Commit a0690b69 authored by Charles L. Dorian's avatar Charles L. Dorian Committed by Russ Cox

math: add functions; update tests and special cases

Added special cases to comments for asin.go and fabs.go.
Added Trunc() to floor.go and floor_386.s.  Fixed formatting
error in hypot_386.s  Added new functions Acosh, Asinh,
Atanh, Copysign, Erf, Erfc, Expm1, and Log1p.  Added
386 FPU version of Fmod.  Added tests, benchmarks, and
precision to expected results in all_test.go.  Edited
makefile so it all compiles.

R=rsc
CC=golang-dev
https://golang.org/cl/195052
parent 0bd41e2f
......@@ -15,6 +15,7 @@ OFILES_386=\
exp_386.$O\
fabs_386.$O\
floor_386.$O\
fmod_386.$O\
hypot_386.$O\
log_386.$O\
sin_386.$O\
......@@ -25,17 +26,24 @@ OFILES=\
$(OFILES_$(GOARCH))
ALLGOFILES=\
acosh.go\
asin.go\
asinh.go\
atan.go\
atanh.go\
atan2.go\
bits.go\
const.go\
copysign.go\
erf.go\
exp.go\
expm1.go\
fabs.go\
floor.go\
fmod.go\
hypot.go\
log.go\
log1p.go\
pow.go\
pow10.go\
sin.go\
......
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package math
// The original C code, the long comment, and the constants
// below are from FreeBSD's /usr/src/lib/msun/src/e_acosh.c
// and came with this notice. The go code is a simplified
// version of the original C.
//
// ====================================================
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
//
// Developed at SunPro, a Sun Microsystems, Inc. business.
// Permission to use, copy, modify, and distribute this
// software is freely granted, provided that this notice
// is preserved.
// ====================================================
//
//
// __ieee754_acosh(x)
// Method :
// Based on
// acosh(x) = log [ x + sqrt(x*x-1) ]
// we have
// acosh(x) := log(x)+ln2, if x is large; else
// acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
// acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
//
// Special cases:
// acosh(x) is NaN with signal if x<1.
// acosh(NaN) is NaN without signal.
//
// Acosh(x) calculates the inverse hyperbolic cosine of x.
//
// Special cases are:
// Acosh(x) = NaN if x < 1
// Acosh(NaN) = NaN
func Acosh(x float64) float64 {
const (
Ln2 = 6.93147180559945286227e-01 // 0x3FE62E42FEFA39EF
Large = 1 << 28 // 2^28
)
switch {
case x < 1 || IsNaN(x):
return NaN()
case x == 1:
return 0
case x >= Large:
return Log(x) + Ln2 // x > 2^28
case x > 2:
return Log(2*x - 1/(x+Sqrt(x*x-1))) // 2^28 > x > 2
}
t := x - 1
return Log1p(t + Sqrt(2*t+t*t)) // 2 >= x > 1
}
......@@ -22,41 +22,83 @@ var vf = []float64{
1.8253080916808550e+00,
-8.6859247685756013e+00,
}
// The expected results below were computed by the high precision calculators
// at http://keisan.casio.com/. More exact input values (array vf[], above)
// were obtained by printing them with "%.26f". The answers were calculated
// to 26 digits (by using the "Digit number" drop-down control of each
// calculator). Twenty-six digits were chosen so that the answers would be
// accurate even for a float128 type.
var acos = []float64{
1.0496193546107222e+00,
6.858401281366443e-01,
1.598487871457716e+00,
2.095619936147586e+00,
2.7053008467824158e-01,
1.2738121680361776e+00,
1.0205369421140630e+00,
1.2945003481781246e+00,
1.3872364345374451e+00,
2.6231510803970464e+00,
1.0496193546107222142571536e+00,
6.8584012813664425171660692e-01,
1.5984878714577160325521819e+00,
2.0956199361475859327461799e+00,
2.7053008467824138592616927e-01,
1.2738121680361776018155625e+00,
1.0205369421140629186287407e+00,
1.2945003481781246062157835e+00,
1.3872364345374451433846657e+00,
2.6231510803970463967294145e+00,
}
var acosh = []float64{
2.4743347004159012494457618e+00,
2.8576385344292769649802701e+00,
7.2796961502981066190593175e-01,
2.4796794418831451156471977e+00,
3.0552020742306061857212962e+00,
2.044238592688586588942468e+00,
2.5158701513104513595766636e+00,
1.99050839282411638174299e+00,
1.6988625798424034227205445e+00,
2.9611454842470387925531875e+00,
}
var asin = []float64{
5.2117697218417440e-01,
8.8495619865825236e-01,
-2.7691544662819413e-02,
-5.2482360935268932e-01,
1.3002662421166553e+00,
2.9698415875871901e-01,
5.5025938468083364e-01,
2.7629597861677200e-01,
1.8355989225745148e-01,
-1.0523547536021498e+00,
5.2117697218417440497416805e-01,
8.8495619865825236751471477e-01,
-02.769154466281941332086016e-02,
-5.2482360935268931351485822e-01,
1.3002662421166552333051524e+00,
2.9698415875871901741575922e-01,
5.5025938468083370060258102e-01,
2.7629597861677201301553823e-01,
1.83559892257451475846656e-01,
-1.0523547536021497774980928e+00,
}
var asinh = []float64{
2.3083139124923523427628243e+00,
2.743551594301593620039021e+00,
-2.7345908534880091229413487e-01,
-2.3145157644718338650499085e+00,
2.9613652154015058521951083e+00,
1.7949041616585821933067568e+00,
2.3564032905983506405561554e+00,
1.7287118790768438878045346e+00,
1.3626658083714826013073193e+00,
-2.8581483626513914445234004e+00,
}
var atan = []float64{
1.3725902621296217e+00,
1.4422906096452980e+00,
-2.7011324359471755e-01,
-1.3738077684543379e+00,
1.4673921193587666e+00,
1.2415173565870167e+00,
1.3818396865615167e+00,
1.2194305844639670e+00,
1.0696031952318783e+00,
-1.4561721938838085e+00,
1.372590262129621651920085e+00,
1.442290609645298083020664e+00,
-2.7011324359471758245192595e-01,
-1.3738077684543379452781531e+00,
1.4673921193587666049154681e+00,
1.2415173565870168649117764e+00,
1.3818396865615168979966498e+00,
1.2194305844639670701091426e+00,
1.0696031952318783760193244e+00,
-1.4561721938838084990898679e+00,
}
var atanh = []float64{
5.4651163712251938116878204e-01,
1.0299474112843111224914709e+00,
-2.7695084420740135145234906e-02,
-5.5072096119207195480202529e-01,
1.9943940993171843235906642e+00,
3.01448604578089708203017e-01,
5.8033427206942188834370595e-01,
2.7987997499441511013958297e-01,
1.8459947964298794318714228e-01,
-1.3273186910532645867272502e+00,
}
var ceil = []float64{
5.0000000000000000e+00,
......@@ -70,17 +112,89 @@ var ceil = []float64{
2.0000000000000000e+00,
-8.0000000000000000e+00,
}
var copysign = []float64{
-4.9790119248836735e+00,
-7.7388724745781045e+00,
-2.7688005719200159e-01,
-5.0106036182710749e+00,
-9.6362937071984173e+00,
-2.9263772392439646e+00,
-5.2290834314593066e+00,
-2.7279399104360102e+00,
-1.8253080916808550e+00,
-8.6859247685756013e+00,
}
var cos = []float64{
2.634752140995199110787593e-01,
1.148551260848219865642039e-01,
9.6191297325640768154550453e-01,
2.938141150061714816890637e-01,
-9.777138189897924126294461e-01,
-9.7693041344303219127199518e-01,
4.940088096948647263961162e-01,
-9.1565869021018925545016502e-01,
-2.517729313893103197176091e-01,
-7.39241351595676573201918e-01,
}
var cosh = []float64{
7.2668796942212842775517446e+01,
1.1479413465659254502011135e+03,
1.0385767908766418550935495e+00,
7.5000957789658051428857788e+01,
7.655246669605357888468613e+03,
9.3567491758321272072888257e+00,
9.331351599270605471131735e+01,
7.6833430994624643209296404e+00,
3.1829371625150718153881164e+00,
2.9595059261916188501640911e+03,
}
var erf = []float64{
5.1865354817738701906913566e-01,
7.2623875834137295116929844e-01,
-3.123458688281309990629839e-02,
-5.2143121110253302920437013e-01,
8.2704742671312902508629582e-01,
3.2101767558376376743993945e-01,
5.403990312223245516066252e-01,
3.0034702916738588551174831e-01,
2.0369924417882241241559589e-01,
-7.8069386968009226729944677e-01,
}
var erfc = []float64{
4.8134645182261298093086434e-01,
2.7376124165862704883070156e-01,
1.0312345868828130999062984e+00,
1.5214312111025330292043701e+00,
1.7295257328687097491370418e-01,
6.7898232441623623256006055e-01,
4.596009687776754483933748e-01,
6.9965297083261411448825169e-01,
7.9630075582117758758440411e-01,
1.7806938696800922672994468e+00,
}
var exp = []float64{
1.4533071302642137e+02,
2.2958822575694450e+03,
7.5814542574851666e-01,
6.6668778421791010e-03,
1.5310493273896035e+04,
1.8659907517999329e+01,
1.8662167355098713e+02,
1.5301332413189379e+01,
6.2047063430646876e+00,
1.6894712385826522e-04,
1.4533071302642137507696589e+02,
2.2958822575694449002537581e+03,
7.5814542574851666582042306e-01,
6.6668778421791005061482264e-03,
1.5310493273896033740861206e+04,
1.8659907517999328638667732e+01,
1.8662167355098714543942057e+02,
1.5301332413189378961665788e+01,
6.2047063430646876349125085e+00,
1.6894712385826521111610438e-04,
}
var expm1 = []float64{
5.105047796122957327384770212e-02,
8.046199708567344080562675439e-02,
-2.764970978891639815187418703e-03,
-4.8871434888875355394330300273e-02,
1.0115864277221467777117227494e-01,
2.969616407795910726014621657e-02,
5.368214487944892300914037972e-02,
2.765488851131274068067445335e-02,
1.842068661871398836913874273e-02,
-8.3193870863553801814961137573e-02,
}
var floor = []float64{
4.0000000000000000e+00,
......@@ -95,115 +209,150 @@ var floor = []float64{
-9.0000000000000000e+00,
}
var fmod = []float64{
4.1976150232653000e-02,
2.2611275254218955e+00,
3.2317941087942760e-02,
4.9893963817289251e+00,
3.6370629280158270e-01,
1.2208682822681062e+00,
4.7709165685406934e+00,
1.8161802686919694e+00,
8.7345954159572500e-01,
1.3140752314243987e+00,
4.197615023265299782906368e-02,
2.261127525421895434476482e+00,
3.231794108794261433104108e-02,
4.989396381728925078391512e+00,
3.637062928015826201999516e-01,
1.220868282268106064236690e+00,
4.770916568540693347699744e+00,
1.816180268691969246219742e+00,
8.734595415957246977711748e-01,
1.314075231424398637614104e+00,
}
var log = []float64{
1.6052314626930630e+00,
2.0462560018708768e+00,
-1.2841708730962657e+00,
1.6115563905281544e+00,
2.2655365644872018e+00,
1.0737652208918380e+00,
1.6542360106073545e+00,
1.0035467127723465e+00,
6.0174879014578053e-01,
2.1617038728473527e+00,
1.605231462693062999102599e+00,
2.0462560018708770653153909e+00,
-1.2841708730962657801275038e+00,
1.6115563905281545116286206e+00,
2.2655365644872016636317461e+00,
1.0737652208918379856272735e+00,
1.6542360106073546632707956e+00,
1.0035467127723465801264487e+00,
6.0174879014578057187016475e-01,
2.161703872847352815363655e+00,
}
var log10 = []float64{
6.9714316642508291e-01,
8.8867769017393205e-01,
-5.5770832400658930e-01,
6.9989004768229943e-01,
9.8391002850684232e-01,
4.6633031029295153e-01,
7.1842557117242328e-01,
4.3583479968917772e-01,
2.6133617905227037e-01,
9.3881606348649405e-01,
6.9714316642508290997617083e-01,
8.886776901739320576279124e-01,
-5.5770832400658929815908236e-01,
6.998900476822994346229723e-01,
9.8391002850684232013281033e-01,
4.6633031029295153334285302e-01,
7.1842557117242328821552533e-01,
4.3583479968917773161304553e-01,
2.6133617905227038228626834e-01,
9.3881606348649405716214241e-01,
}
var log1p = []float64{
4.8590257759797794104158205e-02,
7.4540265965225865330849141e-02,
-2.7726407903942672823234024e-03,
-5.1404917651627649094953380e-02,
9.1998280672258624681335010e-02,
2.8843762576593352865894824e-02,
5.0969534581863707268992645e-02,
2.6913947602193238458458594e-02,
1.8088493239630770262045333e-02,
-9.0865245631588989681559268e-02,
}
var pow = []float64{
9.5282232631648415e+04,
5.4811599352999900e+07,
5.2859121715894400e-01,
9.7587991957286472e-06,
4.3280643293460450e+09,
8.4406761805034551e+02,
1.6946633276191194e+05,
5.3449040147551940e+02,
6.6881821384514159e+01,
2.0609869004248744e-09,
9.5282232631648411840742957e+04,
5.4811599352999901232411871e+07,
5.2859121715894396531132279e-01,
9.7587991957286474464259698e-06,
4.328064329346044846740467e+09,
8.4406761805034547437659092e+02,
1.6946633276191194947742146e+05,
5.3449040147551939075312879e+02,
6.688182138451414936380374e+01,
2.0609869004248742886827439e-09,
}
var sin = []float64{
-9.6466616586009283e-01,
9.9338225271646543e-01,
-2.7335587039794395e-01,
9.5586257685042800e-01,
-2.0994210667799692e-01,
2.1355787807998605e-01,
-8.6945689711673619e-01,
4.0195666811555783e-01,
9.6778633541688000e-01,
-6.7344058690503452e-01,
-9.6466616586009283766724726e-01,
9.9338225271646545763467022e-01,
-2.7335587039794393342449301e-01,
9.5586257685042792878173752e-01,
-2.099421066779969164496634e-01,
2.135578780799860532750616e-01,
-8.694568971167362743327708e-01,
4.019566681155577786649878e-01,
9.6778633541687993721617774e-01,
-6.734405869050344734943028e-01,
}
var sinh = []float64{
7.2661916084208533e+01,
1.1479409110035194e+03,
-2.8043136512812520e-01,
-7.4994290911815868e+01,
7.6552466042906761e+03,
9.3031583421672010e+00,
9.3308157558281088e+01,
7.6179893137269143e+00,
3.0217691805496156e+00,
-2.9595057572444951e+03,
7.2661916084208532301448439e+01,
1.1479409110035194500526446e+03,
-2.8043136512812518927312641e-01,
-7.499429091181587232835164e+01,
7.6552466042906758523925934e+03,
9.3031583421672014313789064e+00,
9.330815755828109072810322e+01,
7.6179893137269146407361477e+00,
3.021769180549615819524392e+00,
-2.95950575724449499189888e+03,
}
var sqrt = []float64{
2.2313699659365484e+00,
2.7818829009464263e+00,
5.2619393496314792e-01,
2.2384377628763938e+00,
3.1042380236055380e+00,
1.7106657298385224e+00,
2.2867189227054791e+00,
1.6516476350711160e+00,
1.3510396336454586e+00,
2.9471892997524950e+00,
2.2313699659365484748756904e+00,
2.7818829009464263511285458e+00,
5.2619393496314796848143251e-01,
2.2384377628763938724244104e+00,
3.1042380236055381099288487e+00,
1.7106657298385224403917771e+00,
2.286718922705479046148059e+00,
1.6516476350711159636222979e+00,
1.3510396336454586262419247e+00,
2.9471892997524949215723329e+00,
}
var tan = []float64{
-3.6613165650402277e+00,
8.6490023264859754e+00,
-2.8417941955033615e-01,
3.2532901859747287e+00,
2.1472756403802937e-01,
-2.1860091071106700e-01,
-1.7600028178723679e+00,
-4.3898089147528178e-01,
-3.8438855602011305e+00,
9.1098879337768517e-01,
-3.661316565040227801781974e+00,
8.64900232648597589369854e+00,
-2.8417941955033612725238097e-01,
3.253290185974728640827156e+00,
2.147275640380293804770778e-01,
-2.18600910711067004921551e-01,
-1.760002817872367935518928e+00,
-4.389808914752818126249079e-01,
-3.843885560201130679995041e+00,
9.10988793377685105753416e-01,
}
var tanh = []float64{
9.9990531206936328e-01,
9.9999962057085307e-01,
-2.7001505097318680e-01,
-9.9991110943061700e-01,
9.9999999146798441e-01,
9.9427249436125233e-01,
9.9994257600983156e-01,
9.9149409509772863e-01,
9.4936501296239700e-01,
-9.9999994291374019e-01,
9.9990531206936338549262119e-01,
9.9999962057085294197613294e-01,
-2.7001505097318677233756845e-01,
-9.9991110943061718603541401e-01,
9.9999999146798465745022007e-01,
9.9427249436125236705001048e-01,
9.9994257600983138572705076e-01,
9.9149409509772875982054701e-01,
9.4936501296239685514466577e-01,
-9.9999994291374030946055701e-01,
}
var trunc = []float64{
4.0000000000000000e+00,
7.0000000000000000e+00,
-0.0000000000000000e+00,
-5.0000000000000000e+00,
9.0000000000000000e+00,
2.0000000000000000e+00,
5.0000000000000000e+00,
2.0000000000000000e+00,
1.0000000000000000e+00,
-8.0000000000000000e+00,
}
// arguments and expected results for special cases
var vfacoshSC = []float64{
Inf(-1),
0.5,
NaN(),
}
var acoshSC = []float64{
NaN(),
NaN(),
NaN(),
}
var vfasinSC = []float64{
NaN(),
-Pi,
......@@ -215,6 +364,17 @@ var asinSC = []float64{
NaN(),
}
var vfasinhSC = []float64{
Inf(-1),
Inf(1),
NaN(),
}
var asinhSC = []float64{
Inf(-1),
Inf(1),
NaN(),
}
var vfatanSC = []float64{
NaN(),
}
......@@ -222,6 +382,21 @@ var atanSC = []float64{
NaN(),
}
var vfatanhSC = []float64{
-Pi,
-1,
1,
Pi,
NaN(),
}
var atanhSC = []float64{
NaN(),
Inf(-1),
Inf(1),
NaN(),
NaN(),
}
var vfceilSC = []float64{
Inf(-1),
Inf(1),
......@@ -233,6 +408,33 @@ var ceilSC = []float64{
NaN(),
}
var vfcopysignSC = []float64{
Inf(-1),
Inf(1),
NaN(),
}
var copysignSC = []float64{
Inf(-1),
Inf(-1),
NaN(),
}
var vferfSC = []float64{
Inf(-1),
Inf(1),
NaN(),
}
var erfSC = []float64{
-1,
1,
NaN(),
}
var erfcSC = []float64{
2,
0,
NaN(),
}
var vfexpSC = []float64{
Inf(-1),
Inf(1),
......@@ -243,6 +445,11 @@ var expSC = []float64{
Inf(1),
NaN(),
}
var expm1SC = []float64{
-1,
Inf(1),
NaN(),
}
var vffmodSC = [][2]float64{
[2]float64{Inf(-1), Inf(-1)},
......@@ -359,6 +566,21 @@ var logSC = []float64{
NaN(),
}
var vflog1pSC = []float64{
Inf(-1),
-Pi,
-1,
Inf(1),
NaN(),
}
var log1pSC = []float64{
NaN(),
NaN(),
Inf(-1),
Inf(1),
NaN(),
}
var vfpowSC = [][2]float64{
[2]float64{-Pi, Pi},
[2]float64{-Pi, -Pi},
......@@ -494,8 +716,9 @@ func alike(a, b float64) bool {
func TestAcos(t *testing.T) {
for i := 0; i < len(vf); i++ {
if f := Acos(vf[i] / 10); !close(acos[i], f) {
t.Errorf("Acos(%g) = %g, want %g\n", vf[i]/10, f, acos[i])
a := vf[i] / 10
if f := Acos(a); !close(acos[i], f) {
t.Errorf("Acos(%g) = %g, want %g\n", a, f, acos[i])
}
}
for i := 0; i < len(vfasinSC); i++ {
......@@ -505,10 +728,25 @@ func TestAcos(t *testing.T) {
}
}
func TestAcosh(t *testing.T) {
for i := 0; i < len(vf); i++ {
a := 1 + Fabs(vf[i])
if f := Acosh(a); !veryclose(acosh[i], f) {
t.Errorf("Acosh(%g) = %g, want %g\n", a, f, acosh[i])
}
}
for i := 0; i < len(vfacoshSC); i++ {
if f := Acosh(vfacoshSC[i]); !alike(acoshSC[i], f) {
t.Errorf("Acosh(%g) = %g, want %g\n", vfacoshSC[i], f, acoshSC[i])
}
}
}
func TestAsin(t *testing.T) {
for i := 0; i < len(vf); i++ {
if f := Asin(vf[i] / 10); !veryclose(asin[i], f) {
t.Errorf("Asin(%g) = %g, want %g\n", vf[i]/10, f, asin[i])
a := vf[i] / 10
if f := Asin(a); !veryclose(asin[i], f) {
t.Errorf("Asin(%g) = %g, want %g\n", a, f, asin[i])
}
}
for i := 0; i < len(vfasinSC); i++ {
......@@ -518,6 +756,19 @@ func TestAsin(t *testing.T) {
}
}
func TestAsinh(t *testing.T) {
for i := 0; i < len(vf); i++ {
if f := Asinh(vf[i]); !veryclose(asinh[i], f) {
t.Errorf("Asinh(%g) = %g, want %g\n", vf[i], f, asinh[i])
}
}
for i := 0; i < len(vfasinhSC); i++ {
if f := Asinh(vfasinhSC[i]); !alike(asinhSC[i], f) {
t.Errorf("Asinh(%g) = %g, want %g\n", vfasinhSC[i], f, asinhSC[i])
}
}
}
func TestAtan(t *testing.T) {
for i := 0; i < len(vf); i++ {
if f := Atan(vf[i]); !veryclose(atan[i], f) {
......@@ -531,6 +782,20 @@ func TestAtan(t *testing.T) {
}
}
func TestAtanh(t *testing.T) {
for i := 0; i < len(vf); i++ {
a := vf[i] / 10
if f := Atanh(a); !veryclose(atanh[i], f) {
t.Errorf("Atanh(%g) = %g, want %g\n", a, f, atanh[i])
}
}
for i := 0; i < len(vfatanhSC); i++ {
if f := Atanh(vfatanhSC[i]); !alike(atanhSC[i], f) {
t.Errorf("Atanh(%g) = %g, want %g\n", vfatanhSC[i], f, atanhSC[i])
}
}
}
func TestCeil(t *testing.T) {
for i := 0; i < len(vf); i++ {
if f := Ceil(vf[i]); ceil[i] != f {
......@@ -544,6 +809,63 @@ func TestCeil(t *testing.T) {
}
}
func TestCopysign(t *testing.T) {
for i := 0; i < len(vf); i++ {
if f := Copysign(vf[i], -1); copysign[i] != f {
t.Errorf("Copysign(%g, -1) = %g, want %g\n", vf[i], f, copysign[i])
}
}
for i := 0; i < len(vfcopysignSC); i++ {
if f := Copysign(vfcopysignSC[i], -1); !alike(copysignSC[i], f) {
t.Errorf("Copysign(%g, -1) = %g, want %g\n", vfcopysignSC[i], f, copysignSC[i])
}
}
}
func TestCos(t *testing.T) {
for i := 0; i < len(vf); i++ {
if f := Cos(vf[i]); !close(cos[i], f) {
t.Errorf("Cos(%g) = %g, want %g\n", vf[i], f, cos[i])
}
}
}
func TestCosh(t *testing.T) {
for i := 0; i < len(vf); i++ {
if f := Cosh(vf[i]); !veryclose(cosh[i], f) {
t.Errorf("Cosh(%g) = %g, want %g\n", vf[i], f, cosh[i])
}
}
}
func TestErf(t *testing.T) {
for i := 0; i < len(vf); i++ {
a := vf[i] / 10
if f := Erf(a); !veryclose(erf[i], f) {
t.Errorf("Erf(%g) = %g, want %g\n", a, f, erf[i])
}
}
for i := 0; i < len(vferfSC); i++ {
if f := Erf(vferfSC[i]); !alike(erfSC[i], f) {
t.Errorf("Erf(%g) = %g, want %g\n", vferfSC[i], f, erfSC[i])
}
}
}
func TestErfc(t *testing.T) {
for i := 0; i < len(vf); i++ {
a := vf[i] / 10
if f := Erfc(a); !veryclose(erfc[i], f) {
t.Errorf("Erfc(%g) = %g, want %g\n", a, f, erfc[i])
}
}
for i := 0; i < len(vferfSC); i++ {
if f := Erfc(vferfSC[i]); !alike(erfcSC[i], f) {
t.Errorf("Erfc(%g) = %g, want %g\n", vferfSC[i], f, erfcSC[i])
}
}
}
func TestExp(t *testing.T) {
for i := 0; i < len(vf); i++ {
if f := Exp(vf[i]); !close(exp[i], f) {
......@@ -557,6 +879,20 @@ func TestExp(t *testing.T) {
}
}
func TestExpm1(t *testing.T) {
for i := 0; i < len(vf); i++ {
a := vf[i] / 100
if f := Expm1(a); !veryclose(expm1[i], f) {
t.Errorf("Expm1(%.26fg) = %.26fg, want %.26fg\n", a, f, expm1[i])
}
}
for i := 0; i < len(vfexpSC); i++ {
if f := Expm1(vfexpSC[i]); !alike(expm1SC[i], f) {
t.Errorf("Expm1(%g) = %g, want %g\n", vfexpSC[i], f, expm1SC[i])
}
}
}
func TestFloor(t *testing.T) {
for i := 0; i < len(vf); i++ {
if f := Floor(vf[i]); floor[i] != f {
......@@ -572,7 +908,7 @@ func TestFloor(t *testing.T) {
func TestFmod(t *testing.T) {
for i := 0; i < len(vf); i++ {
if f := Fmod(10, vf[i]); !close(fmod[i], f) {
if f := Fmod(10, vf[i]); fmod[i] != f { /*!close(fmod[i], f)*/
t.Errorf("Fmod(10, %g) = %g, want %g\n", vf[i], f, fmod[i])
}
}
......@@ -631,6 +967,24 @@ func TestLog10(t *testing.T) {
}
}
func TestLog1p(t *testing.T) {
for i := 0; i < len(vf); i++ {
a := vf[i] / 100
if f := Log1p(a); !veryclose(log1p[i], f) {
t.Errorf("Log1p(%g) = %g, want %g\n", a, f, log1p[i])
}
}
a := float64(9)
if f := Log1p(a); f != Ln10 {
t.Errorf("Log1p(%g) = %g, want %g\n", a, f, Ln10)
}
for i := 0; i < len(vflogSC); i++ {
if f := Log1p(vflog1pSC[i]); !alike(log1pSC[i], f) {
t.Errorf("Log1p(%g) = %g, want %g\n", vflog1pSC[i], f, log1pSC[i])
}
}
}
func TestPow(t *testing.T) {
for i := 0; i < len(vf); i++ {
if f := Pow(10, vf[i]); !close(pow[i], f) {
......@@ -694,6 +1048,19 @@ func TestTanh(t *testing.T) {
}
}
func TestTrunc(t *testing.T) {
for i := 0; i < len(vf); i++ {
if f := Trunc(vf[i]); trunc[i] != f {
t.Errorf("Trunc(%g) = %g, want %g\n", vf[i], f, trunc[i])
}
}
for i := 0; i < len(vfceilSC); i++ {
if f := Trunc(vfceilSC[i]); !alike(ceilSC[i], f) {
t.Errorf("Trunc(%g) = %g, want %g\n", vfceilSC[i], f, ceilSC[i])
}
}
}
// Check that math functions of high angle values
// return similar results to low angle values
func TestLargeSin(t *testing.T) {
......@@ -718,7 +1085,6 @@ func TestLargeCos(t *testing.T) {
}
}
func TestLargeTan(t *testing.T) {
large := float64(100000 * Pi)
for i := 0; i < len(vf); i++ {
......@@ -758,9 +1124,15 @@ func TestFloatMinMax(t *testing.T) {
// Benchmarks
func BenchmarkAtan(b *testing.B) {
func BenchmarkAcos(b *testing.B) {
for i := 0; i < b.N; i++ {
Atan(.5)
Acos(.5)
}
}
func BenchmarkAcosh(b *testing.B) {
for i := 0; i < b.N; i++ {
Acosh(.5)
}
}
......@@ -770,9 +1142,105 @@ func BenchmarkAsin(b *testing.B) {
}
}
func BenchmarkAcos(b *testing.B) {
func BenchmarkAsinh(b *testing.B) {
for i := 0; i < b.N; i++ {
Acos(.5)
Asinh(.5)
}
}
func BenchmarkAtan(b *testing.B) {
for i := 0; i < b.N; i++ {
Atan(.5)
}
}
func BenchmarkAtanh(b *testing.B) {
for i := 0; i < b.N; i++ {
Atanh(.5)
}
}
func BenchmarkCeil(b *testing.B) {
for i := 0; i < b.N; i++ {
Ceil(.5)
}
}
func BenchmarkCopysign(b *testing.B) {
for i := 0; i < b.N; i++ {
Copysign(.5, -1)
}
}
func BenchmarkCos(b *testing.B) {
for i := 0; i < b.N; i++ {
Cos(.5)
}
}
func BenchmarkCosh(b *testing.B) {
for i := 0; i < b.N; i++ {
Cosh(2.5)
}
}
func BenchmarkErf(b *testing.B) {
for i := 0; i < b.N; i++ {
Erf(.5)
}
}
func BenchmarkErfc(b *testing.B) {
for i := 0; i < b.N; i++ {
Erfc(.5)
}
}
func BenchmarkExp(b *testing.B) {
for i := 0; i < b.N; i++ {
Exp(.5)
}
}
func BenchmarkExpm1(b *testing.B) {
for i := 0; i < b.N; i++ {
Expm1(.5)
}
}
func BenchmarkFloor(b *testing.B) {
for i := 0; i < b.N; i++ {
Floor(.5)
}
}
func BenchmarkFmod(b *testing.B) {
for i := 0; i < b.N; i++ {
Fmod(10, 3)
}
}
func BenchmarkHypot(b *testing.B) {
for i := 0; i < b.N; i++ {
Hypot(3, 4)
}
}
func BenchmarkLog(b *testing.B) {
for i := 0; i < b.N; i++ {
Log(.5)
}
}
func BenchmarkLog10(b *testing.B) {
for i := 0; i < b.N; i++ {
Log10(.5)
}
}
func BenchmarkLog1p(b *testing.B) {
for i := 0; i < b.N; i++ {
Log1p(.5)
}
}
......@@ -788,8 +1256,43 @@ func BenchmarkPowFrac(b *testing.B) {
}
}
func BenchmarkSin(b *testing.B) {
for i := 0; i < b.N; i++ {
Sin(.5)
}
}
func BenchmarkSinh(b *testing.B) {
for i := 0; i < b.N; i++ {
Sinh(2.5)
}
}
func BenchmarkSqrt(b *testing.B) {
for i := 0; i < b.N; i++ {
Sqrt(10)
}
}
func BenchmarkSqrtGo(b *testing.B) {
for i := 0; i < b.N; i++ {
SqrtGo(10)
}
}
func BenchmarkTan(b *testing.B) {
for i := 0; i < b.N; i++ {
Tan(.5)
}
}
func BenchmarkTanh(b *testing.B) {
for i := 0; i < b.N; i++ {
Tanh(2.5)
}
}
func BenchmarkTrunc(b *testing.B) {
for i := 0; i < b.N; i++ {
Trunc(.5)
}
}
......@@ -6,13 +6,16 @@ package math
/*
Floating-point sine and cosine.
Floating-point arcsine and arccosine.
They are implemented by computing the arctangent
after appropriate range reduction.
*/
// Asin returns the arcsine of x.
//
// Special case is:
// Asin(x) = NaN if x < -1 or x > 1
func Asin(x float64) float64 {
sign := false
if x < 0 {
......@@ -37,4 +40,7 @@ func Asin(x float64) float64 {
}
// Acos returns the arccosine of x.
//
// Special case is:
// Acos(x) = NaN if x < -1 or x > 1
func Acos(x float64) float64 { return Pi/2 - Asin(x) }
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package math
// The original C code, the long comment, and the constants
// below are from FreeBSD's /usr/src/lib/msun/src/s_asinh.c
// and came with this notice. The go code is a simplified
// version of the original C.
//
// ====================================================
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
//
// Developed at SunPro, a Sun Microsystems, Inc. business.
// Permission to use, copy, modify, and distribute this
// software is freely granted, provided that this notice
// is preserved.
// ====================================================
//
//
// asinh(x)
// Method :
// Based on
// asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ]
// we have
// asinh(x) := x if 1+x*x=1,
// := sign(x)*(log(x)+ln2)) for large |x|, else
// := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else
// := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2)))
//
// Asinh(x) calculates the inverse hyperbolic sine of x.
//
// Special cases are:
// Asinh(+Inf) = +Inf
// Asinh(-Inf) = -Inf
// Asinh(NaN) = NaN
func Asinh(x float64) float64 {
const (
Ln2 = 6.93147180559945286227e-01 // 0x3FE62E42FEFA39EF
NearZero = 1.0 / (1 << 28) // 2^-28
Large = 1 << 28 // 2^28
)
// TODO(rsc): Remove manual inlining of IsNaN, IsInf
// when compiler does it for us
// special cases
if x != x || x > MaxFloat64 || x < -MaxFloat64 { // IsNaN(x) || IsInf(x, 0)
return x
}
sign := false
if x < 0 {
x = -x
sign = true
}
var temp float64
switch {
case x > Large:
temp = Log(x) + Ln2 // |x| > 2^28
case x > 2:
temp = Log(2*x + 1/(Sqrt(x*x+1)+x)) // 2^28 > |x| > 2.0
case x < NearZero:
temp = x // |x| < 2^-28
default:
temp = Log1p(x + x*x/(1+Sqrt(1+x*x))) // 2.0 > |x| > 2^-28
}
if sign {
temp = -temp
}
return temp
}
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package math
// The original C code, the long comment, and the constants
// below are from FreeBSD's /usr/src/lib/msun/src/e_atanh.c
// and came with this notice. The go code is a simplified
// version of the original C.
//
// ====================================================
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
//
// Developed at SunPro, a Sun Microsystems, Inc. business.
// Permission to use, copy, modify, and distribute this
// software is freely granted, provided that this notice
// is preserved.
// ====================================================
//
//
// __ieee754_atanh(x)
// Method :
// 1. Reduce x to positive by atanh(-x) = -atanh(x)
// 2. For x>=0.5
// 1 2x x
// atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------)
// 2 1 - x 1 - x
//
// For x<0.5
// atanh(x) = 0.5*log1p(2x+2x*x/(1-x))
//
// Special cases:
// atanh(x) is NaN if |x| > 1 with signal;
// atanh(NaN) is that NaN with no signal;
// atanh(+-1) is +-INF with signal.
//
// Atanh(x) calculates the inverse hyperbolic tangent of x.
//
// Special cases are:
// Atanh(x) = NaN if x < -1 or x > 1
// Atanh(1) = +Inf
// Atanh(-1) = -Inf
// Atanh(NaN) = NaN
func Atanh(x float64) float64 {
const NearZero = 1.0 / (1 << 28) // 2^-28
// TODO(rsc): Remove manual inlining of IsNaN
// when compiler does it for us
// special cases
switch {
case x < -1 || x > 1 || x != x: // x < -1 || x > 1 || IsNaN(x):
return NaN()
case x == 1:
return Inf(1)
case x == -1:
return Inf(-1)
}
sign := false
if x < 0 {
x = -x
sign = true
}
var temp float64
switch {
case x < NearZero:
temp = x
case x < 0.5:
temp = x + x
temp = 0.5 * Log1p(temp+temp*x/(1-x))
default:
temp = 0.5 * Log1p((x+x)/(1-x))
}
if sign {
temp = -temp
}
return temp
}
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package math
// Copysign(x, y) returns a value with the magnitude
// of x and the sign of y.
func Copysign(x, y float64) float64 {
if x < 0 && y > 0 || x > 0 && y < 0 {
return -x
}
return x
}
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package math
/*
Floating-point error function and complementary error function.
*/
// The original C code and the long comment below are
// from FreeBSD's /usr/src/lib/msun/src/s_erf.c and
// came with this notice. The go code is a simplified
// version of the original C.
//
// ====================================================
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
//
// Developed at SunPro, a Sun Microsystems, Inc. business.
// Permission to use, copy, modify, and distribute this
// software is freely granted, provided that this notice
// is preserved.
// ====================================================
//
//
// double erf(double x)
// double erfc(double x)
// x
// 2 |\
// erf(x) = --------- | exp(-t*t)dt
// sqrt(pi) \|
// 0
//
// erfc(x) = 1-erf(x)
// Note that
// erf(-x) = -erf(x)
// erfc(-x) = 2 - erfc(x)
//
// Method:
// 1. For |x| in [0, 0.84375]
// erf(x) = x + x*R(x^2)
// erfc(x) = 1 - erf(x) if x in [-.84375,0.25]
// = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375]
// where R = P/Q where P is an odd poly of degree 8 and
// Q is an odd poly of degree 10.
// -57.90
// | R - (erf(x)-x)/x | <= 2
//
//
// Remark. The formula is derived by noting
// erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
// and that
// 2/sqrt(pi) = 1.128379167095512573896158903121545171688
// is close to one. The interval is chosen because the fix
// point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
// near 0.6174), and by some experiment, 0.84375 is chosen to
// guarantee the error is less than one ulp for erf.
//
// 2. For |x| in [0.84375,1.25], let s = |x| - 1, and
// c = 0.84506291151 rounded to single (24 bits)
// erf(x) = sign(x) * (c + P1(s)/Q1(s))
// erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0
// 1+(c+P1(s)/Q1(s)) if x < 0
// |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
// Remark: here we use the taylor series expansion at x=1.
// erf(1+s) = erf(1) + s*Poly(s)
// = 0.845.. + P1(s)/Q1(s)
// That is, we use rational approximation to approximate
// erf(1+s) - (c = (single)0.84506291151)
// Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
// where
// P1(s) = degree 6 poly in s
// Q1(s) = degree 6 poly in s
//
// 3. For x in [1.25,1/0.35(~2.857143)],
// erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
// erf(x) = 1 - erfc(x)
// where
// R1(z) = degree 7 poly in z, (z=1/x^2)
// S1(z) = degree 8 poly in z
//
// 4. For x in [1/0.35,28]
// erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
// = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
// = 2.0 - tiny (if x <= -6)
// erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6, else
// erf(x) = sign(x)*(1.0 - tiny)
// where
// R2(z) = degree 6 poly in z, (z=1/x^2)
// S2(z) = degree 7 poly in z
//
// Note1:
// To compute exp(-x*x-0.5625+R/S), let s be a single
// precision number and s := x; then
// -x*x = -s*s + (s-x)*(s+x)
// exp(-x*x-0.5626+R/S) =
// exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
// Note2:
// Here 4 and 5 make use of the asymptotic series
// exp(-x*x)
// erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
// x*sqrt(pi)
// We use rational approximation to approximate
// g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
// Here is the error bound for R1/S1 and R2/S2
// |R1/S1 - f(x)| < 2**(-62.57)
// |R2/S2 - f(x)| < 2**(-61.52)
//
// 5. For inf > x >= 28
// erf(x) = sign(x) *(1 - tiny) (raise inexact)
// erfc(x) = tiny*tiny (raise underflow) if x > 0
// = 2 - tiny if x<0
//
// 7. Special case:
// erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,
// erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
// erfc/erf(NaN) is NaN
const (
erx = 8.45062911510467529297e-01 // 0x3FEB0AC160000000
// Coefficients for approximation to erf in [0, 0.84375]
efx = 1.28379167095512586316e-01 // 0x3FC06EBA8214DB69
efx8 = 1.02703333676410069053e+00 // 0x3FF06EBA8214DB69
pp0 = 1.28379167095512558561e-01 // 0x3FC06EBA8214DB68
pp1 = -3.25042107247001499370e-01 // 0xBFD4CD7D691CB913
pp2 = -2.84817495755985104766e-02 // 0xBF9D2A51DBD7194F
pp3 = -5.77027029648944159157e-03 // 0xBF77A291236668E4
pp4 = -2.37630166566501626084e-05 // 0xBEF8EAD6120016AC
qq1 = 3.97917223959155352819e-01 // 0x3FD97779CDDADC09
qq2 = 6.50222499887672944485e-02 // 0x3FB0A54C5536CEBA
qq3 = 5.08130628187576562776e-03 // 0x3F74D022C4D36B0F
qq4 = 1.32494738004321644526e-04 // 0x3F215DC9221C1A10
qq5 = -3.96022827877536812320e-06 // 0xBED09C4342A26120
// Coefficients for approximation to erf in [0.84375, 1.25]
pa0 = -2.36211856075265944077e-03 // 0xBF6359B8BEF77538
pa1 = 4.14856118683748331666e-01 // 0x3FDA8D00AD92B34D
pa2 = -3.72207876035701323847e-01 // 0xBFD7D240FBB8C3F1
pa3 = 3.18346619901161753674e-01 // 0x3FD45FCA805120E4
pa4 = -1.10894694282396677476e-01 // 0xBFBC63983D3E28EC
pa5 = 3.54783043256182359371e-02 // 0x3FA22A36599795EB
pa6 = -2.16637559486879084300e-03 // 0xBF61BF380A96073F
qa1 = 1.06420880400844228286e-01 // 0x3FBB3E6618EEE323
qa2 = 5.40397917702171048937e-01 // 0x3FE14AF092EB6F33
qa3 = 7.18286544141962662868e-02 // 0x3FB2635CD99FE9A7
qa4 = 1.26171219808761642112e-01 // 0x3FC02660E763351F
qa5 = 1.36370839120290507362e-02 // 0x3F8BEDC26B51DD1C
qa6 = 1.19844998467991074170e-02 // 0x3F888B545735151D
// Coefficients for approximation to erfc in [1.25, 1/0.35]
ra0 = -9.86494403484714822705e-03 // 0xBF843412600D6435
ra1 = -6.93858572707181764372e-01 // 0xBFE63416E4BA7360
ra2 = -1.05586262253232909814e+01 // 0xC0251E0441B0E726
ra3 = -6.23753324503260060396e+01 // 0xC04F300AE4CBA38D
ra4 = -1.62396669462573470355e+02 // 0xC0644CB184282266
ra5 = -1.84605092906711035994e+02 // 0xC067135CEBCCABB2
ra6 = -8.12874355063065934246e+01 // 0xC054526557E4D2F2
ra7 = -9.81432934416914548592e+00 // 0xC023A0EFC69AC25C
sa1 = 1.96512716674392571292e+01 // 0x4033A6B9BD707687
sa2 = 1.37657754143519042600e+02 // 0x4061350C526AE721
sa3 = 4.34565877475229228821e+02 // 0x407B290DD58A1A71
sa4 = 6.45387271733267880336e+02 // 0x40842B1921EC2868
sa5 = 4.29008140027567833386e+02 // 0x407AD02157700314
sa6 = 1.08635005541779435134e+02 // 0x405B28A3EE48AE2C
sa7 = 6.57024977031928170135e+00 // 0x401A47EF8E484A93
sa8 = -6.04244152148580987438e-02 // 0xBFAEEFF2EE749A62
// Coefficients for approximation to erfc in [1/.35, 28]
rb0 = -9.86494292470009928597e-03 // 0xBF84341239E86F4A
rb1 = -7.99283237680523006574e-01 // 0xBFE993BA70C285DE
rb2 = -1.77579549177547519889e+01 // 0xC031C209555F995A
rb3 = -1.60636384855821916062e+02 // 0xC064145D43C5ED98
rb4 = -6.37566443368389627722e+02 // 0xC083EC881375F228
rb5 = -1.02509513161107724954e+03 // 0xC09004616A2E5992
rb6 = -4.83519191608651397019e+02 // 0xC07E384E9BDC383F
sb1 = 3.03380607434824582924e+01 // 0x403E568B261D5190
sb2 = 3.25792512996573918826e+02 // 0x40745CAE221B9F0A
sb3 = 1.53672958608443695994e+03 // 0x409802EB189D5118
sb4 = 3.19985821950859553908e+03 // 0x40A8FFB7688C246A
sb5 = 2.55305040643316442583e+03 // 0x40A3F219CEDF3BE6
sb6 = 4.74528541206955367215e+02 // 0x407DA874E79FE763
sb7 = -2.24409524465858183362e+01 // 0xC03670E242712D62
)
// Erf(x) returns the error function of x.
//
// Special cases are:
// Erf(+Inf) = 1
// Erf(-Inf) = -1
// Erf(NaN) = NaN
func Erf(x float64) float64 {
const (
VeryTiny = 2.848094538889218e-306 // 0x0080000000000000
Small = 1.0 / (1 << 28) // 2^-28
)
// special cases
// TODO(rsc): Remove manual inlining of IsNaN, IsInf
// when compiler does it for us
switch {
case x != x: // IsNaN(x):
return NaN()
case x > MaxFloat64: // IsInf(x, 1):
return 1
case x < -MaxFloat64: // IsInf(x, -1):
return -1
}
sign := false
if x < 0 {
x = -x
sign = true
}
if x < 0.84375 { // |x| < 0.84375
var temp float64
if x < Small { // |x| < 2^-28
if x < VeryTiny {
temp = 0.125 * (8.0*x + efx8*x) // avoid underflow
} else {
temp = x + efx*x
}
} else {
z := x * x
r := pp0 + z*(pp1+z*(pp2+z*(pp3+z*pp4)))
s := 1 + z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))))
y := r / s
temp = x + x*y
}
if sign {
return -temp
}
return temp
}
if x < 1.25 { // 0.84375 <= |x| < 1.25
s := x - 1
P := pa0 + s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))))
Q := 1 + s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))))
if sign {
return -erx - P/Q
}
return erx + P/Q
}
if x >= 6 { // inf > |x| >= 6
if sign {
return -1
}
return 1
}
s := 1 / (x * x)
var R, S float64
if x < 1/0.35 { // |x| < 1 / 0.35 ~ 2.857143
R = ra0 + s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(ra5+s*(ra6+s*ra7))))))
S = 1 + s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(sa5+s*(sa6+s*(sa7+s*sa8)))))))
} else { // |x| >= 1 / 0.35 ~ 2.857143
R = rb0 + s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+s*rb6)))))
S = 1 + s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(sb5+s*(sb6+s*sb7))))))
}
z := Float64frombits(Float64bits(x) & 0xffffffff00000000) // pseudo-single (20-bit) precison x
r := Exp(-z*z-0.5625) * Exp((z-x)*(z+x)+R/S)
if sign {
return r/x - 1
}
return 1 - r/x
}
// Erfc(x) returns the complementary error function of x.
//
// Special cases are:
// Erf(+Inf) = 0
// Erf(-Inf) = 2
// Erf(NaN) = NaN
func Erfc(x float64) float64 {
const Tiny = 1.0 / (1 << 56) // 2^-56
// special cases
// TODO(rsc): Remove manual inlining of IsNaN, IsInf
// when compiler does it for us
switch {
case x != x: // IsNaN(x):
return NaN()
case x > MaxFloat64: // IsInf(x, 1):
return 0
case x < -MaxFloat64: // IsInf(x, -1):
return 2
}
sign := false
if x < 0 {
x = -x
sign = true
}
if x < 0.84375 { // |x| < 0.84375
var temp float64
if x < Tiny { // |x| < 2^-56
temp = x
} else {
z := x * x
r := pp0 + z*(pp1+z*(pp2+z*(pp3+z*pp4)))
s := 1 + z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))))
y := r / s
if x < 0.25 { // |x| < 1/4
temp = x + x*y
} else {
temp = 0.5 + (x*y + (x - 0.5))
}
}
if sign {
return 1 + temp
}
return 1 - temp
}
if x < 1.25 { // 0.84375 <= |x| < 1.25
s := x - 1
P := pa0 + s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))))
Q := 1 + s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))))
if sign {
return 1 + erx + P/Q
}
return 1 - erx - P/Q
}
if x < 28 { // |x| < 28
s := 1 / (x * x)
var R, S float64
if x < 1/0.35 { // |x| < 1 / 0.35 ~ 2.857143
R = ra0 + s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(ra5+s*(ra6+s*ra7))))))
S = 1 + s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(sa5+s*(sa6+s*(sa7+s*sa8)))))))
} else { // |x| >= 1 / 0.35 ~ 2.857143
if sign && x > 6 {
return 2 // x < -6
}
R = rb0 + s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+s*rb6)))))
S = 1 + s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(sb5+s*(sb6+s*sb7))))))
}
z := Float64frombits(Float64bits(x) & 0xffffffff00000000) // pseudo-single (20-bit) precison x
r := Exp(-z*z-0.5625) * Exp((z-x)*(z+x)+R/S)
if sign {
return 2 - r/x
}
return r / x
}
if sign {
return 2
}
return 0
}
......@@ -86,7 +86,7 @@ package math
// Special cases are:
// Exp(+Inf) = +Inf
// Exp(NaN) = NaN
// Very large values overflow to -Inf or +Inf.
// Very large values overflow to 0 or +Inf.
// Very small values underflow to 1.
func Exp(x float64) float64 {
const (
......
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package math
// The original C code, the long comment, and the constants
// below are from FreeBSD's /usr/src/lib/msun/src/s_expm1.c
// and came with this notice. The go code is a simplified
// version of the original C.
//
// ====================================================
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
//
// Developed at SunPro, a Sun Microsystems, Inc. business.
// Permission to use, copy, modify, and distribute this
// software is freely granted, provided that this notice
// is preserved.
// ====================================================
//
// expm1(x)
// Returns exp(x)-1, the exponential of x minus 1.
//
// Method
// 1. Argument reduction:
// Given x, find r and integer k such that
//
// x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658
//
// Here a correction term c will be computed to compensate
// the error in r when rounded to a floating-point number.
//
// 2. Approximating expm1(r) by a special rational function on
// the interval [0,0.34658]:
// Since
// r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
// we define R1(r*r) by
// r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
// That is,
// R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
// = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
// = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
// We use a special Reme algorithm on [0,0.347] to generate
// a polynomial of degree 5 in r*r to approximate R1. The
// maximum error of this polynomial approximation is bounded
// by 2**-61. In other words,
// R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
// where Q1 = -1.6666666666666567384E-2,
// Q2 = 3.9682539681370365873E-4,
// Q3 = -9.9206344733435987357E-6,
// Q4 = 2.5051361420808517002E-7,
// Q5 = -6.2843505682382617102E-9;
// (where z=r*r, and the values of Q1 to Q5 are listed below)
// with error bounded by
// | 5 | -61
// | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2
// | |
//
// expm1(r) = exp(r)-1 is then computed by the following
// specific way which minimize the accumulation rounding error:
// 2 3
// r r [ 3 - (R1 + R1*r/2) ]
// expm1(r) = r + --- + --- * [--------------------]
// 2 2 [ 6 - r*(3 - R1*r/2) ]
//
// To compensate the error in the argument reduction, we use
// expm1(r+c) = expm1(r) + c + expm1(r)*c
// ~ expm1(r) + c + r*c
// Thus c+r*c will be added in as the correction terms for
// expm1(r+c). Now rearrange the term to avoid optimization
// screw up:
// ( 2 2 )
// ({ ( r [ R1 - (3 - R1*r/2) ] ) } r )
// expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
// ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 )
// ( )
//
// = r - E
// 3. Scale back to obtain expm1(x):
// From step 1, we have
// expm1(x) = either 2^k*[expm1(r)+1] - 1
// = or 2^k*[expm1(r) + (1-2^-k)]
// 4. Implementation notes:
// (A). To save one multiplication, we scale the coefficient Qi
// to Qi*2^i, and replace z by (x^2)/2.
// (B). To achieve maximum accuracy, we compute expm1(x) by
// (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
// (ii) if k=0, return r-E
// (iii) if k=-1, return 0.5*(r-E)-0.5
// (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E)
// else return 1.0+2.0*(r-E);
// (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
// (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else
// (vii) return 2^k(1-((E+2^-k)-r))
//
// Special cases:
// expm1(INF) is INF, expm1(NaN) is NaN;
// expm1(-INF) is -1, and
// for finite argument, only expm1(0)=0 is exact.
//
// Accuracy:
// according to an error analysis, the error is always less than
// 1 ulp (unit in the last place).
//
// Misc. info.
// For IEEE double
// if x > 7.09782712893383973096e+02 then expm1(x) overflow
//
// Constants:
// The hexadecimal values are the intended ones for the following
// constants. The decimal values may be used, provided that the
// compiler will convert from decimal to binary accurately enough
// to produce the hexadecimal values shown.
//
// Expm1 returns e^x - 1, the base-e exponential of x minus 1.
// It is more accurate than Exp(x) - 1 when x is near zero.
//
// Special cases are:
// Expm1(+Inf) = +Inf
// Expm1(-Inf) = -1
// Expm1(NaN) = NaN
// Very large values overflow to -1 or +Inf.
func Expm1(x float64) float64 {
const (
Othreshold = 7.09782712893383973096e+02 // 0x40862E42FEFA39EF
Ln2X56 = 3.88162421113569373274e+01 // 0x4043687a9f1af2b1
Ln2HalfX3 = 1.03972077083991796413e+00 // 0x3ff0a2b23f3bab73
Ln2Half = 3.46573590279972654709e-01 // 0x3fd62e42fefa39ef
Ln2Hi = 6.93147180369123816490e-01 // 0x3fe62e42fee00000
Ln2Lo = 1.90821492927058770002e-10 // 0x3dea39ef35793c76
InvLn2 = 1.44269504088896338700e+00 // 0x3ff71547652b82fe
Tiny = 1.0 / (1 << 54) // 2^-54 = 0x3c90000000000000
// scaled coefficients related to expm1
Q1 = -3.33333333333331316428e-02 // 0xBFA11111111110F4
Q2 = 1.58730158725481460165e-03 // 0x3F5A01A019FE5585
Q3 = -7.93650757867487942473e-05 // 0xBF14CE199EAADBB7
Q4 = 4.00821782732936239552e-06 // 0x3ED0CFCA86E65239
Q5 = -2.01099218183624371326e-07 // 0xBE8AFDB76E09C32D
)
// special cases
// TODO(rsc): Remove manual inlining of IsNaN, IsInf
// when compiler does it for us
switch {
case x > MaxFloat64 || x != x: // IsInf(x, 1) || IsNaN(x):
return x
case x < -MaxFloat64: // IsInf(x, -1):
return -1
}
absx := x
sign := false
if x < 0 {
absx = -absx
sign = true
}
// filter out huge argument
if absx >= Ln2X56 { // if |x| >= 56 * ln2
if absx >= Othreshold { // if |x| >= 709.78...
return Inf(1) // overflow
}
if sign {
return -1 // x < -56*ln2, return -1.0
}
}
// argument reduction
var c float64
var k int
if absx > Ln2Half { // if |x| > 0.5 * ln2
var hi, lo float64
if absx < Ln2HalfX3 { // and |x| < 1.5 * ln2
if !sign {
hi = x - Ln2Hi
lo = Ln2Lo
k = 1
} else {
hi = x + Ln2Hi
lo = -Ln2Lo
k = -1
}
} else {
if !sign {
k = int(InvLn2*x + 0.5)
} else {
k = int(InvLn2*x - 0.5)
}
t := float64(k)
hi = x - t*Ln2Hi // t * Ln2Hi is exact here
lo = t * Ln2Lo
}
x = hi - lo
c = (hi - x) - lo
} else if absx < Tiny { // when |x| < 2^-54, return x
return x
} else {
k = 0
}
// x is now in primary range
hfx := 0.5 * x
hxs := x * hfx
r1 := 1 + hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))))
t := 3 - r1*hfx
e := hxs * ((r1 - t) / (6.0 - x*t))
if k != 0 {
e = (x*(e-c) - c)
e -= hxs
switch {
case k == -1:
return 0.5*(x-e) - 0.5
case k == 1:
if x < -0.25 {
return -2 * (e - (x + 0.5))
}
return 1 + 2*(x-e)
case k <= -2 || k > 56: // suffice to return exp(x)-1
y := 1 - (e - x)
y = Float64frombits(Float64bits(y) + uint64(k)<<52) // add k to y's exponent
return y - 1
}
if k < 20 {
t := Float64frombits(0x3ff0000000000000 - (0x20000000000000 >> uint(k))) // t=1-2^-k
y := t - (e - x)
y = Float64frombits(Float64bits(y) + uint64(k)<<52) // add k to y's exponent
return y
}
t := Float64frombits(uint64((0x3ff - k) << 52)) // 2^-k
y := x - (e + t)
y += 1
y = Float64frombits(Float64bits(y) + uint64(k)<<52) // add k to y's exponent
return y
}
return x - (x*e - hxs) // c is 0
}
......@@ -5,6 +5,11 @@
package math
// Fabs returns the absolute value of x.
//
// Special cases are:
// Fabs(+Inf) = +Inf
// Fabs(-Inf) = +Inf
// Fabs(NaN) = NaN
func Fabs(x float64) float64 {
if x < 0 {
return -x
......
// Copyright 2009 The Go Authors. All rights reserved.
// Copyright 2009-2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
......@@ -12,6 +12,8 @@ package math
// Floor(-Inf) = -Inf
// Floor(NaN) = NaN
func Floor(x float64) float64 {
// TODO(rsc): Remove manual inlining of IsNaN, IsInf
// when compiler does it for us
if x != x || x > MaxFloat64 || x < -MaxFloat64 { // IsNaN(x) || IsInf(x, 0)
return x
}
......@@ -33,3 +35,19 @@ func Floor(x float64) float64 {
// Ceil(-Inf) = -Inf
// Ceil(NaN) = NaN
func Ceil(x float64) float64 { return -Floor(-x) }
// Trunc returns the integer value of x.
//
// Special cases are:
// Trunc(+Inf) = +Inf
// Trunc(-Inf) = -Inf
// Trunc(NaN) = NaN
func Trunc(x float64) float64 {
// TODO(rsc): Remove manual inlining of IsNaN, IsInf
// when compiler does it for us
if x != x || x > MaxFloat64 || x < -MaxFloat64 { // IsNaN(x) || IsInf(x, 0)
return x
}
d, _ := Modf(x)
return d
}
......@@ -25,7 +25,20 @@ TEXT ·Floor(SB),7,$0
ORW $0x0400, AX // Rounding Control set to -Inf
MOVW AX, -4(SP) // store new Control Word
FLDCW -4(SP) // load new Control Word
FRNDINT // F0=floor(x)
FRNDINT // F0=Floor(x)
FLDCW -2(SP) // load old Control Word
FMOVDP F0, r+8(FP)
RET
// func Trunc(x float64) float64
TEXT ·Trunc(SB),7,$0
FMOVD x+0(FP), F0 // F0=x
FSTCW -2(SP) // save old Control Word
MOVW -2(SP), AX
ORW $0x0c00, AX // Rounding Control set to truncate
MOVW AX, -4(SP) // store new Control Word
FLDCW -4(SP) // load new Control Word
FRNDINT // F0=Trunc(x)
FLDCW -2(SP) // load old Control Word
FMOVDP F0, r+8(FP)
RET
......@@ -6,3 +6,4 @@ package math
func Ceil(x float64) float64
func Floor(x float64) float64
func Trunc(x float64) float64
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// func Fmod(x, y float64) float64
TEXT ·Fmod(SB),7,$0
FMOVD y+8(FP), F0 // F0=y
FMOVD x+0(FP), F0 // F0=x, F1=y
FPREM // F0=reduced_x, F1=y
FSTSW AX // AX=status word
ANDW $0x0400, AX
JNE -3(PC) // jump if reduction incomplete
FMOVDP F0, F1 // F0=x-q*y
FMOVDP F0, r+16(FP)
RET
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package math
func Fmod(x, y float64) float64
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package math
// The original C code, the long comment, and the constants
// below are from FreeBSD's /usr/src/lib/msun/src/s_log1p.c
// and came with this notice. The go code is a simplified
// version of the original C.
//
// ====================================================
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
//
// Developed at SunPro, a Sun Microsystems, Inc. business.
// Permission to use, copy, modify, and distribute this
// software is freely granted, provided that this notice
// is preserved.
// ====================================================
//
//
// double log1p(double x)
//
// Method :
// 1. Argument Reduction: find k and f such that
// 1+x = 2^k * (1+f),
// where sqrt(2)/2 < 1+f < sqrt(2) .
//
// Note. If k=0, then f=x is exact. However, if k!=0, then f
// may not be representable exactly. In that case, a correction
// term is need. Let u=1+x rounded. Let c = (1+x)-u, then
// log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
// and add back the correction term c/u.
// (Note: when x > 2**53, one can simply return log(x))
//
// 2. Approximation of log1p(f).
// Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
// = 2s + 2/3 s**3 + 2/5 s**5 + .....,
// = 2s + s*R
// We use a special Reme algorithm on [0,0.1716] to generate
// a polynomial of degree 14 to approximate R The maximum error
// of this polynomial approximation is bounded by 2**-58.45. In
// other words,
// 2 4 6 8 10 12 14
// R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
// (the values of Lp1 to Lp7 are listed in the program)
// a-0.2929nd
// | 2 14 | -58.45
// | Lp1*s +...+Lp7*s - R(z) | <= 2
// | |
// Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
// In order to guarantee error in log below 1ulp, we compute log
// by
// log1p(f) = f - (hfsq - s*(hfsq+R)).
//
// 3. Finally, log1p(x) = k*ln2 + log1p(f).
// = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
// Here ln2 is split into two floating point number:
// ln2_hi + ln2_lo,
// where n*ln2_hi is always exact for |n| < 2000.
//
// Special cases:
// log1p(x) is NaN with signal if x < -1 (including -INF) ;
// log1p(+INF) is +INF; log1p(-1) is -INF with signal;
// log1p(NaN) is that NaN with no signal.
//
// Accuracy:
// according to an error analysis, the error is always less than
// 1 ulp (unit in the last place).
//
// Constants:
// The hexadecimal values are the intended ones for the following
// constants. The decimal values may be used, provided that the
// compiler will convert from decimal to binary accurately enough
// to produce the hexadecimal values shown.
//
// Note: Assuming log() return accurate answer, the following
// algorithm can be used to compute log1p(x) to within a few ULP:
//
// u = 1+x;
// if(u==1.0) return x ; else
// return log(u)*(x/(u-1.0));
//
// See HP-15C Advanced Functions Handbook, p.193.
// Log1p returns the natural logarithm of 1 plus its argument x.
// It is more accurate than Log(1 + x) when x is near zero.
//
// Special cases are:
// Log1p(+Inf) = +Inf
// Log1p(-1) = -Inf
// Log1p(x < -1) = NaN
// Log1p(NaN) = NaN
func Log1p(x float64) float64 {
const (
Sqrt2M1 = 4.142135623730950488017e-01 // Sqrt(2)-1 = 0x3fda827999fcef34
Sqrt2HalfM1 = -2.928932188134524755992e-01 // Sqrt(2)/2-1 = 0xbfd2bec333018866
Small = 1.0 / (1 << 29) // 2^-29 = 0x3e20000000000000
Tiny = 1.0 / (1 << 54) // 2^-54
Two53 = 1 << 53 // 2^53
Ln2Hi = 6.93147180369123816490e-01 // 3fe62e42fee00000
Ln2Lo = 1.90821492927058770002e-10 // 3dea39ef35793c76
Lp1 = 6.666666666666735130e-01 // 3FE5555555555593
Lp2 = 3.999999999940941908e-01 // 3FD999999997FA04
Lp3 = 2.857142874366239149e-01 // 3FD2492494229359
Lp4 = 2.222219843214978396e-01 // 3FCC71C51D8E78AF
Lp5 = 1.818357216161805012e-01 // 3FC7466496CB03DE
Lp6 = 1.531383769920937332e-01 // 3FC39A09D078C69F
Lp7 = 1.479819860511658591e-01 // 3FC2F112DF3E5244
)
// special cases
// TODO(rsc): Remove manual inlining of IsNaN, IsInf
// when compiler does it for us
switch {
case x < -1 || x != x: // x < -1 || IsNaN(x): // includes -Inf
return NaN()
case x == -1:
return Inf(-1)
case x > MaxFloat64: // IsInf(x, 1):
return Inf(1)
}
absx := x
if absx < 0 {
absx = -absx
}
var f float64
var iu uint64
k := 1
if absx < Sqrt2M1 { // |x| < Sqrt(2)-1
if absx < Small { // |x| < 2^-29
if absx < Tiny { // |x| < 2^-54
return x
}
return x - x*x*0.5
}
if x > Sqrt2HalfM1 { // Sqrt(2)/2-1 < x
// (Sqrt(2)/2-1) < x < (Sqrt(2)-1)
k = 0
f = x
iu = 1
}
}
var c float64
if k != 0 {
var u float64
if absx < Two53 { // 1<<53
u = 1.0 + x
iu = Float64bits(u)
k = int((iu >> 52) - 1023)
if k > 0 {
c = 1.0 - (u - x)
} else {
c = x - (u - 1.0) // correction term
c /= u
}
} else {
u = x
iu = Float64bits(u)
k = int((iu >> 52) - 1023)
c = 0
}
iu &= 0x000fffffffffffff
if iu < 0x0006a09e667f3bcd { // mantissa of Sqrt(2)
u = Float64frombits(iu | 0x3ff0000000000000) // normalize u
} else {
k += 1
u = Float64frombits(iu | 0x3fe0000000000000) // normalize u/2
iu = (0x0010000000000000 - iu) >> 2
}
f = u - 1.0 // Sqrt(2)/2 < u < Sqrt(2)
}
hfsq := 0.5 * f * f
var s, R, z float64
if iu == 0 { // |f| < 2^-20
if f == 0 {
if k == 0 {
return 0
} else {
c += float64(k) * Ln2Lo
return float64(k)*Ln2Hi + c
}
}
R = hfsq * (1.0 - 0.66666666666666666*f) // avoid division
if k == 0 {
return f - R
}
return float64(k)*Ln2Hi - ((R - (float64(k)*Ln2Lo + c)) - f)
}
s = f / (2.0 + f)
z = s * s
R = z * (Lp1 + z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))))
if k == 0 {
return f - (hfsq - s*(hfsq+R))
}
return float64(k)*Ln2Hi - ((hfsq - (s*(hfsq+R) + (float64(k)*Ln2Lo + c))) - f)
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment