Commit 9e9ddb00 authored by Robert Griesemer's avatar Robert Griesemer

math/big: implemented Float.Int64, simplified Float.Uint64

Change-Id: Ic270ffa7ec6f6dd4b0a951c64ad965447cce1417
Reviewed-on: https://go-review.googlesource.com/4571Reviewed-by: default avatarAlan Donovan <adonovan@google.com>
parent 277d5870
...@@ -240,13 +240,7 @@ func (x *Float) IsInt() bool { ...@@ -240,13 +240,7 @@ func (x *Float) IsInt() bool {
return len(x.mant) == 0 && x.exp != infExp return len(x.mant) == 0 && x.exp != infExp
} }
// x.exp > 0 // x.exp > 0
if uint(x.exp) >= x.prec { return x.prec <= uint(x.exp) || x.minPrec() <= uint(x.exp) // not enough bits for fractional mantissa
return true // not enough precision for fractional mantissa
}
// x.mant[len(x.mant)-1] != 0
// determine minimum required precision for x
minPrec := uint(len(x.mant))*_W - x.mant.trailingZeroBits()
return uint(x.exp) >= minPrec
} }
// IsInf reports whether x is an infinity, according to sign. // IsInf reports whether x is an infinity, according to sign.
...@@ -660,66 +654,104 @@ func high64(x nat) uint64 { ...@@ -660,66 +654,104 @@ func high64(x nat) uint64 {
return v return v
} }
// minPrec returns the minimum precision required to represent
// x without loss of accuracy.
// TODO(gri) this might be useful to export, perhaps under a better name
func (x *Float) minPrec() uint {
return uint(len(x.mant))*_W - x.mant.trailingZeroBits()
}
// Uint64 returns the unsigned integer resulting from truncating x // Uint64 returns the unsigned integer resulting from truncating x
// towards zero. If 0 <= x < 2**64, the result is Exact if x is an // towards zero. If 0 <= x <= math.MaxUint64, the result is Exact
// integer; and Below if x has a fractional part. The result is (0, // if x is an integer and Below otherwise.
// Above) for x < 0, and (math.MaxUint64, Below) for x > math.MaxUint64. // The result is (0, Above) for x < 0, and (math.MaxUint64, Below)
// for x > math.MaxUint64.
func (x *Float) Uint64() (uint64, Accuracy) { func (x *Float) Uint64() (uint64, Accuracy) {
// TODO(gri) there ought to be an easier way to implement this efficiently
if debugFloat { if debugFloat {
x.validate() x.validate()
} }
// pick off easy cases switch x.ord() {
if x.exp <= 0 { case -2, -1:
// |x| < 1 || |x| == Inf // x < 0
if x.exp == infExp {
// ±Inf
if x.neg {
return 0, Above // -Inf
}
return math.MaxUint64, Below // +Inf
}
if len(x.mant) == 0 {
return 0, Exact // ±0
}
// 0 < |x| < 1
if x.neg {
return 0, Above return 0, Above
} case 0:
// x == 0 || x == -0
return 0, Exact
case 1:
// 0 < x < +Inf
if x.exp <= 0 {
// 0 < x < 1
return 0, Below return 0, Below
} }
// x.exp > 0 // 1 <= x < +Inf
if x.neg {
return 0, Above
}
// x > 0
if x.exp <= 64 { if x.exp <= 64 {
// u = trunc(x) fits into a uint64 // u = trunc(x) fits into a uint64
u := high64(x.mant) >> (64 - uint32(x.exp)) u := high64(x.mant) >> (64 - uint32(x.exp))
// x.mant[len(x.mant)-1] != 0 if x.minPrec() <= 64 {
// determine minimum required precision for x
minPrec := uint(len(x.mant))*_W - x.mant.trailingZeroBits()
if minPrec <= 64 {
return u, Exact return u, Exact
} }
return u, Below return u, Below // x truncated
} }
// x is too large fallthrough // x too large
case 2:
// x == +Inf
return math.MaxUint64, Below return math.MaxUint64, Below
}
panic("unreachable")
} }
// TODO(gri) FIX THIS (inf, rounding mode, errors, etc.) // Int64 returns the integer resulting from truncating x towards zero.
func (x *Float) Int64() int64 { // If math.MinInt64 <= x <= math.MaxInt64, the result is Exact if x is
m := high64(x.mant) // an integer, and Above (x < 0) or Below (x > 0) otherwise.
s := x.exp // The result is (math.MinInt64, Above) for x < math.MinInt64, and
var i int64 // (math.MaxInt64, Below) for x > math.MaxInt64.
if s >= 0 { func (x *Float) Int64() (int64, Accuracy) {
i = int64(m >> (64 - uint(s))) if debugFloat {
x.validate()
}
switch x.ord() {
case -2:
// x == -Inf
return math.MinInt64, Above
case 0:
// x == 0 || x == -0
return 0, Exact
case -1, 1:
// 0 < |x| < +Inf
acc := Below
if x.neg {
acc = Above
}
if x.exp <= 0 {
// 0 < |x| < 1
return 0, acc
}
// 1 <= |x| < +Inf
if x.exp <= 63 {
// i = trunc(x) fits into an int64 (excluding math.MinInt64)
i := int64(high64(x.mant) >> (64 - uint32(x.exp)))
if x.neg {
i = -i
}
if x.minPrec() <= 63 {
return i, Exact
}
return i, acc // x truncated
} }
if x.neg { if x.neg {
return -i // check for special case x == math.MinInt64 (i.e., x == -(0.5 << 64))
if x.exp == 64 && x.minPrec() == 1 {
acc = Exact
} }
return i return math.MinInt64, acc
}
fallthrough
case 2:
// x == +Inf
return math.MaxInt64, Below
}
panic("unreachable")
} }
// Float64 returns the closest float64 value of x // Float64 returns the closest float64 value of x
...@@ -776,9 +808,8 @@ func (x *Float) Int() (res *Int, acc Accuracy) { ...@@ -776,9 +808,8 @@ func (x *Float) Int() (res *Int, acc Accuracy) {
// x.mant[len(x.mant)-1] != 0 // x.mant[len(x.mant)-1] != 0
// determine minimum required precision for x // determine minimum required precision for x
allBits := uint(len(x.mant)) * _W allBits := uint(len(x.mant)) * _W
minPrec := allBits - x.mant.trailingZeroBits()
exp := uint(x.exp) exp := uint(x.exp)
if exp >= minPrec { if x.minPrec() <= exp {
acc = Exact acc = Exact
} }
// shift mantissa as needed // shift mantissa as needed
...@@ -1199,8 +1230,8 @@ func (x *Float) Cmp(y *Float) int { ...@@ -1199,8 +1230,8 @@ func (x *Float) Cmp(y *Float) int {
y.validate() y.validate()
} }
mx := x.mag() mx := x.ord()
my := y.mag() my := y.ord()
switch { switch {
case mx < my: case mx < my:
return -1 return -1
...@@ -1227,17 +1258,17 @@ func umax(x, y uint) uint { ...@@ -1227,17 +1258,17 @@ func umax(x, y uint) uint {
return y return y
} }
// mag returns: // ord classifies x and returns:
// //
// -2 if x == -Inf // -2 if -Inf == x
// -1 if x < 0 // -1 if -Inf < x < 0
// 0 if x == -0 or x == +0 // 0 if x == 0 (signed or unsigned)
// +1 if x > 0 // +1 if 0 < x < +Inf
// +2 if x == +Inf // +2 if x == +Inf
// //
// mag is a helper function for Cmp. // TODO(gri) export (and remove IsInf)?
func (x *Float) mag() int { func (x *Float) ord() int {
m := 1 m := 1 // common case
if len(x.mant) == 0 { if len(x.mant) == 0 {
m = 0 m = 0
if x.exp == infExp { if x.exp == infExp {
......
...@@ -21,6 +21,14 @@ func (x *Float) uint64() uint64 { ...@@ -21,6 +21,14 @@ func (x *Float) uint64() uint64 {
return u return u
} }
func (x *Float) int64() int64 {
i, acc := x.Int64()
if acc != Exact {
panic(fmt.Sprintf("%s is not an int64", x.Format('g', 10)))
}
return i
}
func TestFloatZeroValue(t *testing.T) { func TestFloatZeroValue(t *testing.T) {
// zero (uninitialized) value is a ready-to-use 0.0 // zero (uninitialized) value is a ready-to-use 0.0
var x Float var x Float
...@@ -69,7 +77,7 @@ func TestFloatZeroValue(t *testing.T) { ...@@ -69,7 +77,7 @@ func TestFloatZeroValue(t *testing.T) {
test.op(z, make(test.x), make(test.y)) test.op(z, make(test.x), make(test.y))
got := 0 got := 0
if !z.IsInf(0) { if !z.IsInf(0) {
got = int(z.Int64()) got = int(z.int64())
} }
if got != test.want { if got != test.want {
t.Errorf("%d %c %d = %d; want %d", test.x, test.opname, test.y, got, test.want) t.Errorf("%d %c %d = %d; want %d", test.x, test.opname, test.y, got, test.want)
...@@ -257,7 +265,7 @@ func testFloatRound(t *testing.T, x, r int64, prec uint, mode RoundingMode) { ...@@ -257,7 +265,7 @@ func testFloatRound(t *testing.T, x, r int64, prec uint, mode RoundingMode) {
f.Round(f, prec, mode) f.Round(f, prec, mode)
// check result // check result
r1 := f.Int64() r1 := f.int64()
p1 := f.Precision() p1 := f.Precision()
a1 := f.Accuracy() a1 := f.Accuracy()
if r1 != r || p1 != prec || a1 != a { if r1 != r || p1 != prec || a1 != a {
...@@ -430,7 +438,7 @@ func TestFloatSetInt64(t *testing.T) { ...@@ -430,7 +438,7 @@ func TestFloatSetInt64(t *testing.T) {
} }
var f Float var f Float
f.SetInt64(want) f.SetInt64(want)
if got := f.Int64(); got != want { if got := f.int64(); got != want {
t.Errorf("got %#x (%s); want %#x", got, f.Format('p', 0), want) t.Errorf("got %#x (%s); want %#x", got, f.Format('p', 0), want)
} }
} }
...@@ -440,7 +448,7 @@ func TestFloatSetInt64(t *testing.T) { ...@@ -440,7 +448,7 @@ func TestFloatSetInt64(t *testing.T) {
const x int64 = 0x7654321076543210 // 63 bits needed const x int64 = 0x7654321076543210 // 63 bits needed
for prec := uint(1); prec <= 63; prec++ { for prec := uint(1); prec <= 63; prec++ {
f := NewFloat(0, prec, ToZero).SetInt64(x) f := NewFloat(0, prec, ToZero).SetInt64(x)
got := f.Int64() got := f.int64()
want := x &^ (1<<(63-prec) - 1) // cut off (round to zero) low 63-prec bits want := x &^ (1<<(63-prec) - 1) // cut off (round to zero) low 63-prec bits
if got != want { if got != want {
t.Errorf("got %#x (%s); want %#x", got, f.Format('p', 0), want) t.Errorf("got %#x (%s); want %#x", got, f.Format('p', 0), want)
...@@ -571,17 +579,21 @@ func TestFloatUint64(t *testing.T) { ...@@ -571,17 +579,21 @@ func TestFloatUint64(t *testing.T) {
out uint64 out uint64
acc Accuracy acc Accuracy
}{ }{
{"0", 0, Exact},
{"-0", 0, Exact},
{"-1", 0, Above},
{"-Inf", 0, Above}, {"-Inf", 0, Above},
{"-1", 0, Above},
{"-1e-1000", 0, Above}, {"-1e-1000", 0, Above},
{"-0", 0, Exact},
{"0", 0, Exact},
{"1e-1000", 0, Below}, {"1e-1000", 0, Below},
{"1", 1, Exact},
{"1.000000000000000000001", 1, Below},
{"12345.0", 12345, Exact}, {"12345.0", 12345, Exact},
{"12345.6", 12345, Below}, {"12345.000000000000000000001", 12345, Below},
{"18446744073709551615", 18446744073709551615, Exact}, {"18446744073709551615", 18446744073709551615, Exact},
{"18446744073709551615.000000000000000000001", math.MaxUint64, Below}, {"18446744073709551615.000000000000000000001", math.MaxUint64, Below},
{"18446744073709551616", math.MaxUint64, Below},
{"1e10000", math.MaxUint64, Below}, {"1e10000", math.MaxUint64, Below},
{"+Inf", math.MaxUint64, Below},
} { } {
x := makeFloat(test.x) x := makeFloat(test.x)
out, acc := x.Uint64() out, acc := x.Uint64()
...@@ -591,6 +603,44 @@ func TestFloatUint64(t *testing.T) { ...@@ -591,6 +603,44 @@ func TestFloatUint64(t *testing.T) {
} }
} }
func TestFloatInt64(t *testing.T) {
for _, test := range []struct {
x string
out int64
acc Accuracy
}{
{"-Inf", math.MinInt64, Above},
{"-1e10000", math.MinInt64, Above},
{"-9223372036854775809", math.MinInt64, Above},
{"-9223372036854775808.000000000000000000001", math.MinInt64, Above},
{"-9223372036854775808", -9223372036854775808, Exact},
{"-9223372036854775807.000000000000000000001", -9223372036854775807, Above},
{"-9223372036854775807", -9223372036854775807, Exact},
{"-12345.000000000000000000001", -12345, Above},
{"-12345.0", -12345, Exact},
{"-1.000000000000000000001", -1, Above},
{"-1", -1, Exact},
{"-1e-1000", 0, Above},
{"0", 0, Exact},
{"1e-1000", 0, Below},
{"1", 1, Exact},
{"1.000000000000000000001", 1, Below},
{"12345.0", 12345, Exact},
{"12345.000000000000000000001", 12345, Below},
{"9223372036854775807", 9223372036854775807, Exact},
{"9223372036854775807.000000000000000000001", math.MaxInt64, Below},
{"9223372036854775808", math.MaxInt64, Below},
{"1e10000", math.MaxInt64, Below},
{"+Inf", math.MaxInt64, Below},
} {
x := makeFloat(test.x)
out, acc := x.Int64()
if out != test.out || acc != test.acc {
t.Errorf("%s: got %d (%s); want %d (%s)", test.x, out, acc, test.out, test.acc)
}
}
}
func TestFloatInt(t *testing.T) { func TestFloatInt(t *testing.T) {
for _, test := range []struct { for _, test := range []struct {
x string x string
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment