Commit 69d0f0cc authored by Robert Griesemer's avatar Robert Griesemer

exp/types: checking of type switches and range clauses

Also:
- better handling of type assertions
- implemented built-in error type
- first cut at handling variadic function signatures
- several bug fixes

R=rsc, rogpeppe
CC=golang-dev
https://golang.org/cl/6846131
parent 42a854b7
......@@ -188,10 +188,13 @@ func (check *checker) object(obj *ast.Object, cycleOk bool) {
case ast.Fun:
fdecl := obj.Decl.(*ast.FuncDecl)
check.collectParams(fdecl.Recv) // ensure method base is type-checked
check.collectParams(fdecl.Recv, false) // ensure method base is type-checked
ftyp := check.typ(fdecl.Type, cycleOk).(*Signature)
obj.Type = ftyp
// functions implemented elsewhere (say in assembly) have no body
if fdecl.Body != nil {
check.function(ftyp, fdecl.Body)
}
default:
panic("unreachable")
......
......@@ -278,7 +278,7 @@ func isRepresentableConst(x interface{}, as BasicKind) bool {
return as == String || as == UntypedString
case nilType:
return as == UntypedNil
return as == UntypedNil || as == UnsafePointer
default:
unreachable()
......
......@@ -12,20 +12,36 @@ import (
"strconv"
)
// TODO(gri)
// TODO(gri) Cleanups
// - don't print error messages referring to invalid types (they are likely spurious errors)
// - simplify invalid handling: maybe just use Typ[Invalid] as marker, get rid of invalid Mode for values?
// - rethink error handling: should all callers check if x.mode == valid after making a call?
// - at the moment, iota is passed around almost everywhere - in many places we know it cannot be used
func (check *checker) collectParams(list *ast.FieldList) (params ObjList, isVariadic bool) {
// TODO(gri) API issues
// - clients need access to result type information (tuples)
// - clients need access to constant values
// - clients need access to built-in type information
// TODO(gri) Bugs
// - expression hints are (correctly) used untyped for composite literal components, but also
// in possibly overlapping use as hints for shift expressions - investigate
func (check *checker) collectParams(list *ast.FieldList, variadicOk bool) (params ObjList, isVariadic bool) {
if list == nil {
return
}
for _, field := range list.List {
var last *ast.Object
for i, field := range list.List {
ftype := field.Type
if t, ok := ftype.(*ast.Ellipsis); ok {
if t, _ := ftype.(*ast.Ellipsis); t != nil {
ftype = t.Elt
if variadicOk && i == len(list.List)-1 {
isVariadic = true
} else {
check.invalidAST(field.Pos(), "... not permitted")
// ok to continue
}
}
// the parser ensures that f.Tag is nil and we don't
// care if a constructed AST contains a non-nil tag
......@@ -36,14 +52,26 @@ func (check *checker) collectParams(list *ast.FieldList) (params ObjList, isVari
obj := name.Obj
obj.Type = typ
params = append(params, obj)
last = obj
}
} else {
// anonymous parameter
obj := ast.NewObj(ast.Var, "")
obj.Type = typ
params = append(params, obj)
last = obj
}
}
// For a variadic function, change the last parameter's object type
// from T to []T (this is the type used inside the function), but
// keep a copy of the object with the original type T in the params
// list (this is the externally visible type).
if isVariadic {
// if isVariadic is set, last must exist and len(params) > 0
copy := *last
last.Type = &Slice{Elt: last.Type.(Type)}
params[len(params)-1] = &copy
}
return
}
......@@ -118,9 +146,9 @@ func (check *checker) collectFields(list *ast.FieldList, cycleOk bool) (fields [
// anonymous field
switch t := deref(typ).(type) {
case *Basic:
fields = append(fields, &StructField{t.Name, t, tag, true})
fields = append(fields, &StructField{t.Name, typ, tag, true})
case *NamedType:
fields = append(fields, &StructField{t.Obj.Name, t, tag, true})
fields = append(fields, &StructField{t.Obj.Name, typ, tag, true})
default:
if typ != Typ[Invalid] {
check.invalidAST(f.Type.Pos(), "anonymous field type %s must be named", typ)
......@@ -198,7 +226,7 @@ func (check *checker) unary(x *operand, op token.Token) {
}
// Typed constants must be representable in
// their type after each constant operation.
check.isRepresentable(x, x.typ.(*Basic))
check.isRepresentable(x, underlying(x.typ).(*Basic))
return
}
......@@ -526,7 +554,30 @@ func (check *checker) indexedElts(elts []ast.Expr, typ Type, length int64, iota
return max
}
func (check *checker) callRecord(x *operand) {
func (check *checker) argument(sig *Signature, i int, arg ast.Expr) {
var par *ast.Object
if n := len(sig.Params); i < n {
par = sig.Params[i]
} else if sig.IsVariadic {
par = sig.Params[n-1]
} else {
check.errorf(arg.Pos(), "too many arguments")
return
}
// TODO(gri) deal with ... last argument
var z, x operand
z.mode = variable
z.expr = nil // TODO(gri) can we do better here?
z.typ = par.Type.(Type) // TODO(gri) should become something like checkObj(&z, ...) eventually
check.expr(&x, arg, z.typ, -1)
if x.mode == invalid {
return // ignore this argument
}
check.assignOperand(&z, &x)
}
func (check *checker) recordType(x *operand) {
if x.mode != invalid {
check.mapf(x.expr, x.typ)
}
......@@ -545,7 +596,7 @@ func (check *checker) rawExpr(x *operand, e ast.Expr, hint Type, iota int, cycle
}
if check.mapf != nil {
defer check.callRecord(x)
defer check.recordType(x)
}
switch e := e.(type) {
......@@ -856,6 +907,14 @@ func (check *checker) rawExpr(x *operand, e ast.Expr, hint Type, iota int, cycle
}
x.typ = typ.Elt
case *Pointer:
if typ, _ := underlying(typ.Base).(*Array); typ != nil {
valid = true
length = typ.Len
x.mode = variable
x.typ = typ.Elt
}
case *Slice:
valid = true
x.mode = variable
......@@ -870,6 +929,7 @@ func (check *checker) rawExpr(x *operand, e ast.Expr, hint Type, iota int, cycle
}
x.mode = valueok
x.typ = typ.Elt
x.expr = e
return
}
......@@ -915,6 +975,14 @@ func (check *checker) rawExpr(x *operand, e ast.Expr, hint Type, iota int, cycle
}
x.typ = &Slice{Elt: typ.Elt}
case *Pointer:
if typ, _ := underlying(typ.Base).(*Array); typ != nil {
valid = true
length = typ.Len + 1 // +1 for slice
x.mode = variable
x.typ = &Slice{Elt: typ.Elt}
}
case *Slice:
valid = true
x.mode = variable
......@@ -945,14 +1013,36 @@ func (check *checker) rawExpr(x *operand, e ast.Expr, hint Type, iota int, cycle
case *ast.TypeAssertExpr:
check.expr(x, e.X, hint, iota)
if _, ok := underlying(x.typ).(*Interface); !ok {
check.invalidOp(e.X.Pos(), "non-interface type %s in type assertion", x.typ)
if x.mode == invalid {
goto Error
}
var T *Interface
if T, _ = underlying(x.typ).(*Interface); T == nil {
check.invalidOp(x.pos(), "%s is not an interface", x)
goto Error
}
// x.(type) expressions are handled explicitly in type switches
if e.Type == nil {
check.errorf(e.Pos(), "use of .(type) outside type switch")
goto Error
}
typ := check.typ(e.Type, false)
if typ == Typ[Invalid] {
goto Error
}
if method, wrongType := missingMethod(typ, T); method != nil {
var msg string
if wrongType {
msg = "%s cannot have dynamic type %s (wrong type for method %s)"
} else {
msg = "%s cannot have dynamic type %s (missing method %s)"
}
check.errorf(e.Type.Pos(), msg, x, typ, method.Name)
// ok to continue
}
// TODO(gri) some type asserts are compile-time decidable
x.mode = valueok
x.expr = e
x.typ = check.typ(e.Type, false)
x.typ = typ
case *ast.CallExpr:
check.exprOrType(x, e.Fun, nil, iota, false)
......@@ -962,21 +1052,11 @@ func (check *checker) rawExpr(x *operand, e ast.Expr, hint Type, iota int, cycle
check.conversion(x, e, x.typ, iota)
} else if sig, ok := underlying(x.typ).(*Signature); ok {
// check parameters
// TODO(gri) complete this
// - deal with various forms of calls
// - handle variadic calls
if len(sig.Params) == len(e.Args) {
var z, x operand
z.mode = variable
// TODO(gri)
// - deal with single multi-valued function arguments: f(g())
// - variadic functions only partially addressed
for i, arg := range e.Args {
z.expr = nil // TODO(gri) can we do better here?
z.typ = sig.Params[i].Type.(Type) // TODO(gri) should become something like checkObj(&z, ...) eventually
check.expr(&x, arg, z.typ, iota)
if x.mode == invalid {
goto Error
}
check.assignOperand(&z, &x)
}
check.argument(sig, i, arg)
}
// determine result
......@@ -1061,8 +1141,8 @@ func (check *checker) rawExpr(x *operand, e ast.Expr, hint Type, iota int, cycle
x.typ = &Struct{Fields: check.collectFields(e.Fields, cycleOk)}
case *ast.FuncType:
params, isVariadic := check.collectParams(e.Params)
results, _ := check.collectParams(e.Results)
params, isVariadic := check.collectParams(e.Params, true)
results, _ := check.collectParams(e.Results, false)
x.mode = typexpr
x.typ = &Signature{Recv: nil, Params: params, Results: results, IsVariadic: isVariadic}
......@@ -1114,10 +1194,7 @@ func (check *checker) expr(x *operand, e ast.Expr, hint Type, iota int) {
}
}
// expr is like rawExpr but reports an error if e doesn't represents a type.
// It returns e's type, or Typ[Invalid] if an error occured.
//
func (check *checker) typ(e ast.Expr, cycleOk bool) Type {
func (check *checker) rawTyp(e ast.Expr, cycleOk, nilOk bool) Type {
var x operand
check.rawExpr(&x, e, nil, -1, cycleOk)
switch x.mode {
......@@ -1127,8 +1204,27 @@ func (check *checker) typ(e ast.Expr, cycleOk bool) Type {
check.errorf(x.pos(), "%s used as type", &x)
case typexpr:
return x.typ
case constant:
if nilOk && x.isNil() {
return nil
}
fallthrough
default:
check.errorf(x.pos(), "%s is not a type", &x)
}
return Typ[Invalid]
}
// typOrNil is like rawExpr but reports an error if e doesn't represents a type or the predeclared value nil.
// It returns e's type, nil, or Typ[Invalid] if an error occured.
//
func (check *checker) typOrNil(e ast.Expr, cycleOk bool) Type {
return check.rawTyp(e, cycleOk, true)
}
// typ is like rawExpr but reports an error if e doesn't represents a type.
// It returns e's type, or Typ[Invalid] if an error occured.
//
func (check *checker) typ(e ast.Expr, cycleOk bool) Type {
return check.rawTyp(e, cycleOk, false)
}
......@@ -119,25 +119,6 @@ func (x *operand) setConst(tok token.Token, lit string) {
}
}
// implements reports whether x implements interface T.
func (x *operand) implements(T *Interface) bool {
if x.mode == invalid {
return true // avoid spurious errors
}
// x implements T if it implements all methods of T.
// TODO(gri): distinguish pointer and non-pointer receivers
for _, m := range T.Methods {
mode, typ := lookupField(x.typ, m.Name)
if mode == invalid || !isIdentical(typ, m.Type.(Type)) {
// TODO(gri) should report which method is missing
return false
}
}
return true
}
// isNil reports whether x is the predeclared nil constant.
func (x *operand) isNil() bool {
return x.mode == constant && x.val == nilConst
......@@ -170,9 +151,11 @@ func (x *operand) isAssignable(T Type) bool {
}
// T is an interface type and x implements T
if Ti, ok := Tu.(*Interface); ok && x.implements(Ti) {
if Ti, ok := Tu.(*Interface); ok {
if m, _ := missingMethod(x.typ, Ti); m == nil {
return true
}
}
// x is a bidirectional channel value, T is a channel
// type, x's type V and T have identical element types,
......
......@@ -6,6 +6,8 @@
package types
import "go/ast"
func isNamed(typ Type) bool {
if _, ok := typ.(*Basic); ok {
return ok
......@@ -247,3 +249,34 @@ func defaultType(typ Type) Type {
}
return typ
}
// missingMethod returns (nil, false) if typ implements T, otherwise
// it returns the first missing method required by T and whether it
// is missing or simply has the wrong type.
//
func missingMethod(typ Type, T *Interface) (method *ast.Object, wrongType bool) {
// TODO(gri): distinguish pointer and non-pointer receivers
// an interface type implements T if it has no methods with conflicting signatures
// Note: This is stronger than the current spec. Should the spec require this?
if ityp, _ := underlying(typ).(*Interface); ityp != nil {
for _, m := range T.Methods {
mode, sig := lookupField(ityp, m.Name) // TODO(gri) no need to go via lookupField
if mode != invalid && !isIdentical(sig, m.Type.(Type)) {
return m, true
}
}
return
}
// a concrete type implements T if it implements all methods of T.
for _, m := range T.Methods {
mode, sig := lookupField(typ, m.Name)
if mode == invalid {
return m, false
}
if !isIdentical(sig, m.Type.(Type)) {
return m, true
}
}
return
}
......@@ -27,8 +27,8 @@ func (check *checker) assignOperand(z, x *operand) {
}
}
// assign1to1 typechecks a single assignment of the form lhs := rhs (if rhs != nil),
// or lhs := x (if rhs == nil). If decl is set, the lhs operand must be an identifier.
// assign1to1 typechecks a single assignment of the form lhs = rhs (if rhs != nil),
// or lhs = x (if rhs == nil). If decl is set, the lhs operand must be an identifier.
// If its type is not set, it is deduced from the type or value of x. If lhs has a
// type it is used as a hint when evaluating rhs, if present.
//
......@@ -226,19 +226,36 @@ func (check *checker) stmtList(list []ast.Stmt) {
}
}
func (check *checker) call(c ast.Expr) {
call, _ := c.(*ast.CallExpr)
if call == nil {
// For go/defer, the parser makes sure that we have a function call,
// so if we don't, the AST was created incorrectly elsewhere.
// TODO(gri) consider removing the checks from the parser.
check.invalidAST(c.Pos(), "%s is not a function call", c)
return
}
func (check *checker) call(call *ast.CallExpr) {
var x operand
check.rawExpr(&x, call, nil, -1, false) // don't check if value is used
// TODO(gri) If a builtin is called, the builtin must be valid in statement
// context. However, the spec doesn't say that explicitly.
// TODO(gri) If a builtin is called, the builtin must be valid in statement context.
}
func (check *checker) multipleDefaults(list []ast.Stmt) {
var first ast.Stmt
for _, s := range list {
var d ast.Stmt
switch c := s.(type) {
case *ast.CaseClause:
if len(c.List) == 0 {
d = s
}
case *ast.CommClause:
if c.Comm == nil {
d = s
}
default:
check.invalidAST(s.Pos(), "case/communication clause expected")
}
if d != nil {
if first != nil {
check.errorf(d.Pos(), "multiple defaults (first at %s)", first.Pos())
} else {
first = d
}
}
}
}
// stmt typechecks statement s.
......@@ -280,7 +297,7 @@ func (check *checker) stmt(s ast.Stmt) {
}
check.rawExpr(&x, s.X, nil, -1, false)
if x.mode == typexpr {
check.errorf(x.pos(), "%s is not an expression", x)
check.errorf(x.pos(), "%s is not an expression", &x)
}
case *ast.SendStmt:
......@@ -418,31 +435,122 @@ func (check *checker) stmt(s ast.Stmt) {
x.typ = Typ[UntypedBool]
x.val = true
}
check.multipleDefaults(s.Body.List)
for _, s := range s.Body.List {
if clause, ok := s.(*ast.CaseClause); ok {
clause, _ := s.(*ast.CaseClause)
if clause == nil {
continue // error reported before
}
for _, expr := range clause.List {
var y operand
check.expr(&y, expr, nil, -1)
// TODO(gri) x and y must be comparable
}
check.stmtList(clause.Body)
}
case *ast.TypeSwitchStmt:
check.optionalStmt(s.Init)
// A type switch guard must be of the form:
//
// TypeSwitchGuard = [ identifier ":=" ] PrimaryExpr "." "(" "type" ")" .
//
// The parser is checking syntactic correctness;
// remaining syntactic errors are considered AST errors here.
// TODO(gri) better factoring of error handling (invalid ASTs)
//
var lhs *ast.Object // lhs identifier object or nil
var rhs ast.Expr
switch guard := s.Assign.(type) {
case *ast.ExprStmt:
rhs = guard.X
case *ast.AssignStmt:
if len(guard.Lhs) != 1 || guard.Tok != token.DEFINE || len(guard.Rhs) != 1 {
check.invalidAST(s.Pos(), "incorrect form of type switch guard")
return
}
ident, _ := guard.Lhs[0].(*ast.Ident)
if ident == nil {
check.invalidAST(s.Pos(), "incorrect form of type switch guard")
return
}
lhs = ident.Obj
rhs = guard.Rhs[0]
default:
check.invalidAST(s.Pos(), "incorrect form of type switch guard")
return
}
// rhs must be of the form: expr.(type) and expr must be an interface
expr, _ := rhs.(*ast.TypeAssertExpr)
if expr == nil || expr.Type != nil {
check.invalidAST(s.Pos(), "incorrect form of type switch guard")
return
}
var x operand
check.expr(&x, expr.X, nil, -1)
if x.mode == invalid {
return
}
var T *Interface
if T, _ = underlying(x.typ).(*Interface); T == nil {
check.errorf(x.pos(), "%s is not an interface", &x)
return
}
check.multipleDefaults(s.Body.List)
for _, s := range s.Body.List {
clause, _ := s.(*ast.CaseClause)
if clause == nil {
continue // error reported before
}
// Check each type in this type switch case.
var typ Type
for _, expr := range clause.List {
typ = check.typOrNil(expr, false)
if typ != nil && typ != Typ[Invalid] {
if method, wrongType := missingMethod(typ, T); method != nil {
var msg string
if wrongType {
msg = "%s cannot have dynamic type %s (wrong type for method %s)"
} else {
check.errorf(s.Pos(), "invalid AST: case clause expected")
msg = "%s cannot have dynamic type %s (missing method %s)"
}
check.errorf(expr.Pos(), msg, &x, typ, method.Name)
// ok to continue
}
}
}
// If lhs exists, set its type for each clause.
if lhs != nil {
// In clauses with a case listing exactly one type, the variable has that type;
// otherwise, the variable has the type of the expression in the TypeSwitchGuard.
if len(clause.List) != 1 || typ == nil {
typ = x.typ
}
lhs.Type = typ
}
check.stmtList(clause.Body)
}
case *ast.TypeSwitchStmt:
unimplemented()
// There is only one object (lhs) associated with a lhs identifier, but that object
// assumes different types for different clauses. Set it to nil when we are done so
// that the type cannot be used by mistake.
if lhs != nil {
lhs.Type = nil
}
case *ast.SelectStmt:
check.multipleDefaults(s.Body.List)
for _, s := range s.Body.List {
c, ok := s.(*ast.CommClause)
if !ok {
check.invalidAST(s.Pos(), "communication clause expected")
continue
clause, _ := s.(*ast.CommClause)
if clause == nil {
continue // error reported before
}
check.optionalStmt(c.Comm) // TODO(gri) check correctness of c.Comm (must be Send/RecvStmt)
check.stmtList(c.Body)
check.optionalStmt(clause.Comm) // TODO(gri) check correctness of c.Comm (must be Send/RecvStmt)
check.stmtList(clause.Body)
}
case *ast.ForStmt:
......@@ -458,7 +566,79 @@ func (check *checker) stmt(s ast.Stmt) {
check.stmt(s.Body)
case *ast.RangeStmt:
unimplemented()
// check expression to iterate over
decl := s.Tok == token.DEFINE
var x operand
check.expr(&x, s.X, nil, -1)
if x.mode == invalid {
// if we don't have a declaration, we can still check the loop's body
if !decl {
check.stmt(s.Body)
}
return
}
// determine key/value types
var key, val Type
switch typ := underlying(x.typ).(type) {
case *Basic:
if isString(typ) {
key = Typ[UntypedInt]
val = Typ[UntypedRune]
}
case *Array:
key = Typ[UntypedInt]
val = typ.Elt
case *Slice:
key = Typ[UntypedInt]
val = typ.Elt
case *Pointer:
if typ, _ := underlying(typ.Base).(*Array); typ != nil {
key = Typ[UntypedInt]
val = typ.Elt
}
case *Map:
key = typ.Key
val = typ.Elt
case *Chan:
key = typ.Elt
if typ.Dir&ast.RECV == 0 {
check.errorf(x.pos(), "cannot range over send-only channel %s", &x)
// ok to continue
}
if s.Value != nil {
check.errorf(s.Value.Pos(), "iteration over %s permits only one iteration variable", &x)
// ok to continue
}
}
if key == nil {
check.errorf(x.pos(), "cannot range over %s", &x)
// if we don't have a declaration, we can still check the loop's body
if !decl {
check.stmt(s.Body)
}
return
}
// check assignment to/declaration of iteration variables
// TODO(gri) The error messages/positions are not great here,
// they refer to the expression in the range clause.
// Should give better messages w/o too much code
// duplication (assignment checking).
if s.Key != nil {
x.typ = key
check.assign1to1(s.Key, nil, &x, decl, -1)
} else {
check.invalidAST(s.Pos(), "range clause requires index iteration variable")
// ok to continue
}
if s.Value != nil {
x.typ = val
check.assign1to1(s.Value, nil, &x, decl, -1)
}
check.stmt(s.Body)
default:
check.errorf(s.Pos(), "invalid statement")
......
......@@ -73,7 +73,7 @@ var (
// Various more complex expressions
var (
u1 = x /* ERROR "non-interface type" */ .(int)
u1 = x /* ERROR "not an interface" */ .(int)
u2 = iface.([]int)
u3 = iface.(a /* ERROR "not a type" */ )
u4, ok = iface.(int)
......
......@@ -75,6 +75,17 @@ func indexes() {
_ = a[: 11 /* ERROR "index .* out of bounds" */ ]
_ = a[: 1 /* ERROR "stupid index" */ <<100]
pa := &a
_ = pa[9]
_ = pa[10 /* ERROR "index .* out of bounds" */ ]
_ = pa[1 /* ERROR "stupid index" */ <<100]
_ = pa[10:]
_ = pa[:10]
_ = pa[10:10]
_ = pa[11 /* ERROR "index .* out of bounds" */ :]
_ = pa[: 11 /* ERROR "index .* out of bounds" */ ]
_ = pa[: 1 /* ERROR "stupid index" */ <<100]
var b [0]int
_ = b[0 /* ERROR "index .* out of bounds" */ ]
_ = b[:]
......@@ -206,6 +217,15 @@ func array_literals() {
a4 := [...]complex128{0, 1, 2, 1<<10-2: -1i, 1i, 400: 10, 12, 14}
assert(len(a4) == 1024)
// from the spec
type Point struct { x, y float32 }
_ = [...]Point{Point{1.5, -3.5}, Point{0, 0}}
_ = [...]Point{{1.5, -3.5}, {0, 0}}
_ = [][]int{[]int{1, 2, 3}, []int{4, 5}}
_ = [][]int{{1, 2, 3}, {4, 5}}
_ = [...]*Point{&Point{1.5, -3.5}, &Point{0, 0}}
_ = [...]*Point{{1.5, -3.5}, {0, 0}}
}
func slice_literals() {
......@@ -237,3 +257,32 @@ func map_literals() {
_ = M0{"foo": "bar" /* ERROR "cannot use .* as int value" */ }
_ = M0{"foo": 1, "bar": 2, "foo" /* ERROR "duplicate key" */ : 3 }
}
type I interface {
m()
}
type I2 interface {
m(int)
}
type T1 struct{}
type T2 struct{}
func (T2) m(int) {}
func type_asserts() {
var x int
_ = x /* ERROR "not an interface" */ .(int)
var e interface{}
var ok bool
x, ok = e.(int)
var t I
_ = t /* ERROR "use of .* outside type switch" */ .(type)
_ = t.(T)
_ = t.(T1 /* ERROR "missing method m" */ )
_ = t.(T2 /* ERROR "wrong type for method m" */ )
_ = t.(I2 /* ERROR "wrong type for method m" */ )
}
......@@ -71,6 +71,10 @@ func _selects() {
x = t
case <-sc /* ERROR "cannot receive from send-only channel" */ :
}
select {
default:
default /* ERROR "multiple defaults" */ :
}
}
func _gos() {
......@@ -88,3 +92,149 @@ func _defers() {
defer close(c)
defer len(c) // TODO(gri) this should not be legal
}
func _switches() {
var x int
switch x {
default:
default /* ERROR "multiple defaults" */ :
}
// TODO(gri) more tests
}
type I interface {
m()
}
type I2 interface {
m(int)
}
type T struct{}
type T1 struct{}
type T2 struct{}
func (T) m() {}
func (T2) m(int) {}
func _typeswitches() {
var i int
var x interface{}
switch x.(type) {}
switch (x /* ERROR "outside type switch" */ .(type)) {}
switch x.(type) {
default:
default /* ERROR "multiple defaults" */ :
}
switch x := x.(type) {}
switch x := x.(type) {
case int:
var y int = x
}
switch x := i /* ERROR "not an interface" */ .(type) {}
switch t := x.(type) {
case nil:
var v bool = t /* ERROR "cannot assign" */
case int:
var v int = t
case float32, complex64:
var v float32 = t /* ERROR "cannot assign" */
default:
var v float32 = t /* ERROR "cannot assign" */
}
var t I
switch t.(type) {
case T:
case T1 /* ERROR "missing method m" */ :
case T2 /* ERROR "wrong type for method m" */ :
case I2 /* ERROR "wrong type for method m" */ :
}
}
func _rangeloops() {
var (
x int
a [10]float32
b []string
p *[10]complex128
pp **[10]complex128
s string
m map[int]bool
c chan int
sc chan<- int
rc <-chan int
)
for _ = range x /* ERROR "cannot range over" */ {}
for i := range x /* ERROR "cannot range over" */ {}
for i := range a {
var ii int
ii = i
}
for i, x := range a {
var ii int
ii = i
var xx float64
xx = x /* ERROR "cannot assign" */
}
var ii int
var xx float32
for ii, xx := range a {}
for i := range b {
var ii int
ii = i
}
for i, x := range b {
var ii int
ii = i
var xx string
xx = x
}
for i := range s {
var ii int
ii = i
}
for i, x := range s {
var ii int
ii = i
var xx rune
xx = x
}
for _, x := range p {
var xx complex128
xx = x
}
for _, x := range pp /* ERROR "cannot range over" */ {}
for k := range m {
var kk int32
kk = k /* ERROR "cannot assign" */
}
for k, v := range m {
var kk int
kk = k
if v {}
}
for _, _ /* ERROR "only one iteration variable" */ = range c {}
for e := range c {
var ee int
ee = e
}
for _ = range sc /* ERROR "cannot range over send-only channel" */ {}
for _ = range rc {}
}
\ No newline at end of file
......@@ -116,10 +116,12 @@ func init() {
// error type
{
res := ast.NewObj(ast.Var, "")
res.Type = Typ[String]
err := ast.NewObj(ast.Fun, "Error")
err.Type = &Signature{Results: ObjList{res}}
obj := def(ast.Typ, "error")
// TODO(gri) set up correct interface type
typ := &NamedType{Underlying: &Interface{}, Obj: obj}
obj.Type = typ
obj.Type = &NamedType{Underlying: &Interface{Methods: ObjList{err}}, Obj: obj}
}
// predeclared constants
......
......@@ -1803,7 +1803,7 @@ func (p *parser) parseSwitchStmt() ast.Stmt {
//
// switch t := 0; t := x.(T) { ... }
//
// (this code is not valid Go because the first t will
// (this code is not valid Go because the first t
// cannot be accessed and thus is never used, the extra
// scope is needed for the correct error message).
//
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment