}
}
// rev returns an iterator which may be used to iterate over the treap
// in decreasing order of span size ("reverse").
func (root *mTreap) rev() treapIter {
i := treapIter{inc: false}
// end returns an iterator which points to the end of the treap (the
// right-most node in the treap).
func (root *mTreap) end() treapIter {
t := root.treap
if t == nil {
return i
return treapIter{}
}
for t.right != nil {
t = t.right
}
i.t = t
return i
return treapIter{t: t}
}
// insert adds span to the large span treap.
......@@ -342,13 +340,11 @@ func (root *mTreap) removeSpan(span *mspan) {
}
// erase removes the element referred to by the current position of the
// iterator and returns i.next(). This operation consumes the given
// iterator, so it should no longer be used and iteration should continue
// from the returned iterator.
func (root *mTreap) erase(i treapIter) treapIter {
n := i.next()
// iterator. This operation consumes the given iterator, so it should no
// longer be used. It is up to the caller to get the next or previous
// iterator before calling erase, if need be.
func (root *mTreap) erase(i treapIter) {
root.removeNode(i.t)
return n
}
// rotateLeft rotates the tree rooted at node x.
......
......@@ -1287,7 +1287,7 @@ func (h *mheap) scavengeLargest(nbytes uintptr) {
// Iterate over the treap backwards (from largest to smallest) scavenging spans
// until we've reached our quota of nbytes.
released := uintptr(0)
for t := h.free.rev(); released < nbytes && t.valid(); {
for t := h.free.end(); released < nbytes && t.valid(); {
s := t.span()
r := s.scavenge()
if r == 0 {
......@@ -1302,7 +1302,9 @@ func (h *mheap) scavengeLargest(nbytes uintptr) {
// those which have it unset are only in the `free` treap.
return
}
t = h.free.erase(t)
n := t.prev()
h.free.erase(t)
t = n
h.scav.insert(s)
released += r
}
......@@ -1314,18 +1316,18 @@ func (h *mheap) scavengeLargest(nbytes uintptr) {
func (h *mheap) scavengeAll(now, limit uint64) uintptr {
// Iterate over the treap scavenging spans if unused for at least limit time.
released := uintptr(0)
for t := h.free.iter(); t.valid(); {
for t := h.free.start(); t.valid(); {
s := t.span()
n := t.next()
if (now - uint64(s.unusedsince)) > limit {
r := s.scavenge()
if r != 0 {
t = h.free.erase(t)
h.free.erase(t)
h.scav.insert(s)
released += r
continue
}
}
t = t.next()
t = n
}
return released
}
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment