Commit 73cb9a1c authored by Josh Bleecher Snyder's avatar Josh Bleecher Snyder

all: refer to map elements as elements instead of values

The spec carefully and consistently uses "key" and "element"
as map terminology. The implementation, not so much.

This change attempts to make the implementation consistently
hew to the spec's terminology. Beyond consistency, this has
the advantage of avoid some confusion and naming collisions,
since v and value are very generic and commonly used terms.

I believe that I found all everything, but there are a lot of
non-obvious places for these to hide, and grepping for them is hard.
Hopefully this change changes enough of them that we will start using
elem going forward. Any remaining hidden cases can be removed ad hoc
as they are discovered.

The only externally-facing part of this change is in package reflect,
where there is a minor doc change and a function parameter name change.

Updates #27167

Change-Id: I2f2d78f16c360dc39007b9966d5c2046a29d3701
Reviewed-on: https://go-review.googlesource.com/c/go/+/174523
Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: default avatarBrad Fitzpatrick <bradfitz@golang.org>
parent a8d0047e
......@@ -15,7 +15,7 @@ func typecheckrange(n *Node) {
// Typechecking order is important here:
// 0. first typecheck range expression (slice/map/chan),
// it is evaluated only once and so logically it is not part of the loop.
// 1. typcheck produced values,
// 1. typecheck produced values,
// this part can declare new vars and so it must be typechecked before body,
// because body can contain a closure that captures the vars.
// 2. decldepth++ to denote loop body.
......@@ -299,7 +299,7 @@ func walkrange(n *Node) *Node {
th := hit.Type
n.Left = nil
keysym := th.Field(0).Sym // depends on layout of iterator struct. See reflect.go:hiter
valsym := th.Field(1).Sym // ditto
elemsym := th.Field(1).Sym // ditto
fn := syslook("mapiterinit")
......@@ -318,11 +318,11 @@ func walkrange(n *Node) *Node {
} else if v2 == nil {
body = []*Node{nod(OAS, v1, key)}
} else {
val := nodSym(ODOT, hit, valsym)
val = nod(ODEREF, val, nil)
elem := nodSym(ODOT, hit, elemsym)
elem = nod(ODEREF, elem, nil)
a := nod(OAS2, nil, nil)
a.List.Set2(v1, v2)
a.Rlist.Set2(key, val)
a.Rlist.Set2(key, elem)
body = []*Node{a}
}
......
......@@ -58,7 +58,7 @@ type Sig struct {
const (
BUCKETSIZE = 8
MAXKEYSIZE = 128
MAXVALSIZE = 128
MAXELEMSIZE = 128
)
func structfieldSize() int { return 3 * Widthptr } // Sizeof(runtime.structfield{})
......@@ -86,14 +86,14 @@ func bmap(t *types.Type) *types.Type {
bucket := types.New(TSTRUCT)
keytype := t.Key()
valtype := t.Elem()
elemtype := t.Elem()
dowidth(keytype)
dowidth(valtype)
dowidth(elemtype)
if keytype.Width > MAXKEYSIZE {
keytype = types.NewPtr(keytype)
}
if valtype.Width > MAXVALSIZE {
valtype = types.NewPtr(valtype)
if elemtype.Width > MAXELEMSIZE {
elemtype = types.NewPtr(elemtype)
}
field := make([]*types.Field, 0, 5)
......@@ -107,10 +107,10 @@ func bmap(t *types.Type) *types.Type {
keys := makefield("keys", arr)
field = append(field, keys)
arr = types.NewArray(valtype, BUCKETSIZE)
arr = types.NewArray(elemtype, BUCKETSIZE)
arr.SetNoalg(true)
values := makefield("values", arr)
field = append(field, values)
elems := makefield("elems", arr)
field = append(field, elems)
// Make sure the overflow pointer is the last memory in the struct,
// because the runtime assumes it can use size-ptrSize as the
......@@ -126,21 +126,21 @@ func bmap(t *types.Type) *types.Type {
// will end with no padding.
// On nacl/amd64p32, however, the max alignment is 64-bit,
// but the overflow pointer will add only a 32-bit field,
// so if the struct needs 64-bit padding (because a key or value does)
// so if the struct needs 64-bit padding (because a key or elem does)
// then it would end with an extra 32-bit padding field.
// Preempt that by emitting the padding here.
if int(valtype.Align) > Widthptr || int(keytype.Align) > Widthptr {
if int(elemtype.Align) > Widthptr || int(keytype.Align) > Widthptr {
field = append(field, makefield("pad", types.Types[TUINTPTR]))
}
// If keys and values have no pointers, the map implementation
// If keys and elems have no pointers, the map implementation
// can keep a list of overflow pointers on the side so that
// buckets can be marked as having no pointers.
// Arrange for the bucket to have no pointers by changing
// the type of the overflow field to uintptr in this case.
// See comment on hmap.overflow in runtime/map.go.
otyp := types.NewPtr(bucket)
if !types.Haspointers(valtype) && !types.Haspointers(keytype) {
if !types.Haspointers(elemtype) && !types.Haspointers(keytype) {
otyp = types.Types[TUINTPTR]
}
overflow := makefield("overflow", otyp)
......@@ -161,38 +161,38 @@ func bmap(t *types.Type) *types.Type {
if keytype.Align > BUCKETSIZE {
Fatalf("key align too big for %v", t)
}
if valtype.Align > BUCKETSIZE {
Fatalf("value align too big for %v", t)
if elemtype.Align > BUCKETSIZE {
Fatalf("elem align too big for %v", t)
}
if keytype.Width > MAXKEYSIZE {
Fatalf("key size to large for %v", t)
}
if valtype.Width > MAXVALSIZE {
Fatalf("value size to large for %v", t)
if elemtype.Width > MAXELEMSIZE {
Fatalf("elem size to large for %v", t)
}
if t.Key().Width > MAXKEYSIZE && !keytype.IsPtr() {
Fatalf("key indirect incorrect for %v", t)
}
if t.Elem().Width > MAXVALSIZE && !valtype.IsPtr() {
Fatalf("value indirect incorrect for %v", t)
if t.Elem().Width > MAXELEMSIZE && !elemtype.IsPtr() {
Fatalf("elem indirect incorrect for %v", t)
}
if keytype.Width%int64(keytype.Align) != 0 {
Fatalf("key size not a multiple of key align for %v", t)
}
if valtype.Width%int64(valtype.Align) != 0 {
Fatalf("value size not a multiple of value align for %v", t)
if elemtype.Width%int64(elemtype.Align) != 0 {
Fatalf("elem size not a multiple of elem align for %v", t)
}
if bucket.Align%keytype.Align != 0 {
Fatalf("bucket align not multiple of key align %v", t)
}
if bucket.Align%valtype.Align != 0 {
Fatalf("bucket align not multiple of value align %v", t)
if bucket.Align%elemtype.Align != 0 {
Fatalf("bucket align not multiple of elem align %v", t)
}
if keys.Offset%int64(keytype.Align) != 0 {
Fatalf("bad alignment of keys in bmap for %v", t)
}
if values.Offset%int64(valtype.Align) != 0 {
Fatalf("bad alignment of values in bmap for %v", t)
if elems.Offset%int64(elemtype.Align) != 0 {
Fatalf("bad alignment of elems in bmap for %v", t)
}
// Double-check that overflow field is final memory in struct,
......@@ -270,7 +270,7 @@ func hiter(t *types.Type) *types.Type {
// build a struct:
// type hiter struct {
// key *Key
// val *Value
// elem *Elem
// t unsafe.Pointer // *MapType
// h *hmap
// buckets *bmap
......@@ -288,7 +288,7 @@ func hiter(t *types.Type) *types.Type {
// must match runtime/map.go:hiter.
fields := []*types.Field{
makefield("key", types.NewPtr(t.Key())), // Used in range.go for TMAP.
makefield("val", types.NewPtr(t.Elem())), // Used in range.go for TMAP.
makefield("elem", types.NewPtr(t.Elem())), // Used in range.go for TMAP.
makefield("t", types.Types[TUNSAFEPTR]),
makefield("h", types.NewPtr(hmap)),
makefield("buckets", types.NewPtr(bmap)),
......@@ -1284,7 +1284,7 @@ func dtypesym(t *types.Type) *obj.LSym {
ot = duint8(lsym, ot, uint8(t.Key().Width))
}
if t.Elem().Width > MAXVALSIZE {
if t.Elem().Width > MAXELEMSIZE {
ot = duint8(lsym, ot, uint8(Widthptr))
flags |= 2 // indirect value
} else {
......@@ -1894,7 +1894,7 @@ func (p *GCProg) emit(t *types.Type, offset int64) {
// size bytes of zeros.
func zeroaddr(size int64) *Node {
if size >= 1<<31 {
Fatalf("map value too big %d", size)
Fatalf("map elem too big %d", size)
}
if zerosize < size {
zerosize = size
......
......@@ -973,33 +973,33 @@ func maplit(n *Node, m *Node, init *Nodes) {
// build types [count]Tindex and [count]Tvalue
tk := types.NewArray(n.Type.Key(), int64(len(stat)))
tv := types.NewArray(n.Type.Elem(), int64(len(stat)))
te := types.NewArray(n.Type.Elem(), int64(len(stat)))
// TODO(josharian): suppress alg generation for these types?
dowidth(tk)
dowidth(tv)
dowidth(te)
// make and initialize static arrays
vstatk := staticname(tk)
vstatk.Name.SetReadonly(true)
vstatv := staticname(tv)
vstatv.Name.SetReadonly(true)
vstate := staticname(te)
vstate.Name.SetReadonly(true)
datak := nod(OARRAYLIT, nil, nil)
datav := nod(OARRAYLIT, nil, nil)
datae := nod(OARRAYLIT, nil, nil)
for _, r := range stat {
datak.List.Append(r.Left)
datav.List.Append(r.Right)
datae.List.Append(r.Right)
}
fixedlit(inInitFunction, initKindStatic, datak, vstatk, init)
fixedlit(inInitFunction, initKindStatic, datav, vstatv, init)
fixedlit(inInitFunction, initKindStatic, datae, vstate, init)
// loop adding structure elements to map
// for i = 0; i < len(vstatk); i++ {
// map[vstatk[i]] = vstatv[i]
// map[vstatk[i]] = vstate[i]
// }
i := temp(types.Types[TINT])
rhs := nod(OINDEX, vstatv, i)
rhs := nod(OINDEX, vstate, i)
rhs.SetBounded(true)
kidx := nod(OINDEX, vstatk, i)
......@@ -1035,28 +1035,28 @@ func addMapEntries(m *Node, dyn []*Node, init *Nodes) {
nerr := nerrors
// Build list of var[c] = expr.
// Use temporaries so that mapassign1 can have addressable key, val.
// Use temporaries so that mapassign1 can have addressable key, elem.
// TODO(josharian): avoid map key temporaries for mapfast_* assignments with literal keys.
key := temp(m.Type.Key())
val := temp(m.Type.Elem())
tmpkey := temp(m.Type.Key())
tmpelem := temp(m.Type.Elem())
for _, r := range dyn {
index, value := r.Left, r.Right
index, elem := r.Left, r.Right
setlineno(index)
a := nod(OAS, key, index)
a := nod(OAS, tmpkey, index)
a = typecheck(a, ctxStmt)
a = walkstmt(a)
init.Append(a)
setlineno(value)
a = nod(OAS, val, value)
setlineno(elem)
a = nod(OAS, tmpelem, elem)
a = typecheck(a, ctxStmt)
a = walkstmt(a)
init.Append(a)
setlineno(val)
a = nod(OAS, nod(OINDEX, m, key), val)
setlineno(tmpelem)
a = nod(OAS, nod(OINDEX, m, tmpkey), tmpelem)
a = typecheck(a, ctxStmt)
a = walkstmt(a)
init.Append(a)
......@@ -1066,10 +1066,10 @@ func addMapEntries(m *Node, dyn []*Node, init *Nodes) {
}
}
a := nod(OVARKILL, key, nil)
a := nod(OVARKILL, tmpkey, nil)
a = typecheck(a, ctxStmt)
init.Append(a)
a = nod(OVARKILL, val, nil)
a = nod(OVARKILL, tmpelem, nil)
a = typecheck(a, ctxStmt)
init.Append(a)
}
......
......@@ -1210,7 +1210,7 @@ opswitch:
// Allocate one bucket pointed to by hmap.buckets on stack if hint
// is not larger than BUCKETSIZE. In case hint is larger than
// BUCKETSIZE runtime.makemap will allocate the buckets on the heap.
// Maximum key and value size is 128 bytes, larger objects
// Maximum key and elem size is 128 bytes, larger objects
// are stored with an indirection. So max bucket size is 2048+eps.
if !Isconst(hint, CTINT) ||
hint.Val().U.(*Mpint).CmpInt64(BUCKETSIZE) <= 0 {
......@@ -2462,7 +2462,7 @@ var mapassign = mkmapnames("mapassign", "ptr")
var mapdelete = mkmapnames("mapdelete", "")
func mapfast(t *types.Type) int {
// Check runtime/map.go:maxValueSize before changing.
// Check runtime/map.go:maxElemSize before changing.
if t.Elem().Width > 128 {
return mapslow
}
......
......@@ -1237,7 +1237,7 @@ func (it *MapIter) Value() Value {
t := (*mapType)(unsafe.Pointer(it.m.typ))
vtype := t.elem
return copyVal(vtype, it.m.flag.ro()|flag(vtype.Kind()), mapitervalue(it.it))
return copyVal(vtype, it.m.flag.ro()|flag(vtype.Kind()), mapiterelem(it.it))
}
// Next advances the map iterator and reports whether there is another
......@@ -1635,13 +1635,13 @@ func (v Value) SetCap(n int) {
s.Cap = n
}
// SetMapIndex sets the value associated with key in the map v to val.
// SetMapIndex sets the element associated with key in the map v to elem.
// It panics if v's Kind is not Map.
// If val is the zero Value, SetMapIndex deletes the key from the map.
// If elem is the zero Value, SetMapIndex deletes the key from the map.
// Otherwise if v holds a nil map, SetMapIndex will panic.
// As in Go, key's value must be assignable to the map's key type,
// and val's value must be assignable to the map's value type.
func (v Value) SetMapIndex(key, val Value) {
// As in Go, key's elem must be assignable to the map's key type,
// and elem's value must be assignable to the map's elem type.
func (v Value) SetMapIndex(key, elem Value) {
v.mustBe(Map)
v.mustBeExported()
key.mustBeExported()
......@@ -1653,17 +1653,17 @@ func (v Value) SetMapIndex(key, val Value) {
} else {
k = unsafe.Pointer(&key.ptr)
}
if val.typ == nil {
if elem.typ == nil {
mapdelete(v.typ, v.pointer(), k)
return
}
val.mustBeExported()
val = val.assignTo("reflect.Value.SetMapIndex", tt.elem, nil)
elem.mustBeExported()
elem = elem.assignTo("reflect.Value.SetMapIndex", tt.elem, nil)
var e unsafe.Pointer
if val.flag&flagIndir != 0 {
e = val.ptr
if elem.flag&flagIndir != 0 {
e = elem.ptr
} else {
e = unsafe.Pointer(&val.ptr)
e = unsafe.Pointer(&elem.ptr)
}
mapassign(v.typ, v.pointer(), k, e)
}
......@@ -2708,7 +2708,7 @@ func mapiterinit(t *rtype, m unsafe.Pointer) unsafe.Pointer
func mapiterkey(it unsafe.Pointer) (key unsafe.Pointer)
//go:noescape
func mapitervalue(it unsafe.Pointer) (value unsafe.Pointer)
func mapiterelem(it unsafe.Pointer) (elem unsafe.Pointer)
//go:noescape
func mapiternext(it unsafe.Pointer)
......
......@@ -8,7 +8,7 @@ package runtime
//
// A map is just a hash table. The data is arranged
// into an array of buckets. Each bucket contains up to
// 8 key/value pairs. The low-order bits of the hash are
// 8 key/elem pairs. The low-order bits of the hash are
// used to select a bucket. Each bucket contains a few
// high-order bits of each hash to distinguish the entries
// within a single bucket.
......@@ -33,7 +33,7 @@ package runtime
// Picking loadFactor: too large and we have lots of overflow
// buckets, too small and we waste a lot of space. I wrote
// a simple program to check some stats for different loads:
// (64-bit, 8 byte keys and values)
// (64-bit, 8 byte keys and elems)
// loadFactor %overflow bytes/entry hitprobe missprobe
// 4.00 2.13 20.77 3.00 4.00
// 4.50 4.05 17.30 3.25 4.50
......@@ -46,7 +46,7 @@ package runtime
// 8.00 41.10 9.40 5.00 8.00
//
// %overflow = percentage of buckets which have an overflow bucket
// bytes/entry = overhead bytes used per key/value pair
// bytes/entry = overhead bytes used per key/elem pair
// hitprobe = # of entries to check when looking up a present key
// missprobe = # of entries to check when looking up an absent key
//
......@@ -61,7 +61,7 @@ import (
)
const (
// Maximum number of key/value pairs a bucket can hold.
// Maximum number of key/elem pairs a bucket can hold.
bucketCntBits = 3
bucketCnt = 1 << bucketCntBits
......@@ -70,12 +70,12 @@ const (
loadFactorNum = 13
loadFactorDen = 2
// Maximum key or value size to keep inline (instead of mallocing per element).
// Maximum key or elem size to keep inline (instead of mallocing per element).
// Must fit in a uint8.
// Fast versions cannot handle big values - the cutoff size for
// fast versions in cmd/compile/internal/gc/walk.go must be at most this value.
// Fast versions cannot handle big elems - the cutoff size for
// fast versions in cmd/compile/internal/gc/walk.go must be at most this elem.
maxKeySize = 128
maxValueSize = 128
maxElemSize = 128
// data offset should be the size of the bmap struct, but needs to be
// aligned correctly. For amd64p32 this means 64-bit alignment
......@@ -91,7 +91,7 @@ const (
// during map writes and thus no one else can observe the map during that time).
emptyRest = 0 // this cell is empty, and there are no more non-empty cells at higher indexes or overflows.
emptyOne = 1 // this cell is empty
evacuatedX = 2 // key/value is valid. Entry has been evacuated to first half of larger table.
evacuatedX = 2 // key/elem is valid. Entry has been evacuated to first half of larger table.
evacuatedY = 3 // same as above, but evacuated to second half of larger table.
evacuatedEmpty = 4 // cell is empty, bucket is evacuated.
minTopHash = 5 // minimum tophash for a normal filled cell.
......@@ -130,11 +130,11 @@ type hmap struct {
// mapextra holds fields that are not present on all maps.
type mapextra struct {
// If both key and value do not contain pointers and are inline, then we mark bucket
// If both key and elem do not contain pointers and are inline, then we mark bucket
// type as containing no pointers. This avoids scanning such maps.
// However, bmap.overflow is a pointer. In order to keep overflow buckets
// alive, we store pointers to all overflow buckets in hmap.extra.overflow and hmap.extra.oldoverflow.
// overflow and oldoverflow are only used if key and value do not contain pointers.
// overflow and oldoverflow are only used if key and elem do not contain pointers.
// overflow contains overflow buckets for hmap.buckets.
// oldoverflow contains overflow buckets for hmap.oldbuckets.
// The indirection allows to store a pointer to the slice in hiter.
......@@ -151,9 +151,9 @@ type bmap struct {
// for each key in this bucket. If tophash[0] < minTopHash,
// tophash[0] is a bucket evacuation state instead.
tophash [bucketCnt]uint8
// Followed by bucketCnt keys and then bucketCnt values.
// NOTE: packing all the keys together and then all the values together makes the
// code a bit more complicated than alternating key/value/key/value/... but it allows
// Followed by bucketCnt keys and then bucketCnt elems.
// NOTE: packing all the keys together and then all the elems together makes the
// code a bit more complicated than alternating key/elem/key/elem/... but it allows
// us to eliminate padding which would be needed for, e.g., map[int64]int8.
// Followed by an overflow pointer.
}
......@@ -163,7 +163,7 @@ type bmap struct {
// the layout of this structure.
type hiter struct {
key unsafe.Pointer // Must be in first position. Write nil to indicate iteration end (see cmd/internal/gc/range.go).
value unsafe.Pointer // Must be in second position (see cmd/internal/gc/range.go).
elem unsafe.Pointer // Must be in second position (see cmd/internal/gc/range.go).
t *maptype
h *hmap
buckets unsafe.Pointer // bucket ptr at hash_iter initialization time
......@@ -387,7 +387,7 @@ func makeBucketArray(t *maptype, b uint8, dirtyalloc unsafe.Pointer) (buckets un
}
// mapaccess1 returns a pointer to h[key]. Never returns nil, instead
// it will return a reference to the zero object for the value type if
// it will return a reference to the zero object for the elem type if
// the key is not in the map.
// NOTE: The returned pointer may keep the whole map live, so don't
// hold onto it for very long.
......@@ -439,11 +439,11 @@ bucketloop:
k = *((*unsafe.Pointer)(k))
}
if alg.equal(key, k) {
v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
if t.indirectvalue() {
v = *((*unsafe.Pointer)(v))
e := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.elemsize))
if t.indirectelem() {
e = *((*unsafe.Pointer)(e))
}
return v
return e
}
}
}
......@@ -498,18 +498,18 @@ bucketloop:
k = *((*unsafe.Pointer)(k))
}
if alg.equal(key, k) {
v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
if t.indirectvalue() {
v = *((*unsafe.Pointer)(v))
e := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.elemsize))
if t.indirectelem() {
e = *((*unsafe.Pointer)(e))
}
return v, true
return e, true
}
}
}
return unsafe.Pointer(&zeroVal[0]), false
}
// returns both key and value. Used by map iterator
// returns both key and elem. Used by map iterator
func mapaccessK(t *maptype, h *hmap, key unsafe.Pointer) (unsafe.Pointer, unsafe.Pointer) {
if h == nil || h.count == 0 {
return nil, nil
......@@ -543,11 +543,11 @@ bucketloop:
k = *((*unsafe.Pointer)(k))
}
if alg.equal(key, k) {
v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
if t.indirectvalue() {
v = *((*unsafe.Pointer)(v))
e := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.elemsize))
if t.indirectelem() {
e = *((*unsafe.Pointer)(e))
}
return k, v
return k, e
}
}
}
......@@ -555,19 +555,19 @@ bucketloop:
}
func mapaccess1_fat(t *maptype, h *hmap, key, zero unsafe.Pointer) unsafe.Pointer {
v := mapaccess1(t, h, key)
if v == unsafe.Pointer(&zeroVal[0]) {
e := mapaccess1(t, h, key)
if e == unsafe.Pointer(&zeroVal[0]) {
return zero
}
return v
return e
}
func mapaccess2_fat(t *maptype, h *hmap, key, zero unsafe.Pointer) (unsafe.Pointer, bool) {
v := mapaccess1(t, h, key)
if v == unsafe.Pointer(&zeroVal[0]) {
e := mapaccess1(t, h, key)
if e == unsafe.Pointer(&zeroVal[0]) {
return zero, false
}
return v, true
return e, true
}
// Like mapaccess, but allocates a slot for the key if it is not present in the map.
......@@ -608,7 +608,7 @@ again:
var inserti *uint8
var insertk unsafe.Pointer
var val unsafe.Pointer
var elem unsafe.Pointer
bucketloop:
for {
for i := uintptr(0); i < bucketCnt; i++ {
......@@ -616,7 +616,7 @@ bucketloop:
if isEmpty(b.tophash[i]) && inserti == nil {
inserti = &b.tophash[i]
insertk = add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
val = add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
elem = add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.elemsize))
}
if b.tophash[i] == emptyRest {
break bucketloop
......@@ -634,7 +634,7 @@ bucketloop:
if t.needkeyupdate() {
typedmemmove(t.key, k, key)
}
val = add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
elem = add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.elemsize))
goto done
}
ovf := b.overflow(t)
......@@ -658,18 +658,18 @@ bucketloop:
newb := h.newoverflow(t, b)
inserti = &newb.tophash[0]
insertk = add(unsafe.Pointer(newb), dataOffset)
val = add(insertk, bucketCnt*uintptr(t.keysize))
elem = add(insertk, bucketCnt*uintptr(t.keysize))
}
// store new key/value at insert position
// store new key/elem at insert position
if t.indirectkey() {
kmem := newobject(t.key)
*(*unsafe.Pointer)(insertk) = kmem
insertk = kmem
}
if t.indirectvalue() {
if t.indirectelem() {
vmem := newobject(t.elem)
*(*unsafe.Pointer)(val) = vmem
*(*unsafe.Pointer)(elem) = vmem
}
typedmemmove(t.key, insertk, key)
*inserti = top
......@@ -680,10 +680,10 @@ done:
throw("concurrent map writes")
}
h.flags &^= hashWriting
if t.indirectvalue() {
val = *((*unsafe.Pointer)(val))
if t.indirectelem() {
elem = *((*unsafe.Pointer)(elem))
}
return val
return elem
}
func mapdelete(t *maptype, h *hmap, key unsafe.Pointer) {
......@@ -743,13 +743,13 @@ search:
} else if t.key.ptrdata != 0 {
memclrHasPointers(k, t.key.size)
}
v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
if t.indirectvalue() {
*(*unsafe.Pointer)(v) = nil
e := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.elemsize))
if t.indirectelem() {
*(*unsafe.Pointer)(e) = nil
} else if t.elem.ptrdata != 0 {
memclrHasPointers(v, t.elem.size)
memclrHasPointers(e, t.elem.size)
} else {
memclrNoHeapPointers(v, t.elem.size)
memclrNoHeapPointers(e, t.elem.size)
}
b.tophash[i] = emptyOne
// If the bucket now ends in a bunch of emptyOne states,
......@@ -869,7 +869,7 @@ next:
if bucket == it.startBucket && it.wrapped {
// end of iteration
it.key = nil
it.value = nil
it.elem = nil
return
}
if h.growing() && it.B == h.B {
......@@ -907,7 +907,7 @@ next:
if t.indirectkey() {
k = *((*unsafe.Pointer)(k))
}
v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+uintptr(offi)*uintptr(t.valuesize))
e := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+uintptr(offi)*uintptr(t.elemsize))
if checkBucket != noCheck && !h.sameSizeGrow() {
// Special case: iterator was started during a grow to a larger size
// and the grow is not done yet. We're working on a bucket whose
......@@ -943,10 +943,10 @@ next:
// key!=key, so the entry can't be deleted or updated, so we can just return it.
// That's lucky for us because when key!=key we can't look it up successfully.
it.key = k
if t.indirectvalue() {
v = *((*unsafe.Pointer)(v))
if t.indirectelem() {
e = *((*unsafe.Pointer)(e))
}
it.value = v
it.elem = e
} else {
// The hash table has grown since the iterator was started.
// The golden data for this key is now somewhere else.
......@@ -955,12 +955,12 @@ next:
// has been deleted, updated, or deleted and reinserted.
// NOTE: we need to regrab the key as it has potentially been
// updated to an equal() but not identical key (e.g. +0.0 vs -0.0).
rk, rv := mapaccessK(t, h, k)
rk, re := mapaccessK(t, h, k)
if rk == nil {
continue // key has been deleted
}
it.key = rk
it.value = rv
it.elem = re
}
it.bucket = bucket
if it.bptr != b { // avoid unnecessary write barrier; see issue 14921
......@@ -1126,9 +1126,9 @@ func bucketEvacuated(t *maptype, h *hmap, bucket uintptr) bool {
// evacDst is an evacuation destination.
type evacDst struct {
b *bmap // current destination bucket
i int // key/val index into b
i int // key/elem index into b
k unsafe.Pointer // pointer to current key storage
v unsafe.Pointer // pointer to current value storage
e unsafe.Pointer // pointer to current elem storage
}
func evacuate(t *maptype, h *hmap, oldbucket uintptr) {
......@@ -1143,7 +1143,7 @@ func evacuate(t *maptype, h *hmap, oldbucket uintptr) {
x := &xy[0]
x.b = (*bmap)(add(h.buckets, oldbucket*uintptr(t.bucketsize)))
x.k = add(unsafe.Pointer(x.b), dataOffset)
x.v = add(x.k, bucketCnt*uintptr(t.keysize))
x.e = add(x.k, bucketCnt*uintptr(t.keysize))
if !h.sameSizeGrow() {
// Only calculate y pointers if we're growing bigger.
......@@ -1151,13 +1151,13 @@ func evacuate(t *maptype, h *hmap, oldbucket uintptr) {
y := &xy[1]
y.b = (*bmap)(add(h.buckets, (oldbucket+newbit)*uintptr(t.bucketsize)))
y.k = add(unsafe.Pointer(y.b), dataOffset)
y.v = add(y.k, bucketCnt*uintptr(t.keysize))
y.e = add(y.k, bucketCnt*uintptr(t.keysize))
}
for ; b != nil; b = b.overflow(t) {
k := add(unsafe.Pointer(b), dataOffset)
v := add(k, bucketCnt*uintptr(t.keysize))
for i := 0; i < bucketCnt; i, k, v = i+1, add(k, uintptr(t.keysize)), add(v, uintptr(t.valuesize)) {
e := add(k, bucketCnt*uintptr(t.keysize))
for i := 0; i < bucketCnt; i, k, e = i+1, add(k, uintptr(t.keysize)), add(e, uintptr(t.elemsize)) {
top := b.tophash[i]
if isEmpty(top) {
b.tophash[i] = evacuatedEmpty
......@@ -1173,7 +1173,7 @@ func evacuate(t *maptype, h *hmap, oldbucket uintptr) {
var useY uint8
if !h.sameSizeGrow() {
// Compute hash to make our evacuation decision (whether we need
// to send this key/value to bucket x or bucket y).
// to send this key/elem to bucket x or bucket y).
hash := t.key.alg.hash(k2, uintptr(h.hash0))
if h.flags&iterator != 0 && !t.reflexivekey() && !t.key.alg.equal(k2, k2) {
// If key != key (NaNs), then the hash could be (and probably
......@@ -1207,29 +1207,29 @@ func evacuate(t *maptype, h *hmap, oldbucket uintptr) {
dst.b = h.newoverflow(t, dst.b)
dst.i = 0
dst.k = add(unsafe.Pointer(dst.b), dataOffset)
dst.v = add(dst.k, bucketCnt*uintptr(t.keysize))
dst.e = add(dst.k, bucketCnt*uintptr(t.keysize))
}
dst.b.tophash[dst.i&(bucketCnt-1)] = top // mask dst.i as an optimization, to avoid a bounds check
if t.indirectkey() {
*(*unsafe.Pointer)(dst.k) = k2 // copy pointer
} else {
typedmemmove(t.key, dst.k, k) // copy value
typedmemmove(t.key, dst.k, k) // copy elem
}
if t.indirectvalue() {
*(*unsafe.Pointer)(dst.v) = *(*unsafe.Pointer)(v)
if t.indirectelem() {
*(*unsafe.Pointer)(dst.e) = *(*unsafe.Pointer)(e)
} else {
typedmemmove(t.elem, dst.v, v)
typedmemmove(t.elem, dst.e, e)
}
dst.i++
// These updates might push these pointers past the end of the
// key or value arrays. That's ok, as we have the overflow pointer
// key or elem arrays. That's ok, as we have the overflow pointer
// at the end of the bucket to protect against pointing past the
// end of the bucket.
dst.k = add(dst.k, uintptr(t.keysize))
dst.v = add(dst.v, uintptr(t.valuesize))
dst.e = add(dst.e, uintptr(t.elemsize))
}
}
// Unlink the overflow buckets & clear key/value to help GC.
// Unlink the overflow buckets & clear key/elem to help GC.
if h.flags&oldIterator == 0 && t.bucket.ptrdata != 0 {
b := add(h.oldbuckets, oldbucket*uintptr(t.bucketsize))
// Preserve b.tophash because the evacuation
......@@ -1285,21 +1285,21 @@ func reflect_makemap(t *maptype, cap int) *hmap {
t.key.size <= maxKeySize && (t.indirectkey() || t.keysize != uint8(t.key.size)) {
throw("key size wrong")
}
if t.elem.size > maxValueSize && (!t.indirectvalue() || t.valuesize != uint8(sys.PtrSize)) ||
t.elem.size <= maxValueSize && (t.indirectvalue() || t.valuesize != uint8(t.elem.size)) {
throw("value size wrong")
if t.elem.size > maxElemSize && (!t.indirectelem() || t.elemsize != uint8(sys.PtrSize)) ||
t.elem.size <= maxElemSize && (t.indirectelem() || t.elemsize != uint8(t.elem.size)) {
throw("elem size wrong")
}
if t.key.align > bucketCnt {
throw("key align too big")
}
if t.elem.align > bucketCnt {
throw("value align too big")
throw("elem align too big")
}
if t.key.size%uintptr(t.key.align) != 0 {
throw("key size not a multiple of key align")
}
if t.elem.size%uintptr(t.elem.align) != 0 {
throw("value size not a multiple of value align")
throw("elem size not a multiple of elem align")
}
if bucketCnt < 8 {
throw("bucketsize too small for proper alignment")
......@@ -1308,7 +1308,7 @@ func reflect_makemap(t *maptype, cap int) *hmap {
throw("need padding in bucket (key)")
}
if dataOffset%uintptr(t.elem.align) != 0 {
throw("need padding in bucket (value)")
throw("need padding in bucket (elem)")
}
return makemap(t, cap, nil)
......@@ -1316,18 +1316,18 @@ func reflect_makemap(t *maptype, cap int) *hmap {
//go:linkname reflect_mapaccess reflect.mapaccess
func reflect_mapaccess(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
val, ok := mapaccess2(t, h, key)
elem, ok := mapaccess2(t, h, key)
if !ok {
// reflect wants nil for a missing element
val = nil
elem = nil
}
return val
return elem
}
//go:linkname reflect_mapassign reflect.mapassign
func reflect_mapassign(t *maptype, h *hmap, key unsafe.Pointer, val unsafe.Pointer) {
func reflect_mapassign(t *maptype, h *hmap, key unsafe.Pointer, elem unsafe.Pointer) {
p := mapassign(t, h, key)
typedmemmove(t.elem, p, val)
typedmemmove(t.elem, p, elem)
}
//go:linkname reflect_mapdelete reflect.mapdelete
......@@ -1352,9 +1352,9 @@ func reflect_mapiterkey(it *hiter) unsafe.Pointer {
return it.key
}
//go:linkname reflect_mapitervalue reflect.mapitervalue
func reflect_mapitervalue(it *hiter) unsafe.Pointer {
return it.value
//go:linkname reflect_mapiterelem reflect.mapiterelem
func reflect_mapiterelem(it *hiter) unsafe.Pointer {
return it.elem
}
//go:linkname reflect_maplen reflect.maplen
......
......@@ -42,7 +42,7 @@ func mapaccess1_fast32(t *maptype, h *hmap, key uint32) unsafe.Pointer {
for ; b != nil; b = b.overflow(t) {
for i, k := uintptr(0), b.keys(); i < bucketCnt; i, k = i+1, add(k, 4) {
if *(*uint32)(k) == key && !isEmpty(b.tophash[i]) {
return add(unsafe.Pointer(b), dataOffset+bucketCnt*4+i*uintptr(t.valuesize))
return add(unsafe.Pointer(b), dataOffset+bucketCnt*4+i*uintptr(t.elemsize))
}
}
}
......@@ -82,7 +82,7 @@ func mapaccess2_fast32(t *maptype, h *hmap, key uint32) (unsafe.Pointer, bool) {
for ; b != nil; b = b.overflow(t) {
for i, k := uintptr(0), b.keys(); i < bucketCnt; i, k = i+1, add(k, 4) {
if *(*uint32)(k) == key && !isEmpty(b.tophash[i]) {
return add(unsafe.Pointer(b), dataOffset+bucketCnt*4+i*uintptr(t.valuesize)), true
return add(unsafe.Pointer(b), dataOffset+bucketCnt*4+i*uintptr(t.elemsize)), true
}
}
}
......@@ -171,12 +171,12 @@ bucketloop:
h.count++
done:
val := add(unsafe.Pointer(insertb), dataOffset+bucketCnt*4+inserti*uintptr(t.valuesize))
elem := add(unsafe.Pointer(insertb), dataOffset+bucketCnt*4+inserti*uintptr(t.elemsize))
if h.flags&hashWriting == 0 {
throw("concurrent map writes")
}
h.flags &^= hashWriting
return val
return elem
}
func mapassign_fast32ptr(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
......@@ -261,12 +261,12 @@ bucketloop:
h.count++
done:
val := add(unsafe.Pointer(insertb), dataOffset+bucketCnt*4+inserti*uintptr(t.valuesize))
elem := add(unsafe.Pointer(insertb), dataOffset+bucketCnt*4+inserti*uintptr(t.elemsize))
if h.flags&hashWriting == 0 {
throw("concurrent map writes")
}
h.flags &^= hashWriting
return val
return elem
}
func mapdelete_fast32(t *maptype, h *hmap, key uint32) {
......@@ -302,11 +302,11 @@ search:
if t.key.ptrdata != 0 {
memclrHasPointers(k, t.key.size)
}
v := add(unsafe.Pointer(b), dataOffset+bucketCnt*4+i*uintptr(t.valuesize))
e := add(unsafe.Pointer(b), dataOffset+bucketCnt*4+i*uintptr(t.elemsize))
if t.elem.ptrdata != 0 {
memclrHasPointers(v, t.elem.size)
memclrHasPointers(e, t.elem.size)
} else {
memclrNoHeapPointers(v, t.elem.size)
memclrNoHeapPointers(e, t.elem.size)
}
b.tophash[i] = emptyOne
// If the bucket now ends in a bunch of emptyOne states,
......@@ -373,7 +373,7 @@ func evacuate_fast32(t *maptype, h *hmap, oldbucket uintptr) {
x := &xy[0]
x.b = (*bmap)(add(h.buckets, oldbucket*uintptr(t.bucketsize)))
x.k = add(unsafe.Pointer(x.b), dataOffset)
x.v = add(x.k, bucketCnt*4)
x.e = add(x.k, bucketCnt*4)
if !h.sameSizeGrow() {
// Only calculate y pointers if we're growing bigger.
......@@ -381,13 +381,13 @@ func evacuate_fast32(t *maptype, h *hmap, oldbucket uintptr) {
y := &xy[1]
y.b = (*bmap)(add(h.buckets, (oldbucket+newbit)*uintptr(t.bucketsize)))
y.k = add(unsafe.Pointer(y.b), dataOffset)
y.v = add(y.k, bucketCnt*4)
y.e = add(y.k, bucketCnt*4)
}
for ; b != nil; b = b.overflow(t) {
k := add(unsafe.Pointer(b), dataOffset)
v := add(k, bucketCnt*4)
for i := 0; i < bucketCnt; i, k, v = i+1, add(k, 4), add(v, uintptr(t.valuesize)) {
e := add(k, bucketCnt*4)
for i := 0; i < bucketCnt; i, k, e = i+1, add(k, 4), add(e, uintptr(t.elemsize)) {
top := b.tophash[i]
if isEmpty(top) {
b.tophash[i] = evacuatedEmpty
......@@ -399,7 +399,7 @@ func evacuate_fast32(t *maptype, h *hmap, oldbucket uintptr) {
var useY uint8
if !h.sameSizeGrow() {
// Compute hash to make our evacuation decision (whether we need
// to send this key/value to bucket x or bucket y).
// to send this key/elem to bucket x or bucket y).
hash := t.key.alg.hash(k, uintptr(h.hash0))
if hash&newbit != 0 {
useY = 1
......@@ -413,7 +413,7 @@ func evacuate_fast32(t *maptype, h *hmap, oldbucket uintptr) {
dst.b = h.newoverflow(t, dst.b)
dst.i = 0
dst.k = add(unsafe.Pointer(dst.b), dataOffset)
dst.v = add(dst.k, bucketCnt*4)
dst.e = add(dst.k, bucketCnt*4)
}
dst.b.tophash[dst.i&(bucketCnt-1)] = top // mask dst.i as an optimization, to avoid a bounds check
......@@ -425,17 +425,17 @@ func evacuate_fast32(t *maptype, h *hmap, oldbucket uintptr) {
*(*uint32)(dst.k) = *(*uint32)(k)
}
typedmemmove(t.elem, dst.v, v)
typedmemmove(t.elem, dst.e, e)
dst.i++
// These updates might push these pointers past the end of the
// key or value arrays. That's ok, as we have the overflow pointer
// key or elem arrays. That's ok, as we have the overflow pointer
// at the end of the bucket to protect against pointing past the
// end of the bucket.
dst.k = add(dst.k, 4)
dst.v = add(dst.v, uintptr(t.valuesize))
dst.e = add(dst.e, uintptr(t.elemsize))
}
}
// Unlink the overflow buckets & clear key/value to help GC.
// Unlink the overflow buckets & clear key/elem to help GC.
if h.flags&oldIterator == 0 && t.bucket.ptrdata != 0 {
b := add(h.oldbuckets, oldbucket*uintptr(t.bucketsize))
// Preserve b.tophash because the evacuation
......
......@@ -42,7 +42,7 @@ func mapaccess1_fast64(t *maptype, h *hmap, key uint64) unsafe.Pointer {
for ; b != nil; b = b.overflow(t) {
for i, k := uintptr(0), b.keys(); i < bucketCnt; i, k = i+1, add(k, 8) {
if *(*uint64)(k) == key && !isEmpty(b.tophash[i]) {
return add(unsafe.Pointer(b), dataOffset+bucketCnt*8+i*uintptr(t.valuesize))
return add(unsafe.Pointer(b), dataOffset+bucketCnt*8+i*uintptr(t.elemsize))
}
}
}
......@@ -82,7 +82,7 @@ func mapaccess2_fast64(t *maptype, h *hmap, key uint64) (unsafe.Pointer, bool) {
for ; b != nil; b = b.overflow(t) {
for i, k := uintptr(0), b.keys(); i < bucketCnt; i, k = i+1, add(k, 8) {
if *(*uint64)(k) == key && !isEmpty(b.tophash[i]) {
return add(unsafe.Pointer(b), dataOffset+bucketCnt*8+i*uintptr(t.valuesize)), true
return add(unsafe.Pointer(b), dataOffset+bucketCnt*8+i*uintptr(t.elemsize)), true
}
}
}
......@@ -171,12 +171,12 @@ bucketloop:
h.count++
done:
val := add(unsafe.Pointer(insertb), dataOffset+bucketCnt*8+inserti*uintptr(t.valuesize))
elem := add(unsafe.Pointer(insertb), dataOffset+bucketCnt*8+inserti*uintptr(t.elemsize))
if h.flags&hashWriting == 0 {
throw("concurrent map writes")
}
h.flags &^= hashWriting
return val
return elem
}
func mapassign_fast64ptr(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
......@@ -261,12 +261,12 @@ bucketloop:
h.count++
done:
val := add(unsafe.Pointer(insertb), dataOffset+bucketCnt*8+inserti*uintptr(t.valuesize))
elem := add(unsafe.Pointer(insertb), dataOffset+bucketCnt*8+inserti*uintptr(t.elemsize))
if h.flags&hashWriting == 0 {
throw("concurrent map writes")
}
h.flags &^= hashWriting
return val
return elem
}
func mapdelete_fast64(t *maptype, h *hmap, key uint64) {
......@@ -302,11 +302,11 @@ search:
if t.key.ptrdata != 0 {
memclrHasPointers(k, t.key.size)
}
v := add(unsafe.Pointer(b), dataOffset+bucketCnt*8+i*uintptr(t.valuesize))
e := add(unsafe.Pointer(b), dataOffset+bucketCnt*8+i*uintptr(t.elemsize))
if t.elem.ptrdata != 0 {
memclrHasPointers(v, t.elem.size)
memclrHasPointers(e, t.elem.size)
} else {
memclrNoHeapPointers(v, t.elem.size)
memclrNoHeapPointers(e, t.elem.size)
}
b.tophash[i] = emptyOne
// If the bucket now ends in a bunch of emptyOne states,
......@@ -373,7 +373,7 @@ func evacuate_fast64(t *maptype, h *hmap, oldbucket uintptr) {
x := &xy[0]
x.b = (*bmap)(add(h.buckets, oldbucket*uintptr(t.bucketsize)))
x.k = add(unsafe.Pointer(x.b), dataOffset)
x.v = add(x.k, bucketCnt*8)
x.e = add(x.k, bucketCnt*8)
if !h.sameSizeGrow() {
// Only calculate y pointers if we're growing bigger.
......@@ -381,13 +381,13 @@ func evacuate_fast64(t *maptype, h *hmap, oldbucket uintptr) {
y := &xy[1]
y.b = (*bmap)(add(h.buckets, (oldbucket+newbit)*uintptr(t.bucketsize)))
y.k = add(unsafe.Pointer(y.b), dataOffset)
y.v = add(y.k, bucketCnt*8)
y.e = add(y.k, bucketCnt*8)
}
for ; b != nil; b = b.overflow(t) {
k := add(unsafe.Pointer(b), dataOffset)
v := add(k, bucketCnt*8)
for i := 0; i < bucketCnt; i, k, v = i+1, add(k, 8), add(v, uintptr(t.valuesize)) {
e := add(k, bucketCnt*8)
for i := 0; i < bucketCnt; i, k, e = i+1, add(k, 8), add(e, uintptr(t.elemsize)) {
top := b.tophash[i]
if isEmpty(top) {
b.tophash[i] = evacuatedEmpty
......@@ -399,7 +399,7 @@ func evacuate_fast64(t *maptype, h *hmap, oldbucket uintptr) {
var useY uint8
if !h.sameSizeGrow() {
// Compute hash to make our evacuation decision (whether we need
// to send this key/value to bucket x or bucket y).
// to send this key/elem to bucket x or bucket y).
hash := t.key.alg.hash(k, uintptr(h.hash0))
if hash&newbit != 0 {
useY = 1
......@@ -413,7 +413,7 @@ func evacuate_fast64(t *maptype, h *hmap, oldbucket uintptr) {
dst.b = h.newoverflow(t, dst.b)
dst.i = 0
dst.k = add(unsafe.Pointer(dst.b), dataOffset)
dst.v = add(dst.k, bucketCnt*8)
dst.e = add(dst.k, bucketCnt*8)
}
dst.b.tophash[dst.i&(bucketCnt-1)] = top // mask dst.i as an optimization, to avoid a bounds check
......@@ -431,17 +431,17 @@ func evacuate_fast64(t *maptype, h *hmap, oldbucket uintptr) {
*(*uint64)(dst.k) = *(*uint64)(k)
}
typedmemmove(t.elem, dst.v, v)
typedmemmove(t.elem, dst.e, e)
dst.i++
// These updates might push these pointers past the end of the
// key or value arrays. That's ok, as we have the overflow pointer
// key or elem arrays. That's ok, as we have the overflow pointer
// at the end of the bucket to protect against pointing past the
// end of the bucket.
dst.k = add(dst.k, 8)
dst.v = add(dst.v, uintptr(t.valuesize))
dst.e = add(dst.e, uintptr(t.elemsize))
}
}
// Unlink the overflow buckets & clear key/value to help GC.
// Unlink the overflow buckets & clear key/elem to help GC.
if h.flags&oldIterator == 0 && t.bucket.ptrdata != 0 {
b := add(h.oldbuckets, oldbucket*uintptr(t.bucketsize))
// Preserve b.tophash because the evacuation
......
......@@ -35,7 +35,7 @@ func mapaccess1_faststr(t *maptype, h *hmap, ky string) unsafe.Pointer {
continue
}
if k.str == key.str || memequal(k.str, key.str, uintptr(key.len)) {
return add(unsafe.Pointer(b), dataOffset+bucketCnt*2*sys.PtrSize+i*uintptr(t.valuesize))
return add(unsafe.Pointer(b), dataOffset+bucketCnt*2*sys.PtrSize+i*uintptr(t.elemsize))
}
}
return unsafe.Pointer(&zeroVal[0])
......@@ -51,7 +51,7 @@ func mapaccess1_faststr(t *maptype, h *hmap, ky string) unsafe.Pointer {
continue
}
if k.str == key.str {
return add(unsafe.Pointer(b), dataOffset+bucketCnt*2*sys.PtrSize+i*uintptr(t.valuesize))
return add(unsafe.Pointer(b), dataOffset+bucketCnt*2*sys.PtrSize+i*uintptr(t.elemsize))
}
// check first 4 bytes
if *((*[4]byte)(key.str)) != *((*[4]byte)(k.str)) {
......@@ -70,7 +70,7 @@ func mapaccess1_faststr(t *maptype, h *hmap, ky string) unsafe.Pointer {
if keymaybe != bucketCnt {
k := (*stringStruct)(add(unsafe.Pointer(b), dataOffset+keymaybe*2*sys.PtrSize))
if memequal(k.str, key.str, uintptr(key.len)) {
return add(unsafe.Pointer(b), dataOffset+bucketCnt*2*sys.PtrSize+keymaybe*uintptr(t.valuesize))
return add(unsafe.Pointer(b), dataOffset+bucketCnt*2*sys.PtrSize+keymaybe*uintptr(t.elemsize))
}
}
return unsafe.Pointer(&zeroVal[0])
......@@ -97,7 +97,7 @@ dohash:
continue
}
if k.str == key.str || memequal(k.str, key.str, uintptr(key.len)) {
return add(unsafe.Pointer(b), dataOffset+bucketCnt*2*sys.PtrSize+i*uintptr(t.valuesize))
return add(unsafe.Pointer(b), dataOffset+bucketCnt*2*sys.PtrSize+i*uintptr(t.elemsize))
}
}
}
......@@ -130,7 +130,7 @@ func mapaccess2_faststr(t *maptype, h *hmap, ky string) (unsafe.Pointer, bool) {
continue
}
if k.str == key.str || memequal(k.str, key.str, uintptr(key.len)) {
return add(unsafe.Pointer(b), dataOffset+bucketCnt*2*sys.PtrSize+i*uintptr(t.valuesize)), true
return add(unsafe.Pointer(b), dataOffset+bucketCnt*2*sys.PtrSize+i*uintptr(t.elemsize)), true
}
}
return unsafe.Pointer(&zeroVal[0]), false
......@@ -146,7 +146,7 @@ func mapaccess2_faststr(t *maptype, h *hmap, ky string) (unsafe.Pointer, bool) {
continue
}
if k.str == key.str {
return add(unsafe.Pointer(b), dataOffset+bucketCnt*2*sys.PtrSize+i*uintptr(t.valuesize)), true
return add(unsafe.Pointer(b), dataOffset+bucketCnt*2*sys.PtrSize+i*uintptr(t.elemsize)), true
}
// check first 4 bytes
if *((*[4]byte)(key.str)) != *((*[4]byte)(k.str)) {
......@@ -165,7 +165,7 @@ func mapaccess2_faststr(t *maptype, h *hmap, ky string) (unsafe.Pointer, bool) {
if keymaybe != bucketCnt {
k := (*stringStruct)(add(unsafe.Pointer(b), dataOffset+keymaybe*2*sys.PtrSize))
if memequal(k.str, key.str, uintptr(key.len)) {
return add(unsafe.Pointer(b), dataOffset+bucketCnt*2*sys.PtrSize+keymaybe*uintptr(t.valuesize)), true
return add(unsafe.Pointer(b), dataOffset+bucketCnt*2*sys.PtrSize+keymaybe*uintptr(t.elemsize)), true
}
}
return unsafe.Pointer(&zeroVal[0]), false
......@@ -192,7 +192,7 @@ dohash:
continue
}
if k.str == key.str || memequal(k.str, key.str, uintptr(key.len)) {
return add(unsafe.Pointer(b), dataOffset+bucketCnt*2*sys.PtrSize+i*uintptr(t.valuesize)), true
return add(unsafe.Pointer(b), dataOffset+bucketCnt*2*sys.PtrSize+i*uintptr(t.elemsize)), true
}
}
}
......@@ -286,12 +286,12 @@ bucketloop:
h.count++
done:
val := add(unsafe.Pointer(insertb), dataOffset+bucketCnt*2*sys.PtrSize+inserti*uintptr(t.valuesize))
elem := add(unsafe.Pointer(insertb), dataOffset+bucketCnt*2*sys.PtrSize+inserti*uintptr(t.elemsize))
if h.flags&hashWriting == 0 {
throw("concurrent map writes")
}
h.flags &^= hashWriting
return val
return elem
}
func mapdelete_faststr(t *maptype, h *hmap, ky string) {
......@@ -331,11 +331,11 @@ search:
}
// Clear key's pointer.
k.str = nil
v := add(unsafe.Pointer(b), dataOffset+bucketCnt*2*sys.PtrSize+i*uintptr(t.valuesize))
e := add(unsafe.Pointer(b), dataOffset+bucketCnt*2*sys.PtrSize+i*uintptr(t.elemsize))
if t.elem.ptrdata != 0 {
memclrHasPointers(v, t.elem.size)
memclrHasPointers(e, t.elem.size)
} else {
memclrNoHeapPointers(v, t.elem.size)
memclrNoHeapPointers(e, t.elem.size)
}
b.tophash[i] = emptyOne
// If the bucket now ends in a bunch of emptyOne states,
......@@ -402,7 +402,7 @@ func evacuate_faststr(t *maptype, h *hmap, oldbucket uintptr) {
x := &xy[0]
x.b = (*bmap)(add(h.buckets, oldbucket*uintptr(t.bucketsize)))
x.k = add(unsafe.Pointer(x.b), dataOffset)
x.v = add(x.k, bucketCnt*2*sys.PtrSize)
x.e = add(x.k, bucketCnt*2*sys.PtrSize)
if !h.sameSizeGrow() {
// Only calculate y pointers if we're growing bigger.
......@@ -410,13 +410,13 @@ func evacuate_faststr(t *maptype, h *hmap, oldbucket uintptr) {
y := &xy[1]
y.b = (*bmap)(add(h.buckets, (oldbucket+newbit)*uintptr(t.bucketsize)))
y.k = add(unsafe.Pointer(y.b), dataOffset)
y.v = add(y.k, bucketCnt*2*sys.PtrSize)
y.e = add(y.k, bucketCnt*2*sys.PtrSize)
}
for ; b != nil; b = b.overflow(t) {
k := add(unsafe.Pointer(b), dataOffset)
v := add(k, bucketCnt*2*sys.PtrSize)
for i := 0; i < bucketCnt; i, k, v = i+1, add(k, 2*sys.PtrSize), add(v, uintptr(t.valuesize)) {
e := add(k, bucketCnt*2*sys.PtrSize)
for i := 0; i < bucketCnt; i, k, e = i+1, add(k, 2*sys.PtrSize), add(e, uintptr(t.elemsize)) {
top := b.tophash[i]
if isEmpty(top) {
b.tophash[i] = evacuatedEmpty
......@@ -428,7 +428,7 @@ func evacuate_faststr(t *maptype, h *hmap, oldbucket uintptr) {
var useY uint8
if !h.sameSizeGrow() {
// Compute hash to make our evacuation decision (whether we need
// to send this key/value to bucket x or bucket y).
// to send this key/elem to bucket x or bucket y).
hash := t.key.alg.hash(k, uintptr(h.hash0))
if hash&newbit != 0 {
useY = 1
......@@ -442,25 +442,24 @@ func evacuate_faststr(t *maptype, h *hmap, oldbucket uintptr) {
dst.b = h.newoverflow(t, dst.b)
dst.i = 0
dst.k = add(unsafe.Pointer(dst.b), dataOffset)
dst.v = add(dst.k, bucketCnt*2*sys.PtrSize)
dst.e = add(dst.k, bucketCnt*2*sys.PtrSize)
}
dst.b.tophash[dst.i&(bucketCnt-1)] = top // mask dst.i as an optimization, to avoid a bounds check
// Copy key.
*(*string)(dst.k) = *(*string)(k)
typedmemmove(t.elem, dst.v, v)
typedmemmove(t.elem, dst.e, e)
dst.i++
// These updates might push these pointers past the end of the
// key or value arrays. That's ok, as we have the overflow pointer
// key or elem arrays. That's ok, as we have the overflow pointer
// at the end of the bucket to protect against pointing past the
// end of the bucket.
dst.k = add(dst.k, 2*sys.PtrSize)
dst.v = add(dst.v, uintptr(t.valuesize))
dst.e = add(dst.e, uintptr(t.elemsize))
}
}
// Unlink the overflow buckets & clear key/value to help GC.
// Unlink the overflow buckets & clear key/value to help GC.
// Unlink the overflow buckets & clear key/elem to help GC.
if h.flags&oldIterator == 0 && t.bucket.ptrdata != 0 {
b := add(h.oldbuckets, oldbucket*uintptr(t.bucketsize))
// Preserve b.tophash because the evacuation
......
......@@ -363,7 +363,7 @@ type maptype struct {
elem *_type
bucket *_type // internal type representing a hash bucket
keysize uint8 // size of key slot
valuesize uint8 // size of value slot
elemsize uint8 // size of elem slot
bucketsize uint16 // size of bucket
flags uint32
}
......@@ -373,7 +373,7 @@ type maptype struct {
func (mt *maptype) indirectkey() bool { // store ptr to key instead of key itself
return mt.flags&1 != 0
}
func (mt *maptype) indirectvalue() bool { // store ptr to value instead of value itself
func (mt *maptype) indirectelem() bool { // store ptr to elem instead of elem itself
return mt.flags&2 != 0
}
func (mt *maptype) reflexivekey() bool { // true if k==k for all keys
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment