Commit 68050ac7 authored by Rob Pike's avatar Rob Pike Committed by Russ Cox

tutorial,effective_go: prepare for error change

R=adg, rsc
CC=golang-dev
https://golang.org/cl/5316068
parent 451a1fa4
......@@ -221,7 +221,7 @@ starts with the name being declared.
<pre>
// Compile parses a regular expression and returns, if successful, a Regexp
// object that can be used to match against text.
func Compile(str string) (regexp *Regexp, error os.Error) {
func Compile(str string) (regexp *Regexp, err error) {
</pre>
<p>
......@@ -233,9 +233,9 @@ Since the whole declaration is presented, such a comment can often be perfunctor
<pre>
// Error codes returned by failures to parse an expression.
var (
ErrInternal = os.NewError("regexp: internal error")
ErrUnmatchedLpar = os.NewError("regexp: unmatched '('")
ErrUnmatchedRpar = os.NewError("regexp: unmatched ')'")
ErrInternal = errors.New("regexp: internal error")
ErrUnmatchedLpar = errors.New("regexp: unmatched '('")
ErrUnmatchedRpar = errors.New("regexp: unmatched ')'")
...
)
</pre>
......@@ -717,12 +717,12 @@ The signature of <code>*File.Write</code> in package <code>os</code> is:
</p>
<pre>
func (file *File) Write(b []byte) (n int, err Error)
func (file *File) Write(b []byte) (n int, err error)
</pre>
<p>
and as the documentation says, it returns the number of bytes
written and a non-nil <code>Error</code> when <code>n</code>
written and a non-nil <code>error</code> when <code>n</code>
<code>!=</code> <code>len(b)</code>.
This is a common style; see the section on error handling for more examples.
</p>
......@@ -788,7 +788,7 @@ of <code>io.ReadFull</code> that uses them well:
</p>
<pre>
func ReadFull(r Reader, buf []byte) (n int, err os.Error) {
func ReadFull(r Reader, buf []byte) (n int, err error) {
for len(buf) &gt; 0 &amp;&amp; err == nil {
var nr int
nr, err = r.Read(buf)
......@@ -812,7 +812,7 @@ canonical examples are unlocking a mutex or closing a file.
<pre>
// Contents returns the file's contents as a string.
func Contents(filename string) (string, os.Error) {
func Contents(filename string) (string, error) {
f, err := os.Open(filename)
if err != nil {
return "", err
......@@ -1195,7 +1195,7 @@ limit of how much data to read. Here is the signature of the
<code>os</code>:
</p>
<pre>
func (file *File) Read(buf []byte) (n int, err os.Error)
func (file *File) Read(buf []byte) (n int, err error)
</pre>
<p>
The method returns the number of bytes read and an error value, if
......@@ -1211,7 +1211,7 @@ the moment, this snippet would also read the first 32 bytes of the buffer.
</p>
<pre>
var n int
var err os.Error
var err error
for i := 0; i &lt; 32; i++ {
nbytes, e := f.Read(buf[i:i+1]) // Read one byte.
if nbytes == 0 || e != nil {
......@@ -1509,7 +1509,7 @@ for its final argument to specify that an arbitrary number of parameters (of arb
can appear after the format.
</p>
<pre>
func Printf(format string, v ...interface{}) (n int, errno os.Error) {
func Printf(format string, v ...interface{}) (n int, err error) {
</pre>
<p>
Within the function <code>Printf</code>, <code>v</code> acts like a variable of type
......@@ -1760,7 +1760,7 @@ In fact, we can do even better. If we modify our function so it looks
like a standard <code>Write</code> method, like this,
</p>
<pre>
func (p *ByteSlice) Write(data []byte) (n int, err os.Error) {
func (p *ByteSlice) Write(data []byte) (n int, err error) {
slice := *p
// Again as above.
*p = slice
......@@ -2119,11 +2119,11 @@ here are their definitions.
</p>
<pre>
type Reader interface {
Read(p []byte) (n int, err os.Error)
Read(p []byte) (n int, err error)
}
type Writer interface {
Write(p []byte) (n int, err os.Error)
Write(p []byte) (n int, err error)
}
</pre>
<p>
......@@ -2185,7 +2185,7 @@ satisfy the <code>io</code> interfaces, we would also need
to provide forwarding methods, like this:
</p>
<pre>
func (rw *ReadWriter) Read(p []byte) (n int, err os.Error) {
func (rw *ReadWriter) Read(p []byte) (n int, err error) {
return rw.reader.Read(p)
}
</pre>
......@@ -2637,12 +2637,12 @@ the garbage collector for bookkeeping.
Library routines must often return some sort of error indication to
the caller. As mentioned earlier, Go's multivalue return makes it
easy to return a detailed error description alongside the normal
return value. By convention, errors have type <code>os.Error</code>,
a simple interface.
return value. By convention, errors have type <code>error</code>,
a simple built-in interface.
</p>
<pre>
type Error interface {
String() string
type error interface {
Error() string
}
</pre>
<p>
......@@ -2657,15 +2657,15 @@ For example, <code>os.Open</code> returns an <code>os.PathError</code>.
type PathError struct {
Op string // "open", "unlink", etc.
Path string // The associated file.
Error Error // Returned by the system call.
Err error // Returned by the system call.
}
func (e *PathError) String() string {
return e.Op + " " + e.Path + ": " + e.Error.String()
func (e *PathError) Error() string {
return e.Op + " " + e.Path + ": " + e.Err.Error()
}
</pre>
<p>
<code>PathError</code>'s <code>String</code> generates
<code>PathError</code>'s <code>Error</code> generates
a string like this:
</p>
<pre>
......@@ -2690,7 +2690,7 @@ is "image: unknown format".
Callers that care about the precise error details can
use a type switch or a type assertion to look for specific
errors and extract details. For <code>PathErrors</code>
this might include examining the internal <code>Error</code>
this might include examining the internal <code>Err</code>
field for recoverable failures.
</p>
......@@ -2700,7 +2700,7 @@ for try := 0; try &lt; 2; try++ {
if err == nil {
return
}
if e, ok := err.(*os.PathError); ok &amp;&amp; e.Error == os.ENOSPC {
if e, ok := err.(*os.PathError); ok &amp;&amp; e.Err == os.ENOSPC {
deleteTempFiles() // Recover some space.
continue
}
......@@ -2712,9 +2712,9 @@ for try := 0; try &lt; 2; try++ {
<p>
The usual way to report an error to a caller is to return an
<code>os.Error</code> as an extra return value. The canonical
<code>error</code> as an extra return value. The canonical
<code>Read</code> method is a well-known instance; it returns a byte
count and an <code>os.Error</code>. But what if the error is
count and an <code>error</code>. But what if the error is
unrecoverable? Sometimes the program simply cannot continue.
</p>
......@@ -2830,14 +2830,14 @@ cleanly by calling <code>panic</code>. We can use that idea to
simplify error handling in complex software. Let's look at an
idealized excerpt from the <code>regexp</code> package, which reports
parsing errors by calling <code>panic</code> with a local
<code>Error</code> type. Here's the definition of <code>Error</code>,
error type. Here's the definition of <code>Error</code>,
an <code>error</code> method, and the <code>Compile</code> function.
</p>
<pre>
// Error is the type of a parse error; it satisfies os.Error.
// Error is the type of a parse error; it satisfies the error interface.
type Error string
func (e Error) String() string {
func (e Error) Error() string {
return string(e)
}
......@@ -2848,7 +2848,7 @@ func (regexp *Regexp) error(err string) {
}
// Compile returns a parsed representation of the regular expression.
func Compile(str string) (regexp *Regexp, err os.Error) {
func Compile(str string) (regexp *Regexp, err error) {
regexp = new(Regexp)
// doParse will panic if there is a parse error.
defer func() {
......@@ -2866,7 +2866,7 @@ If <code>doParse</code> panics, the recovery block will set the
return value to <code>nil</code>&mdash;deferred functions can modify
named return values. It then will then check, in the assignment
to <code>err</code>, that the problem was a parse error by asserting
that it has type <code>Error</code>.
that it has the local type <code>Error</code>.
If it does not, the type assertion will fail, causing a run-time error
that continues the stack unwinding as though nothing had interrupted
it. This check means that if something unexpected happens, such
......@@ -2884,7 +2884,7 @@ the parse stack by hand.
<p>
Useful though this pattern is, it should be used only within a package.
<code>Parse</code> turns its internal <code>panic</code> calls into
<code>os.Error</code> values; it does not expose <code>panics</code>
<code>error</code> values; it does not expose <code>panics</code>
to its client. That is a good rule to follow.
</p>
......
......@@ -221,7 +221,7 @@ starts with the name being declared.
<pre>
// Compile parses a regular expression and returns, if successful, a Regexp
// object that can be used to match against text.
func Compile(str string) (regexp *Regexp, error os.Error) {
func Compile(str string) (regexp *Regexp, err error) {
</pre>
<p>
......@@ -233,9 +233,9 @@ Since the whole declaration is presented, such a comment can often be perfunctor
<pre>
// Error codes returned by failures to parse an expression.
var (
ErrInternal = os.NewError("regexp: internal error")
ErrUnmatchedLpar = os.NewError("regexp: unmatched '('")
ErrUnmatchedRpar = os.NewError("regexp: unmatched ')'")
ErrInternal = errors.New("regexp: internal error")
ErrUnmatchedLpar = errors.New("regexp: unmatched '('")
ErrUnmatchedRpar = errors.New("regexp: unmatched ')'")
...
)
</pre>
......@@ -717,12 +717,12 @@ The signature of <code>*File.Write</code> in package <code>os</code> is:
</p>
<pre>
func (file *File) Write(b []byte) (n int, err Error)
func (file *File) Write(b []byte) (n int, err error)
</pre>
<p>
and as the documentation says, it returns the number of bytes
written and a non-nil <code>Error</code> when <code>n</code>
written and a non-nil <code>error</code> when <code>n</code>
<code>!=</code> <code>len(b)</code>.
This is a common style; see the section on error handling for more examples.
</p>
......@@ -788,7 +788,7 @@ of <code>io.ReadFull</code> that uses them well:
</p>
<pre>
func ReadFull(r Reader, buf []byte) (n int, err os.Error) {
func ReadFull(r Reader, buf []byte) (n int, err error) {
for len(buf) &gt; 0 &amp;&amp; err == nil {
var nr int
nr, err = r.Read(buf)
......@@ -812,7 +812,7 @@ canonical examples are unlocking a mutex or closing a file.
<pre>
// Contents returns the file's contents as a string.
func Contents(filename string) (string, os.Error) {
func Contents(filename string) (string, error) {
f, err := os.Open(filename)
if err != nil {
return "", err
......@@ -1195,7 +1195,7 @@ limit of how much data to read. Here is the signature of the
<code>os</code>:
</p>
<pre>
func (file *File) Read(buf []byte) (n int, err os.Error)
func (file *File) Read(buf []byte) (n int, err error)
</pre>
<p>
The method returns the number of bytes read and an error value, if
......@@ -1211,7 +1211,7 @@ the moment, this snippet would also read the first 32 bytes of the buffer.
</p>
<pre>
var n int
var err os.Error
var err error
for i := 0; i &lt; 32; i++ {
nbytes, e := f.Read(buf[i:i+1]) // Read one byte.
if nbytes == 0 || e != nil {
......@@ -1509,7 +1509,7 @@ for its final argument to specify that an arbitrary number of parameters (of arb
can appear after the format.
</p>
<pre>
func Printf(format string, v ...interface{}) (n int, errno os.Error) {
func Printf(format string, v ...interface{}) (n int, err error) {
</pre>
<p>
Within the function <code>Printf</code>, <code>v</code> acts like a variable of type
......@@ -1724,7 +1724,7 @@ In fact, we can do even better. If we modify our function so it looks
like a standard <code>Write</code> method, like this,
</p>
<pre>
func (p *ByteSlice) Write(data []byte) (n int, err os.Error) {
func (p *ByteSlice) Write(data []byte) (n int, err error) {
slice := *p
// Again as above.
*p = slice
......@@ -2057,11 +2057,11 @@ here are their definitions.
</p>
<pre>
type Reader interface {
Read(p []byte) (n int, err os.Error)
Read(p []byte) (n int, err error)
}
type Writer interface {
Write(p []byte) (n int, err os.Error)
Write(p []byte) (n int, err error)
}
</pre>
<p>
......@@ -2123,7 +2123,7 @@ satisfy the <code>io</code> interfaces, we would also need
to provide forwarding methods, like this:
</p>
<pre>
func (rw *ReadWriter) Read(p []byte) (n int, err os.Error) {
func (rw *ReadWriter) Read(p []byte) (n int, err error) {
return rw.reader.Read(p)
}
</pre>
......@@ -2575,12 +2575,12 @@ the garbage collector for bookkeeping.
Library routines must often return some sort of error indication to
the caller. As mentioned earlier, Go's multivalue return makes it
easy to return a detailed error description alongside the normal
return value. By convention, errors have type <code>os.Error</code>,
a simple interface.
return value. By convention, errors have type <code>error</code>,
a simple built-in interface.
</p>
<pre>
type Error interface {
String() string
type error interface {
Error() string
}
</pre>
<p>
......@@ -2595,15 +2595,15 @@ For example, <code>os.Open</code> returns an <code>os.PathError</code>.
type PathError struct {
Op string // "open", "unlink", etc.
Path string // The associated file.
Error Error // Returned by the system call.
Err error // Returned by the system call.
}
func (e *PathError) String() string {
return e.Op + " " + e.Path + ": " + e.Error.String()
func (e *PathError) Error() string {
return e.Op + " " + e.Path + ": " + e.Err.Error()
}
</pre>
<p>
<code>PathError</code>'s <code>String</code> generates
<code>PathError</code>'s <code>Error</code> generates
a string like this:
</p>
<pre>
......@@ -2628,7 +2628,7 @@ is "image: unknown format".
Callers that care about the precise error details can
use a type switch or a type assertion to look for specific
errors and extract details. For <code>PathErrors</code>
this might include examining the internal <code>Error</code>
this might include examining the internal <code>Err</code>
field for recoverable failures.
</p>
......@@ -2638,7 +2638,7 @@ for try := 0; try &lt; 2; try++ {
if err == nil {
return
}
if e, ok := err.(*os.PathError); ok &amp;&amp; e.Error == os.ENOSPC {
if e, ok := err.(*os.PathError); ok &amp;&amp; e.Err == os.ENOSPC {
deleteTempFiles() // Recover some space.
continue
}
......@@ -2650,9 +2650,9 @@ for try := 0; try &lt; 2; try++ {
<p>
The usual way to report an error to a caller is to return an
<code>os.Error</code> as an extra return value. The canonical
<code>error</code> as an extra return value. The canonical
<code>Read</code> method is a well-known instance; it returns a byte
count and an <code>os.Error</code>. But what if the error is
count and an <code>error</code>. But what if the error is
unrecoverable? Sometimes the program simply cannot continue.
</p>
......@@ -2768,14 +2768,14 @@ cleanly by calling <code>panic</code>. We can use that idea to
simplify error handling in complex software. Let's look at an
idealized excerpt from the <code>regexp</code> package, which reports
parsing errors by calling <code>panic</code> with a local
<code>Error</code> type. Here's the definition of <code>Error</code>,
error type. Here's the definition of <code>Error</code>,
an <code>error</code> method, and the <code>Compile</code> function.
</p>
<pre>
// Error is the type of a parse error; it satisfies os.Error.
// Error is the type of a parse error; it satisfies the error interface.
type Error string
func (e Error) String() string {
func (e Error) Error() string {
return string(e)
}
......@@ -2786,7 +2786,7 @@ func (regexp *Regexp) error(err string) {
}
// Compile returns a parsed representation of the regular expression.
func Compile(str string) (regexp *Regexp, err os.Error) {
func Compile(str string) (regexp *Regexp, err error) {
regexp = new(Regexp)
// doParse will panic if there is a parse error.
defer func() {
......@@ -2804,7 +2804,7 @@ If <code>doParse</code> panics, the recovery block will set the
return value to <code>nil</code>&mdash;deferred functions can modify
named return values. It then will then check, in the assignment
to <code>err</code>, that the problem was a parse error by asserting
that it has type <code>Error</code>.
that it has the local type <code>Error</code>.
If it does not, the type assertion will fail, causing a run-time error
that continues the stack unwinding as though nothing had interrupted
it. This check means that if something unexpected happens, such
......@@ -2822,7 +2822,7 @@ the parse stack by hand.
<p>
Useful though this pattern is, it should be used only within a package.
<code>Parse</code> turns its internal <code>panic</code> calls into
<code>os.Error</code> values; it does not expose <code>panics</code>
<code>error</code> values; it does not expose <code>panics</code>
to its client. That is a good rule to follow.
</p>
......
......@@ -578,11 +578,13 @@ to see that). Finally, <code>OpenFile</code> returns two values: a pointer to t
and the error. If <code>syscall.Open</code> fails, the file descriptor <code>r</code> will
be negative and <code>newFile</code> will return <code>nil</code>.
<p>
About those errors: The <code>os</code> library includes a general notion of an error.
About those errors: The Go language includes a general notion of an error:
a pre-defined type <code>error</code> with properties (described below)
that make it a good basis for representing and handling errors.
It's a good idea to use its facility in your own interfaces, as we do here, for
consistent error handling throughout Go code. In <code>Open</code> we use a
conversion to translate Unix's integer <code>errno</code> value into the integer type
<code>os.Errno</code>, which implements <code>os.Error</code>.
<code>os.Errno</code>, which is an implementation of <code>error</code>
<p>
Why <code>OpenFile</code> and not <code>Open</code>? To mimic Go's <code>os</code> package, which
our exercise is emulating. The <code>os</code> package takes the opportunity
......@@ -668,7 +670,7 @@ array, not just for <code>structs</code>. We'll see an example with arrays lat
The <code>String</code> method is so called because of a printing convention we'll
describe later.
<p>
The methods use the public variable <code>os.EINVAL</code> to return the (<code>os.Error</code>
The methods use the public variable <code>os.EINVAL</code> to return the (<code>error</code>
version of the) Unix error code <code>EINVAL</code>. The <code>os</code> library defines a standard
set of such error values.
<p>
......@@ -733,13 +735,13 @@ func cat(f *file.File) {
for {
switch nr, er := f.Read(buf[:]); true {
case nr &lt; 0:
fmt.Fprintf(os.Stderr, &#34;cat: error reading from %s: %s\n&#34;, f.String(), er.String())
fmt.Fprintf(os.Stderr, &#34;cat: error reading from %s: %s\n&#34;, f, er)
os.Exit(1)
case nr == 0: // EOF
return
case nr &gt; 0:
if nw, ew := file.Stdout.Write(buf[0:nr]); nw != nr {
fmt.Fprintf(os.Stderr, &#34;cat: error writing from %s: %s\n&#34;, f.String(), ew.String())
fmt.Fprintf(os.Stderr, &#34;cat: error writing from %s: %s\n&#34;, f, ew)
os.Exit(1)
}
}
......@@ -850,14 +852,14 @@ and use it from within a mostly unchanged <code>cat</code> function:
for {
switch nr, er := r.Read(buf[:]); {
case nr &lt; 0:
fmt.Fprintf(os.Stderr, &#34;cat: error reading from %s: %s\n&#34;, r.String(), er.String())
fmt.Fprintf(os.Stderr, &#34;cat: error reading from %s: %s\n&#34;, r, er)
os.Exit(1)
case nr == 0: // EOF
return
case nr &gt; 0:
nw, ew := file.Stdout.Write(buf[0:nr])
if nw != nr {
fmt.Fprintf(os.Stderr, &#34;cat: error writing from %s: %s\n&#34;, r.String(), ew.String())
fmt.Fprintf(os.Stderr, &#34;cat: error writing from %s: %s\n&#34;, r, ew)
os.Exit(1)
}
}
......@@ -990,7 +992,7 @@ implements <code>Printf</code>, <code>Fprintf</code>, and so on.
Within the <code>fmt</code> package, <code>Printf</code> is declared with this signature:
<p>
<pre>
Printf(format string, v ...interface{}) (n int, errno os.Error)
Printf(format string, v ...interface{}) (n int, errno error)
</pre>
<p>
The token <code>...</code> introduces a variable-length argument list that in C would
......@@ -1127,6 +1129,21 @@ If the value does not satisfy the interface, <code>ok</code> will be false.
In this snippet the name <code>Stringer</code> follows the convention that we add ''[e]r''
to interfaces describing simple method sets like this.
<p>
A related interface is that defined by the <code>error</code> builtin type, which is just
<p>
<pre>
type error interface {
Error() string
}
</pre>
<p>
Other than the method name (<code>Error</code> vs. <code>String</code>), this looks like
a <code>Stringer</code>; the different name guarantees that types that implement <code>Stringer</code>
don't accidentally satisfy the <code>error</code> interface.
Naturally, <code>Printf</code> and its relatives recognize the <code>error</code> interface,
just as they do <code>Stringer</code>,
so it's trivial to print an error as a string.
<p>
One last wrinkle. To complete the suite, besides <code>Printf</code> etc. and <code>Sprintf</code>
etc., there are also <code>Fprintf</code> etc. Unlike in C, <code>Fprintf</code>'s first argument is
not a file. Instead, it is a variable of type <code>io.Writer</code>, which is an
......@@ -1134,7 +1151,7 @@ interface type defined in the <code>io</code> library:
<p>
<pre>
type Writer interface {
Write(p []byte) (n int, err os.Error)
Write(p []byte) (n int, err error)
}
</pre>
<p>
......
......@@ -490,11 +490,13 @@ to see that). Finally, <code>OpenFile</code> returns two values: a pointer to t
and the error. If <code>syscall.Open</code> fails, the file descriptor <code>r</code> will
be negative and <code>newFile</code> will return <code>nil</code>.
<p>
About those errors: The <code>os</code> library includes a general notion of an error.
About those errors: The Go language includes a general notion of an error:
a pre-defined type <code>error</code> with properties (described below)
that make it a good basis for representing and handling errors.
It's a good idea to use its facility in your own interfaces, as we do here, for
consistent error handling throughout Go code. In <code>Open</code> we use a
conversion to translate Unix's integer <code>errno</code> value into the integer type
<code>os.Errno</code>, which implements <code>os.Error</code>.
<code>os.Errno</code>, which is an implementation of <code>error</code>
<p>
Why <code>OpenFile</code> and not <code>Open</code>? To mimic Go's <code>os</code> package, which
our exercise is emulating. The <code>os</code> package takes the opportunity
......@@ -527,7 +529,7 @@ array, not just for <code>structs</code>. We'll see an example with arrays lat
The <code>String</code> method is so called because of a printing convention we'll
describe later.
<p>
The methods use the public variable <code>os.EINVAL</code> to return the (<code>os.Error</code>
The methods use the public variable <code>os.EINVAL</code> to return the (<code>error</code>
version of the) Unix error code <code>EINVAL</code>. The <code>os</code> library defines a standard
set of such error values.
<p>
......@@ -692,7 +694,7 @@ implements <code>Printf</code>, <code>Fprintf</code>, and so on.
Within the <code>fmt</code> package, <code>Printf</code> is declared with this signature:
<p>
<pre>
Printf(format string, v ...interface{}) (n int, errno os.Error)
Printf(format string, v ...interface{}) (n int, errno error)
</pre>
<p>
The token <code>...</code> introduces a variable-length argument list that in C would
......@@ -801,6 +803,21 @@ If the value does not satisfy the interface, <code>ok</code> will be false.
In this snippet the name <code>Stringer</code> follows the convention that we add ''[e]r''
to interfaces describing simple method sets like this.
<p>
A related interface is that defined by the <code>error</code> builtin type, which is just
<p>
<pre>
type error interface {
Error() string
}
</pre>
<p>
Other than the method name (<code>Error</code> vs. <code>String</code>), this looks like
a <code>Stringer</code>; the different name guarantees that types that implement <code>Stringer</code>
don't accidentally satisfy the <code>error</code> interface.
Naturally, <code>Printf</code> and its relatives recognize the <code>error</code> interface,
just as they do <code>Stringer</code>,
so it's trivial to print an error as a string.
<p>
One last wrinkle. To complete the suite, besides <code>Printf</code> etc. and <code>Sprintf</code>
etc., there are also <code>Fprintf</code> etc. Unlike in C, <code>Fprintf</code>'s first argument is
not a file. Instead, it is a variable of type <code>io.Writer</code>, which is an
......@@ -808,7 +825,7 @@ interface type defined in the <code>io</code> library:
<p>
<pre>
type Writer interface {
Write(p []byte) (n int, err os.Error)
Write(p []byte) (n int, err error)
}
</pre>
<p>
......
......@@ -17,13 +17,13 @@ func cat(f *file.File) {
for {
switch nr, er := f.Read(buf[:]); true {
case nr < 0:
fmt.Fprintf(os.Stderr, "cat: error reading from %s: %s\n", f.String(), er.String())
fmt.Fprintf(os.Stderr, "cat: error reading from %s: %s\n", f, er)
os.Exit(1)
case nr == 0: // EOF
return
case nr > 0:
if nw, ew := file.Stdout.Write(buf[0:nr]); nw != nr {
fmt.Fprintf(os.Stderr, "cat: error writing from %s: %s\n", f.String(), ew.String())
fmt.Fprintf(os.Stderr, "cat: error writing from %s: %s\n", f, ew)
os.Exit(1)
}
}
......
......@@ -59,14 +59,14 @@ func cat(r reader) {
for {
switch nr, er := r.Read(buf[:]); {
case nr < 0:
fmt.Fprintf(os.Stderr, "cat: error reading from %s: %s\n", r.String(), er.String())
fmt.Fprintf(os.Stderr, "cat: error reading from %s: %s\n", r, er)
os.Exit(1)
case nr == 0: // EOF
return
case nr > 0:
nw, ew := file.Stdout.Write(buf[0:nr])
if nw != nr {
fmt.Fprintf(os.Stderr, "cat: error writing from %s: %s\n", r.String(), ew.String())
fmt.Fprintf(os.Stderr, "cat: error writing from %s: %s\n", r, ew)
os.Exit(1)
}
}
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment