Commit 8d7bf229 authored by David Leon Gil's avatar David Leon Gil Committed by Adam Langley

crypto/ecdsa: make Sign safe with broken entropy sources

ECDSA is unsafe to use if an entropy source produces predictable
output for the ephemeral nonces. E.g., [Nguyen]. A simple
countermeasure is to hash the secret key, the message, and
entropy together to seed a CSPRNG, from which the ephemeral key
is derived.

--

This is a minimalist (in terms of patch size) solution, though
not the most parsimonious in its use of primitives:

   - csprng_key = ChopMD-256(SHA2-512(priv.D||entropy||hash))
   - reader = AES-256-CTR(k=csprng_key)

This, however, provides at most 128-bit collision-resistance,
so that Adv will have a term related to the number of messages
signed that is significantly worse than plain ECDSA. This does
not seem to be of any practical importance.

ChopMD-256(SHA2-512(x)) is used, rather than SHA2-256(x), for
two sets of reasons:

*Practical:* SHA2-512 has a larger state and 16 more rounds; it
is likely non-generically stronger than SHA2-256. And, AFAIK,
cryptanalysis backs this up. (E.g., [Biryukov] gives a
distinguisher on 47-round SHA2-256 with cost < 2^85.) This is
well below a reasonable security-strength target.

*Theoretical:* [Coron] and [Chang] show that Chop-MD(F(x)) is
indifferentiable from a random oracle for slightly beyond the
birthday barrier. It seems likely that this makes a generic
security proof that this construction remains UF-CMA is
possible in the indifferentiability framework.

--

Many thanks to Payman Mohassel for reviewing this construction;
any mistakes are mine, however. And, as he notes, reusing the
private key in this way means that the generic-group (non-RO)
proof of ECDSA's security given in [Brown] no longer directly
applies.

--

[Brown]: http://www.cacr.math.uwaterloo.ca/techreports/2000/corr2000-54.ps
"Brown. The exact security of ECDSA. 2000"

[Coron]: https://www.cs.nyu.edu/~puniya/papers/merkle.pdf
"Coron et al. Merkle-Damgard revisited. 2005"

[Chang]: https://www.iacr.org/archive/fse2008/50860436/50860436.pdf
"Chang and Nandi. Improved indifferentiability security analysis
of chopMD hash function. 2008"

[Biryukov]: http://www.iacr.org/archive/asiacrypt2011/70730269/70730269.pdf
"Biryukov et al. Second-order differential collisions for reduced
SHA-256. 2011"

[Nguyen]: ftp://ftp.di.ens.fr/pub/users/pnguyen/PubECDSA.ps
"Nguyen and Shparlinski. The insecurity of the elliptic curve
digital signature algorithm with partially known nonces. 2003"

Fixes #9452

Tests:

  TestNonceSafety: Check that signatures are safe even with a
    broken entropy source.

  TestINDCCA: Check that signatures remain non-deterministic
    with a functional entropy source.

Change-Id: Ie7e04057a3a26e6becb80e845ecb5004bb482745
Reviewed-on: https://go-review.googlesource.com/2422Reviewed-by: default avatarAdam Langley <agl@golang.org>
parent 52d27790
......@@ -4,6 +4,10 @@
// Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as
// defined in FIPS 186-3.
//
// This implementation derives the nonce from an AES-CTR CSPRNG keyed by
// ChopMD(256, SHA2-512(priv.D || entropy || hash)). The CSPRNG key is IRO by
// a result of Coron; the AES-CTR stream is IRO under standard assumptions.
package ecdsa
// References:
......@@ -14,12 +18,19 @@ package ecdsa
import (
"crypto"
"crypto/aes"
"crypto/cipher"
"crypto/elliptic"
"crypto/sha512"
"encoding/asn1"
"io"
"math/big"
)
const (
aesIV = "IV for ECDSA CTR"
)
// PublicKey represents an ECDSA public key.
type PublicKey struct {
elliptic.Curve
......@@ -123,6 +134,38 @@ func fermatInverse(k, N *big.Int) *big.Int {
// pair of integers. The security of the private key depends on the entropy of
// rand.
func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) {
// Get max(log2(q) / 2, 256) bits of entropy from rand.
entropylen := (priv.Curve.Params().BitSize + 7) / 16
if entropylen > 32 {
entropylen = 32
}
entropy := make([]byte, entropylen)
_, err = rand.Read(entropy)
if err != nil {
return
}
// Initialize an SHA-512 hash context; digest ...
md := sha512.New()
md.Write(priv.D.Bytes()) // the private key,
md.Write(entropy) // the entropy,
md.Write(hash) // and the input hash;
key := md.Sum(nil)[:32] // and compute ChopMD-256(SHA-512),
// which is an indifferentiable MAC.
// Create an AES-CTR instance to use as a CSPRNG.
block, err := aes.NewCipher(key)
if err != nil {
return nil, nil, err
}
// Create a CSPRNG that xors a stream of zeros with
// the output of the AES-CTR instance.
csprng := cipher.StreamReader{
R: zeroReader,
S: cipher.NewCTR(block, []byte(aesIV)),
}
// See [NSA] 3.4.1
c := priv.PublicKey.Curve
N := c.Params().N
......@@ -130,7 +173,7 @@ func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err err
var k, kInv *big.Int
for {
for {
k, err = randFieldElement(c, rand)
k, err = randFieldElement(c, csprng)
if err != nil {
r = nil
return
......@@ -187,3 +230,17 @@ func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool {
x.Mod(x, N)
return x.Cmp(r) == 0
}
type zr struct {
io.Reader
}
// Read replaces the contents of dst with zeros.
func (z *zr) Read(dst []byte) (n int, err error) {
for i := range dst {
dst[i] = 0
}
return len(dst), nil
}
var zeroReader = &zr{}
......@@ -72,6 +72,78 @@ func TestSignAndVerify(t *testing.T) {
testSignAndVerify(t, elliptic.P521(), "p521")
}
func testNonceSafety(t *testing.T, c elliptic.Curve, tag string) {
priv, _ := GenerateKey(c, rand.Reader)
hashed := []byte("testing")
r0, s0, err := Sign(zeroReader, priv, hashed)
if err != nil {
t.Errorf("%s: error signing: %s", tag, err)
return
}
hashed = []byte("testing...")
r1, s1, err := Sign(zeroReader, priv, hashed)
if err != nil {
t.Errorf("%s: error signing: %s", tag, err)
return
}
if s0.Cmp(s1) == 0 {
// This should never happen.
t.Errorf("%s: the signatures on two different messages were the same")
}
if r0.Cmp(r1) == 0 {
t.Errorf("%s: the nonce used for two diferent messages was the same")
}
}
func TestNonceSafety(t *testing.T) {
testNonceSafety(t, elliptic.P224(), "p224")
if testing.Short() {
return
}
testNonceSafety(t, elliptic.P256(), "p256")
testNonceSafety(t, elliptic.P384(), "p384")
testNonceSafety(t, elliptic.P521(), "p521")
}
func testINDCCA(t *testing.T, c elliptic.Curve, tag string) {
priv, _ := GenerateKey(c, rand.Reader)
hashed := []byte("testing")
r0, s0, err := Sign(rand.Reader, priv, hashed)
if err != nil {
t.Errorf("%s: error signing: %s", tag, err)
return
}
r1, s1, err := Sign(rand.Reader, priv, hashed)
if err != nil {
t.Errorf("%s: error signing: %s", tag, err)
return
}
if s0.Cmp(s1) == 0 {
t.Errorf("%s: two signatures of the same message produced the same result")
}
if r0.Cmp(r1) == 0 {
t.Errorf("%s: two signatures of the same message produced the same nonce")
}
}
func TestINDCCA(t *testing.T) {
testINDCCA(t, elliptic.P224(), "p224")
if testing.Short() {
return
}
testINDCCA(t, elliptic.P256(), "p256")
testINDCCA(t, elliptic.P384(), "p384")
testINDCCA(t, elliptic.P521(), "p521")
}
func fromHex(s string) *big.Int {
r, ok := new(big.Int).SetString(s, 16)
if !ok {
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment