Commit 56bd176e authored by Rick Hudson's avatar Rick Hudson

runtime: Start and stop individual goroutines at gc safepoints

Code to bring goroutines to a gc safepoint one at a time,
do some work such as scanning, and restart the
goroutine, and then move on to the next goroutine.
Currently this code does not do much useful work
but this infrastructure will be critical to future
concurrent GC work.

Fixed comments reviewers.

LGTM=rsc
R=golang-codereviews, rsc, dvyukov
CC=golang-codereviews
https://golang.org/cl/131580043
parent f4407378
...@@ -432,6 +432,7 @@ markroot(ParFor *desc, uint32 i) ...@@ -432,6 +432,7 @@ markroot(ParFor *desc, uint32 i)
G *gp; G *gp;
void *p; void *p;
uint32 status; uint32 status;
bool restart;
USED(&desc); USED(&desc);
// Note: if you add a case here, please also update heapdump.c:dumproots. // Note: if you add a case here, please also update heapdump.c:dumproots.
...@@ -493,9 +494,15 @@ markroot(ParFor *desc, uint32 i) ...@@ -493,9 +494,15 @@ markroot(ParFor *desc, uint32 i)
gp->waitsince = work.tstart; gp->waitsince = work.tstart;
// Shrink a stack if not much of it is being used. // Shrink a stack if not much of it is being used.
runtime·shrinkstack(gp); runtime·shrinkstack(gp);
if(runtime·readgstatus(gp) == Gdead)
gp->gcworkdone = true;
else
gp->gcworkdone = false;
restart = runtime·stopg(gp);
scanstack(gp); scanstack(gp);
if(restart)
runtime·restartg(gp);
break; break;
} }
} }
...@@ -687,7 +694,12 @@ scanstack(G *gp) ...@@ -687,7 +694,12 @@ scanstack(G *gp)
uintptr sp, guard; uintptr sp, guard;
bool (*fn)(Stkframe*, void*); bool (*fn)(Stkframe*, void*);
switch(runtime·readgstatus(gp)) { if(runtime·readgstatus(gp)&Gscan == 0) {
runtime·printf("runtime: gp=%p, goid=%D, gp->atomicstatus=%d\n", gp, gp->goid, runtime·readgstatus(gp));
runtime·throw("mark - bad status");
}
switch(runtime·readgstatus(gp)&~Gscan) {
default: default:
runtime·printf("runtime: gp=%p, goid=%D, gp->atomicstatus=%d\n", gp, gp->goid, runtime·readgstatus(gp)); runtime·printf("runtime: gp=%p, goid=%D, gp->atomicstatus=%d\n", gp, gp->goid, runtime·readgstatus(gp));
runtime·throw("mark - bad status"); runtime·throw("mark - bad status");
...@@ -747,6 +759,29 @@ scanstack(G *gp) ...@@ -747,6 +759,29 @@ scanstack(G *gp)
} }
} }
// The gp has been moved to a gc safepoint. If there is gcphase specific
// work it is done here.
void
runtime·gcphasework(G *gp)
{
switch(runtime·gcphase) {
default:
runtime·throw("gcphasework in bad gcphase");
case GCoff:
case GCquiesce:
case GCstw:
case GCsweep:
// No work for now.
break;
case GCmark:
// Disabled until concurrent GC is implemented
// but indicate the scan has been done.
// scanstack(gp);
break;
}
gp->gcworkdone = true;
}
void void
runtime·queuefinalizer(byte *p, FuncVal *fn, uintptr nret, Type *fint, PtrType *ot) runtime·queuefinalizer(byte *p, FuncVal *fn, uintptr nret, Type *fint, PtrType *ot)
{ {
......
...@@ -128,6 +128,7 @@ static bool preemptone(P*); ...@@ -128,6 +128,7 @@ static bool preemptone(P*);
static bool exitsyscallfast(void); static bool exitsyscallfast(void);
static bool haveexperiment(int8*); static bool haveexperiment(int8*);
static void allgadd(G*); static void allgadd(G*);
static void dropg(void);
extern String runtime·buildVersion; extern String runtime·buildVersion;
...@@ -272,7 +273,8 @@ runtime·main(void) ...@@ -272,7 +273,8 @@ runtime·main(void)
static void static void
dumpgstatus(G* gp) dumpgstatus(G* gp)
{ {
runtime·printf("runtime: gp=%p, goid=%D, gp->atomicstatus=%d\n", gp, gp->goid, runtime·readgstatus(gp)); runtime·printf("runtime: gp: gp=%p, goid=%D, gp->atomicstatus=%x\n", gp, gp->goid, runtime·readgstatus(gp));
runtime·printf("runtime: g: g=%p, goid=%D, g->atomicstatus=%x\n", g, g->goid, runtime·readgstatus(g));
} }
static void static void
...@@ -508,10 +510,202 @@ runtime·casgstatus(G *gp, uint32 oldval, uint32 newval) ...@@ -508,10 +510,202 @@ runtime·casgstatus(G *gp, uint32 oldval, uint32 newval)
runtime·throw("casgstatus: bad incoming values"); runtime·throw("casgstatus: bad incoming values");
} }
while(!runtime·cas(&gp->atomicstatus, oldval, newval)) {
// loop if gp->atomicstatus is in a scan state giving // loop if gp->atomicstatus is in a scan state giving
// GC time to finish and change the state to oldval. // GC time to finish and change the state to oldval.
while(!runtime·cas(&gp->atomicstatus, oldval, newval)) {
// Help GC if needed.
if(gp->preemptscan && !gp->gcworkdone && (oldval == Grunning || oldval == Gsyscall)) {
gp->preemptscan = false;
runtime·gcphasework(gp);
}
}
}
// stopg ensures that gp is stopped at a GC safe point where its stack can be scanned
// or in the context of a moving collector the pointers can be flipped from pointing
// to old object to pointing to new objects.
// If stopg returns true, the caller knows gp is at a GC safe point and will remain there until
// the caller calls restartg.
// If stopg returns false, the caller is not responsible for calling restartg. This can happen
// if another thread, either the gp itself or another GC thread is taking the responsibility
// to do the GC work related to this thread.
bool
runtime·stopg(G *gp)
{
uint32 s;
for(;;) {
if(gp->gcworkdone)
return false;
s = runtime·readgstatus(gp);
switch(s) {
default:
dumpgstatus(gp);
runtime·throw("stopg: gp->atomicstatus is not valid");
case Gdead:
return false;
case Gcopystack:
// Loop until a new stack is in place.
break;
case Grunnable:
case Gsyscall:
case Gwaiting:
// Claim goroutine by setting scan bit.
if(!runtime·castogscanstatus(gp, s, s|Gscan))
break;
// In scan state, do work.
runtime·gcphasework(gp);
return true;
case Gscanrunnable:
case Gscanwaiting:
case Gscansyscall:
// Goroutine already claimed by another GC helper.
return false;
case Grunning:
// Claim goroutine, so we aren't racing with a status
// transition away from Grunning.
if(!runtime·castogscanstatus(gp, Grunning, Gscanrunning))
break;
// Mark gp for preemption.
if(!gp->gcworkdone) {
gp->preemptscan = true;
gp->preempt = true;
gp->stackguard0 = StackPreempt;
}
// Unclaim.
runtime·casfromgscanstatus(gp, Gscanrunning, Grunning);
return false;
} }
}
// Should not be here....
}
// The GC requests that this routine be moved from a scanmumble state to a mumble state.
void
runtime·restartg (G *gp)
{
uint32 s;
s = runtime·readgstatus(gp);
switch(s) {
default:
dumpgstatus(gp);
runtime·throw("restartg: unexpected status");
case Gdead:
break;
case Gscanrunnable:
case Gscanwaiting:
case Gscansyscall:
runtime·casfromgscanstatus(gp, s, s&~Gscan);
break;
case Gscanenqueue:
// Scan is now completed.
// Goroutine now needs to be made runnable.
// We put it on the global run queue; ready blocks on the global scheduler lock.
runtime·casfromgscanstatus(gp, Gscanenqueue, Gwaiting);
if(gp != g->m->curg)
runtime·throw("processing Gscanenqueue on wrong m");
dropg();
runtime·ready(gp);
break;
}
}
static void
stopscanstart(G* gp)
{
if(g == gp)
runtime·throw("GC not moved to G0");
if(runtime·stopg(gp)) {
if(!isscanstatus(runtime·readgstatus(gp))) {
dumpgstatus(gp);
runtime·throw("GC not in scan state");
}
runtime·restartg(gp);
}
}
// Runs on g0 and does the actual work after putting the g back on the run queue.
static void
mquiesce(G *gpmaster)
{
G* gp;
uint32 i;
uint32 status;
uint32 activeglen;
activeglen = runtime·allglen;
// enqueue the calling goroutine.
runtime·restartg(gpmaster);
for(i = 0; i < activeglen; i++) {
gp = runtime·allg[i];
if(runtime·readgstatus(gp) == Gdead)
gp->gcworkdone = true; // noop scan.
else
gp->gcworkdone = false;
stopscanstart(gp);
}
// Check that the G's gcwork (such as scanning) has been done. If not do it now.
// You can end up doing work here if the page trap on a Grunning Goroutine has
// not been sprung or in some race situations. For example a runnable goes dead
// and is started up again with a gp->gcworkdone set to false.
for(i = 0; i < activeglen; i++) {
gp = runtime·allg[i];
while (!gp->gcworkdone) {
status = runtime·readgstatus(gp);
if(status == Gdead) {
gp->gcworkdone = true; // scan is a noop
break;
//do nothing, scan not needed.
}
if(status == Grunning && gp->stackguard0 == (uintptr)StackPreempt && runtime·notetsleep(&runtime·sched.stopnote, 100*1000)) // nanosecond arg
runtime·noteclear(&runtime·sched.stopnote);
else
stopscanstart(gp);
}
}
for(i = 0; i < activeglen; i++) {
gp = runtime·allg[i];
status = runtime·readgstatus(gp);
if(isscanstatus(status)) {
runtime·printf("mstopandscang:bottom: post scan bad status gp=%p has status %x\n", gp, status);
dumpgstatus(gp);
}
if(!gp->gcworkdone && status != Gdead) {
runtime·printf("mstopandscang:bottom: post scan gp=%p->gcworkdone still false\n", gp);
dumpgstatus(gp);
}
}
schedule(); // Never returns.
}
// quiesce moves all the goroutines to a GC safepoint which for now is a at preemption point.
// If the global runtime·gcphase is GCmark quiesce will ensure that all of the goroutine's stacks
// have been scanned before it returns.
void
runtime·quiesce(G* mastergp)
{
void (*fn)(G*);
runtime·castogscanstatus(mastergp, Grunning, Gscanenqueue);
// Now move this to the g0 (aka m) stack.
// g0 will potentially scan this thread and put mastergp on the runqueue
fn = mquiesce;
runtime·mcall(&fn);
} }
// This is used by the GC as well as the routines that do stack dumps. In the case // This is used by the GC as well as the routines that do stack dumps. In the case
...@@ -1503,7 +1697,7 @@ runtime·gosched_m(G *gp) ...@@ -1503,7 +1697,7 @@ runtime·gosched_m(G *gp)
uint32 status; uint32 status;
status = runtime·readgstatus(gp); status = runtime·readgstatus(gp);
if ((status&~Gscan) != Grunning){ if((status&~Gscan) != Grunning){
dumpgstatus(gp); dumpgstatus(gp);
runtime·throw("bad g status"); runtime·throw("bad g status");
} }
...@@ -2031,7 +2225,7 @@ allgadd(G *gp) ...@@ -2031,7 +2225,7 @@ allgadd(G *gp)
G **new; G **new;
uintptr cap; uintptr cap;
if (runtime·readgstatus(gp) == Gidle) if(runtime·readgstatus(gp) == Gidle)
runtime·throw("allgadd: bad status Gidle"); runtime·throw("allgadd: bad status Gidle");
runtime·lock(&allglock); runtime·lock(&allglock);
...@@ -2062,7 +2256,7 @@ gfput(P *p, G *gp) ...@@ -2062,7 +2256,7 @@ gfput(P *p, G *gp)
uintptr stksize; uintptr stksize;
Stktop *top; Stktop *top;
if (runtime·readgstatus(gp) != Gdead) if(runtime·readgstatus(gp) != Gdead)
runtime·throw("gfput: bad status (not Gdead)"); runtime·throw("gfput: bad status (not Gdead)");
if(gp->stackguard - StackGuard != gp->stack0) if(gp->stackguard - StackGuard != gp->stack0)
......
...@@ -292,7 +292,7 @@ struct G ...@@ -292,7 +292,7 @@ struct G
bool preempt; // preemption signal, duplicates stackguard0 = StackPreempt bool preempt; // preemption signal, duplicates stackguard0 = StackPreempt
bool paniconfault; // panic (instead of crash) on unexpected fault address bool paniconfault; // panic (instead of crash) on unexpected fault address
bool preemptscan; // preempted g does scan for GC bool preemptscan; // preempted g does scan for GC
bool scancheck; // debug: cleared at begining of scan cycle, set by scan, tested at end of cycle bool gcworkdone; // debug: cleared at begining of gc work phase cycle, set by gcphasework, tested at end of cycle
int8 raceignore; // ignore race detection events int8 raceignore; // ignore race detection events
M* m; // for debuggers, but offset not hard-coded M* m; // for debuggers, but offset not hard-coded
M* lockedm; M* lockedm;
...@@ -579,6 +579,16 @@ struct DebugVars ...@@ -579,6 +579,16 @@ struct DebugVars
int32 scavenge; int32 scavenge;
}; };
// Indicates to write barrier and sychronization task to preform.
enum
{ // Synchronization Write barrier
GCoff, // stop and start nop
GCquiesce, // stop and start nop
GCstw, // stop the ps nop
GCmark, // scan the stacks and start no white to black
GCsweep, // stop and start nop
};
struct ForceGCState struct ForceGCState
{ {
Mutex lock; Mutex lock;
...@@ -586,6 +596,7 @@ struct ForceGCState ...@@ -586,6 +596,7 @@ struct ForceGCState
uint32 idle; uint32 idle;
}; };
extern uint32 runtime·gcphase;
extern bool runtime·precisestack; extern bool runtime·precisestack;
extern bool runtime·copystack; extern bool runtime·copystack;
...@@ -614,8 +625,12 @@ enum { ...@@ -614,8 +625,12 @@ enum {
HashRandomBytes = 32 HashRandomBytes = 32
}; };
uint32 runtime·readgstatus(G *gp); uint32 runtime·readgstatus(G*);
void runtime·casgstatus(G*, uint32, uint32); void runtime·casgstatus(G*, uint32, uint32);
void runtime·quiesce(G*);
bool runtime·stopg(G*);
void runtime·restartg(G*);
void runtime·gcphasework(G*);
/* /*
* deferred subroutine calls * deferred subroutine calls
......
...@@ -936,6 +936,14 @@ runtime·newstack(void) ...@@ -936,6 +936,14 @@ runtime·newstack(void)
runtime·throw("runtime: g is running but p is not"); runtime·throw("runtime: g is running but p is not");
if(oldstatus == Gsyscall && g->m->locks == 0) if(oldstatus == Gsyscall && g->m->locks == 0)
runtime·throw("runtime: stack growth during syscall"); runtime·throw("runtime: stack growth during syscall");
if(oldstatus == Grunning && gp->preemptscan) {
runtime·gcphasework(gp);
runtime·casgstatus(gp, Gwaiting, Grunning);
gp->stackguard0 = gp->stackguard;
gp->preempt = false;
gp->preemptscan = false; // Tells the GC premption was successful.
runtime·gogo(&gp->sched); // never return
}
// Be conservative about where we preempt. // Be conservative about where we preempt.
// We are interested in preempting user Go code, not runtime code. // We are interested in preempting user Go code, not runtime code.
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment