Commit 5d0d87ae authored by Matthew Dempsky's avatar Matthew Dempsky

cmd/compile: fix package initialization ordering

This CL rewrites cmd/compile's package-level initialization ordering
algorithm to be compliant with the Go spec. See documentation in
initorder.go for details.

Incidentally, this CL also improves fidelity of initialization loop
diagnostics by including referenced functions in the emitted output
like go/types does.

Fixes #22326.

Change-Id: I7c9ac47ff563df4d4f700cf6195387a0f372cc7b
Reviewed-on: https://go-review.googlesource.com/c/go/+/170062
Run-TryBot: Matthew Dempsky <mdempsky@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: default avatarRobert Griesemer <gri@golang.org>
parent e883d000
......@@ -31,7 +31,7 @@ func renameinit() *types.Sym {
// 2) Initialize all the variables that have initializers.
// 3) Run any init functions.
func fninit(n []*Node) {
nf := initfix(n)
nf := initOrder(n)
var deps []*obj.LSym // initTask records for packages the current package depends on
var fns []*obj.LSym // functions to call for package initialization
......
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gc
import (
"bytes"
"container/heap"
"fmt"
)
// Package initialization
//
// Here we implement the algorithm for ordering package-level variable
// initialization. The spec is written in terms of variable
// initialization, but multiple variables initialized by a single
// assignment are handled together, so here we instead focus on
// ordering initialization assignments. Conveniently, this maps well
// to how we represent package-level initializations using the Node
// AST.
//
// Assignments are in one of three phases: NotStarted, Pending, or
// Done. For assignments in the Pending phase, we use Xoffset to
// record the number of unique variable dependencies whose
// initialization assignment is not yet Done. We also maintain a
// "blocking" map that maps assignments back to all of the assignments
// that depend on it.
//
// For example, for an initialization like:
//
// var x = f(a, b, b)
// var a, b = g()
//
// the "x = f(a, b, b)" assignment depends on two variables (a and b),
// so its Xoffset will be 2. Correspondingly, the "a, b = g()"
// assignment's "blocking" entry will have two entries back to x's
// assignment.
//
// Logically, initialization works by (1) taking all NotStarted
// assignments, calculating their dependencies, and marking them
// Pending; (2) adding all Pending assignments with Xoffset==0 to a
// "ready" priority queue (ordered by variable declaration position);
// and (3) iteratively processing the next Pending assignment from the
// queue, decreasing the Xoffset of assignments it's blocking, and
// adding them to the queue if decremented to 0.
//
// As an optimization, we actually apply each of these three steps for
// each assignment. This yields the same order, but keeps queue size
// down and thus also heap operation costs.
// Static initialization phase.
// These values are stored in two bits in Node.flags.
const (
InitNotStarted = iota
InitDone
InitPending
)
type InitOrder struct {
// blocking maps initialization assignments to the assignments
// that depend on it.
blocking map[*Node][]*Node
// ready is the queue of Pending initialization assignments
// that are ready for initialization.
ready declOrder
}
// initOrder computes initialization order for a list l of
// package-level declarations (in declaration order) and outputs the
// corresponding list of statements to include in the init() function
// body.
func initOrder(l []*Node) []*Node {
s := InitSchedule{
initplans: make(map[*Node]*InitPlan),
inittemps: make(map[*Node]*Node),
}
o := InitOrder{
blocking: make(map[*Node][]*Node),
}
// Process all package-level assignment in declaration order.
for _, n := range l {
switch n.Op {
case OAS, OAS2DOTTYPE, OAS2FUNC, OAS2MAPR, OAS2RECV:
o.processAssign(n)
o.flushReady(s.staticInit)
case ODCLCONST, ODCLFUNC, ODCLTYPE:
// nop
default:
Fatalf("unexpected package-level statement: %v", n)
}
}
// Check that all assignments are now Done; if not, there must
// have been a dependency cycle.
for _, n := range l {
switch n.Op {
case OAS, OAS2DOTTYPE, OAS2FUNC, OAS2MAPR, OAS2RECV:
if n.Initorder() != InitDone {
// If there have already been errors
// printed, those errors may have
// confused us and there might not be
// a loop. Let the user fix those
// first.
if nerrors > 0 {
errorexit()
}
findInitLoopAndExit(firstLHS(n), new([]*Node))
Fatalf("initialization unfinished, but failed to identify loop")
}
}
}
// Invariant consistency check. If this is non-zero, then we
// should have found a cycle above.
if len(o.blocking) != 0 {
Fatalf("expected empty map: %v", o.blocking)
}
return s.out
}
func (o *InitOrder) processAssign(n *Node) {
if n.Initorder() != InitNotStarted || n.Xoffset != BADWIDTH {
Fatalf("unexpected state: %v, %v, %v", n, n.Initorder(), n.Xoffset)
}
n.SetInitorder(InitPending)
n.Xoffset = 0
// Compute number of variable dependencies and build the
// inverse dependency ("blocking") graph.
for dep := range collectDeps(n, true) {
defn := dep.Name.Defn
// Skip dependencies on functions (PFUNC) and
// variables already initialized (InitDone).
if dep.Class() != PEXTERN || defn.Initorder() == InitDone {
continue
}
n.Xoffset++
o.blocking[defn] = append(o.blocking[defn], n)
}
if n.Xoffset == 0 {
heap.Push(&o.ready, n)
}
}
// flushReady repeatedly applies initialize to the earliest (in
// declaration order) assignment ready for initialization and updates
// the inverse dependency ("blocking") graph.
func (o *InitOrder) flushReady(initialize func(*Node)) {
for o.ready.Len() != 0 {
n := heap.Pop(&o.ready).(*Node)
if n.Initorder() != InitPending || n.Xoffset != 0 {
Fatalf("unexpected state: %v, %v, %v", n, n.Initorder(), n.Xoffset)
}
initialize(n)
n.SetInitorder(InitDone)
n.Xoffset = BADWIDTH
blocked := o.blocking[n]
delete(o.blocking, n)
for _, m := range blocked {
m.Xoffset--
if m.Xoffset == 0 {
heap.Push(&o.ready, m)
}
}
}
}
// findInitLoopAndExit searches for an initialization loop involving variable
// or function n. If one is found, it reports the loop as an error and exits.
//
// path points to a slice used for tracking the sequence of
// variables/functions visited. Using a pointer to a slice allows the
// slice capacity to grow and limit reallocations.
func findInitLoopAndExit(n *Node, path *[]*Node) {
// We implement a simple DFS loop-finding algorithm. This
// could be faster, but initialization cycles are rare.
for i, x := range *path {
if x == n {
reportInitLoopAndExit((*path)[i:])
return
}
}
// There might be multiple loops involving n; by sorting
// references, we deterministically pick the one reported.
refers := collectDeps(n.Name.Defn, false).Sorted(func(ni, nj *Node) bool {
return ni.Pos.Before(nj.Pos)
})
*path = append(*path, n)
for _, ref := range refers {
// Short-circuit variables that were initialized.
if ref.Class() == PEXTERN && ref.Name.Defn.Initorder() == InitDone {
continue
}
findInitLoopAndExit(ref, path)
}
*path = (*path)[:len(*path)-1]
}
// reportInitLoopAndExit reports and initialization loop as an error
// and exits. However, if l is not actually an initialization loop, it
// simply returns instead.
func reportInitLoopAndExit(l []*Node) {
// Rotate loop so that the earliest variable declaration is at
// the start.
i := -1
for j, n := range l {
if n.Class() == PEXTERN && (i == -1 || n.Pos.Before(l[i].Pos)) {
i = j
}
}
if i == -1 {
// False positive: loop only involves recursive
// functions. Return so that findInitLoop can continue
// searching.
return
}
l = append(l[i:], l[:i]...)
// TODO(mdempsky): Method values are printed as "T.m-fm"
// rather than "T.m". Figure out how to avoid that.
var msg bytes.Buffer
fmt.Fprintf(&msg, "initialization loop:\n")
for _, n := range l {
fmt.Fprintf(&msg, "\t%v: %v refers to\n", n.Line(), n)
}
fmt.Fprintf(&msg, "\t%v: %v", l[0].Line(), l[0])
yyerrorl(l[0].Pos, msg.String())
errorexit()
}
// collectDeps returns all of the package-level functions and
// variables that declaration n depends on. If transitive is true,
// then it also includes the transitive dependencies of any depended
// upon functions (but not variables).
func collectDeps(n *Node, transitive bool) NodeSet {
d := initDeps{transitive: transitive}
switch n.Op {
case OAS:
d.inspect(n.Right)
case OAS2DOTTYPE, OAS2FUNC, OAS2MAPR, OAS2RECV:
d.inspect(n.Rlist.First())
case ODCLFUNC:
d.inspectList(n.Nbody)
default:
Fatalf("unexpected Op: %v", n.Op)
}
return d.seen
}
type initDeps struct {
transitive bool
seen NodeSet
}
func (d *initDeps) inspect(n *Node) { inspect(n, d.visit) }
func (d *initDeps) inspectList(l Nodes) { inspectList(l, d.visit) }
// visit calls foundDep on any package-level functions or variables
// referenced by n, if any.
func (d *initDeps) visit(n *Node) bool {
switch n.Op {
case ONAME:
if n.isMethodExpression() {
d.foundDep(asNode(n.Type.FuncType().Nname))
return false
}
switch n.Class() {
case PEXTERN, PFUNC:
d.foundDep(n)
}
case OCLOSURE:
d.inspectList(n.Func.Closure.Nbody)
case ODOTMETH, OCALLPART:
d.foundDep(asNode(n.Type.FuncType().Nname))
}
return true
}
// foundDep records that we've found a dependency on n by adding it to
// seen.
func (d *initDeps) foundDep(n *Node) {
// Can happen with method expressions involving interface
// types; e.g., fixedbugs/issue4495.go.
if n == nil {
return
}
// Names without definitions aren't interesting as far as
// initialization ordering goes.
if n.Name.Defn == nil {
return
}
if d.seen.Has(n) {
return
}
d.seen.Add(n)
if d.transitive && n.Class() == PFUNC {
d.inspectList(n.Name.Defn.Nbody)
}
}
// declOrder implements heap.Interface, ordering assignment statements
// by the position of their first LHS expression.
//
// N.B., the Pos of the first LHS expression is used because because
// an OAS node's Pos may not be unique. For example, given the
// declaration "var a, b = f(), g()", "a" must be ordered before "b",
// but both OAS nodes use the "=" token's position as their Pos.
type declOrder []*Node
func (s declOrder) Len() int { return len(s) }
func (s declOrder) Less(i, j int) bool { return firstLHS(s[i]).Pos.Before(firstLHS(s[j]).Pos) }
func (s declOrder) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
func (s *declOrder) Push(x interface{}) { *s = append(*s, x.(*Node)) }
func (s *declOrder) Pop() interface{} {
n := (*s)[len(*s)-1]
*s = (*s)[:len(*s)-1]
return n
}
// firstLHS returns the first expression on the left-hand side of
// assignment n.
func firstLHS(n *Node) *Node {
switch n.Op {
case OAS:
return n.Left
case OAS2DOTTYPE, OAS2FUNC, OAS2RECV, OAS2MAPR:
return n.List.First()
}
Fatalf("unexpected Op: %v", n.Op)
return nil
}
......@@ -9,14 +9,6 @@ import (
"fmt"
)
// Static initialization ordering state.
// These values are stored in two bits in Node.flags.
const (
InitNotStarted = iota
InitDone
InitPending
)
type InitEntry struct {
Xoffset int64 // struct, array only
Expr *Node // bytes of run-time computed expressions
......@@ -26,9 +18,15 @@ type InitPlan struct {
E []InitEntry
}
// An InitSchedule is used to decompose assignment statements into
// static and dynamic initialization parts. Static initializations are
// handled by populating variables' linker symbol data, while dynamic
// initializations are accumulated to be executed in order.
type InitSchedule struct {
out []*Node
initlist []*Node
// out is the ordered list of dynamic initialization
// statements.
out []*Node
initplans map[*Node]*InitPlan
inittemps map[*Node]*Node
}
......@@ -37,239 +35,33 @@ func (s *InitSchedule) append(n *Node) {
s.out = append(s.out, n)
}
// init1 walks the AST starting at n, and accumulates in out
// the list of definitions needing init code in dependency order.
func (s *InitSchedule) init1(n *Node) {
if n == nil {
return
}
s.init1(n.Left)
s.init1(n.Right)
for _, n1 := range n.List.Slice() {
s.init1(n1)
}
if n.isMethodExpression() {
// Methods called as Type.Method(receiver, ...).
// Definitions for method expressions are stored in type->nname.
s.init1(asNode(n.Type.FuncType().Nname))
}
if n.Op != ONAME {
return
}
switch n.Class() {
case PEXTERN, PFUNC:
default:
if n.isBlank() && n.Name.Curfn == nil && n.Name.Defn != nil && n.Name.Defn.Initorder() == InitNotStarted {
// blank names initialization is part of init() but not
// when they are inside a function.
break
// staticInit adds an initialization statement n to the schedule.
func (s *InitSchedule) staticInit(n *Node) {
if !s.tryStaticInit(n) {
if Debug['%'] != 0 {
Dump("nonstatic", n)
}
return
}
if n.Initorder() == InitDone {
return
}
if n.Initorder() == InitPending {
// Since mutually recursive sets of functions are allowed,
// we don't necessarily raise an error if n depends on a node
// which is already waiting for its dependencies to be visited.
//
// initlist contains a cycle of identifiers referring to each other.
// If this cycle contains a variable, then this variable refers to itself.
// Conversely, if there exists an initialization cycle involving
// a variable in the program, the tree walk will reach a cycle
// involving that variable.
if n.Class() != PFUNC {
s.foundinitloop(n, n)
}
for i := len(s.initlist) - 1; i >= 0; i-- {
x := s.initlist[i]
if x == n {
break
}
if x.Class() != PFUNC {
s.foundinitloop(n, x)
}
}
// The loop involves only functions, ok.
return
}
// reached a new unvisited node.
n.SetInitorder(InitPending)
s.initlist = append(s.initlist, n)
// make sure that everything n depends on is initialized.
// n->defn is an assignment to n
if defn := n.Name.Defn; defn != nil {
switch defn.Op {
default:
Dump("defn", defn)
Fatalf("init1: bad defn")
case ODCLFUNC:
s.init2list(defn.Nbody)
case OAS:
if defn.Left != n {
Dump("defn", defn)
Fatalf("init1: bad defn")
}
if defn.Left.isBlank() && candiscard(defn.Right) {
defn.Op = OEMPTY
defn.Left = nil
defn.Right = nil
break
}
s.init2(defn.Right)
if Debug['j'] != 0 {
fmt.Printf("%v\n", n.Sym)
}
if n.isBlank() || !s.staticinit(n) {
if Debug['%'] != 0 {
Dump("nonstatic", defn)
}
s.append(defn)
}
case OAS2FUNC, OAS2MAPR, OAS2DOTTYPE, OAS2RECV:
if defn.Initorder() == InitDone {
break
}
defn.SetInitorder(InitPending)
for _, n2 := range defn.Rlist.Slice() {
s.init1(n2)
}
if Debug['%'] != 0 {
Dump("nonstatic", defn)
}
s.append(defn)
defn.SetInitorder(InitDone)
}
}
last := len(s.initlist) - 1
if s.initlist[last] != n {
Fatalf("bad initlist %v", s.initlist)
}
s.initlist[last] = nil // allow GC
s.initlist = s.initlist[:last]
n.SetInitorder(InitDone)
}
// foundinitloop prints an init loop error and exits.
func (s *InitSchedule) foundinitloop(node, visited *Node) {
// If there have already been errors printed,
// those errors probably confused us and
// there might not be a loop. Let the user
// fix those first.
flusherrors()
if nerrors > 0 {
errorexit()
}
// Find the index of node and visited in the initlist.
var nodeindex, visitedindex int
for ; s.initlist[nodeindex] != node; nodeindex++ {
}
for ; s.initlist[visitedindex] != visited; visitedindex++ {
}
// There is a loop involving visited. We know about node and
// initlist = n1 <- ... <- visited <- ... <- node <- ...
fmt.Printf("%v: initialization loop:\n", visited.Line())
// Print visited -> ... -> n1 -> node.
for _, n := range s.initlist[visitedindex:] {
fmt.Printf("\t%v %v refers to\n", n.Line(), n.Sym)
}
// Print node -> ... -> visited.
for _, n := range s.initlist[nodeindex:visitedindex] {
fmt.Printf("\t%v %v refers to\n", n.Line(), n.Sym)
}
fmt.Printf("\t%v %v\n", visited.Line(), visited.Sym)
errorexit()
}
// recurse over n, doing init1 everywhere.
func (s *InitSchedule) init2(n *Node) {
if n == nil || n.Initorder() == InitDone {
return
}
if n.Op == ONAME && n.Ninit.Len() != 0 {
Fatalf("name %v with ninit: %+v\n", n.Sym, n)
}
s.init1(n)
s.init2(n.Left)
s.init2(n.Right)
s.init2list(n.Ninit)
s.init2list(n.List)
s.init2list(n.Rlist)
s.init2list(n.Nbody)
switch n.Op {
case OCLOSURE:
s.init2list(n.Func.Closure.Nbody)
case ODOTMETH, OCALLPART:
s.init2(asNode(n.Type.FuncType().Nname))
s.append(n)
}
}
func (s *InitSchedule) init2list(l Nodes) {
for _, n := range l.Slice() {
s.init2(n)
}
}
func (s *InitSchedule) initreorder(l []*Node) {
for _, n := range l {
switch n.Op {
case ODCLFUNC, ODCLCONST, ODCLTYPE:
continue
}
s.initreorder(n.Ninit.Slice())
n.Ninit.Set(nil)
s.init1(n)
}
}
// initfix computes initialization order for a list l of top-level
// declarations and outputs the corresponding list of statements
// to include in the init() function body.
func initfix(l []*Node) []*Node {
s := InitSchedule{
initplans: make(map[*Node]*InitPlan),
inittemps: make(map[*Node]*Node),
// tryStaticInit attempts to statically execute an initialization
// statement and reports whether it succeeded.
func (s *InitSchedule) tryStaticInit(n *Node) bool {
// Only worry about simple "l = r" assignments. Multiple
// variable/expression OAS2 assignments have already been
// replaced by multiple simple OAS assignments, and the other
// OAS2* assignments mostly necessitate dynamic execution
// anyway.
if n.Op != OAS {
return false
}
lno := lineno
s.initreorder(l)
lineno = lno
return s.out
}
// compilation of top-level (static) assignments
// into DATA statements if at all possible.
func (s *InitSchedule) staticinit(n *Node) bool {
if n.Op != ONAME || n.Class() != PEXTERN || n.Name.Defn == nil || n.Name.Defn.Op != OAS {
Fatalf("staticinit")
if n.Left.isBlank() && candiscard(n.Right) {
return true
}
lineno = n.Pos
l := n.Name.Defn.Left
r := n.Name.Defn.Right
return s.staticassign(l, r)
lno := setlineno(n)
defer func() { lineno = lno }()
return s.staticassign(n.Left, n.Right)
}
// like staticassign but we are copying an already
......
......@@ -12,6 +12,7 @@ import (
"cmd/compile/internal/types"
"cmd/internal/obj"
"cmd/internal/src"
"sort"
)
// A Node is a single node in the syntax tree.
......@@ -970,3 +971,30 @@ func (q *nodeQueue) popLeft() *Node {
q.head++
return n
}
// NodeSet is a set of Nodes.
type NodeSet map[*Node]struct{}
// Has reports whether s contains n.
func (s NodeSet) Has(n *Node) bool {
_, isPresent := s[n]
return isPresent
}
// Add adds n to s.
func (s *NodeSet) Add(n *Node) {
if *s == nil {
*s = make(map[*Node]struct{})
}
(*s)[n] = struct{}{}
}
// Sorted returns s sorted according to less.
func (s NodeSet) Sorted(less func(*Node, *Node) bool) []*Node {
var res []*Node
for n := range s {
res = append(res, n)
}
sort.Slice(res, func(i, j int) bool { return less(res[i], res[j]) })
return res
}
// run
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package main
var (
_ = d
_ = f("_", c, b)
a = f("a")
b = f("b")
c = f("c")
d = f("d")
)
func f(s string, rest ...int) int {
print(s)
return 0
}
func main() {
println()
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment