Commit a479a455 authored by Russ Cox's avatar Russ Cox

reflect: make Value an opaque struct

Making Value opaque means we can drop the interface kludges
in favor of a significantly simpler and faster representation.
v.Kind() will be a prime candidate for inlining too.

On a Thinkpad X201s using -benchtime 10:

benchmark                           old ns/op    new ns/op    delta
json.BenchmarkCodeEncoder           284391780    157415960  -44.65%
json.BenchmarkCodeMarshal           286979140    158992020  -44.60%
json.BenchmarkCodeDecoder           717175800    388288220  -45.86%
json.BenchmarkCodeUnmarshal         734470500    404548520  -44.92%
json.BenchmarkCodeUnmarshalReuse    707172280    385258720  -45.52%
json.BenchmarkSkipValue              24630036     18557062  -24.66%

benchmark                            old MB/s     new MB/s  speedup
json.BenchmarkCodeEncoder                6.82        12.33    1.81x
json.BenchmarkCodeMarshal                6.76        12.20    1.80x
json.BenchmarkCodeDecoder                2.71         5.00    1.85x
json.BenchmarkCodeUnmarshal              2.64         4.80    1.82x
json.BenchmarkCodeUnmarshalReuse         2.74         5.04    1.84x
json.BenchmarkSkipValue                 77.92       103.42    1.33x

I cannot explain why BenchmarkSkipValue gets faster.
Maybe it is one of those code alignment things.

R=iant, r, gri, r
CC=golang-dev
https://golang.org/cl/5373101
parent 4d27f648
......@@ -16,6 +16,13 @@ import (
"unsafe"
)
func TestBool(t *testing.T) {
v := ValueOf(true)
if v.Bool() != true {
t.Fatal("ValueOf(true).Bool() = false")
}
}
type integer int
type T struct {
a int
......@@ -215,7 +222,8 @@ func TestTypes(t *testing.T) {
func TestSet(t *testing.T) {
for i, tt := range valueTests {
v := ValueOf(tt.i).Elem()
v := ValueOf(tt.i)
v = v.Elem()
switch v.Kind() {
case Int:
v.SetInt(132)
......@@ -1100,21 +1108,38 @@ func TestMethod(t *testing.T) {
}
// Curried method of value.
i = ValueOf(p).Method(1).Call([]Value{ValueOf(10)})[0].Int()
tfunc := TypeOf(func(int) int(nil))
v := ValueOf(p).Method(1)
if tt := v.Type(); tt != tfunc {
t.Errorf("Value Method Type is %s; want %s", tt, tfunc)
}
i = v.Call([]Value{ValueOf(10)})[0].Int()
if i != 250 {
t.Errorf("Value Method returned %d; want 250", i)
}
i = ValueOf(p).MethodByName("Dist").Call([]Value{ValueOf(10)})[0].Int()
v = ValueOf(p).MethodByName("Dist")
if tt := v.Type(); tt != tfunc {
t.Errorf("Value MethodByName Type is %s; want %s", tt, tfunc)
}
i = v.Call([]Value{ValueOf(10)})[0].Int()
if i != 250 {
t.Errorf("Value MethodByName returned %d; want 250", i)
}
// Curried method of pointer.
i = ValueOf(&p).Method(1).Call([]Value{ValueOf(10)})[0].Int()
v = ValueOf(&p).Method(1)
if tt := v.Type(); tt != tfunc {
t.Errorf("Pointer Value Method Type is %s; want %s", tt, tfunc)
}
i = v.Call([]Value{ValueOf(10)})[0].Int()
if i != 250 {
t.Errorf("Pointer Value Method returned %d; want 250", i)
}
i = ValueOf(&p).MethodByName("Dist").Call([]Value{ValueOf(10)})[0].Int()
v = ValueOf(&p).MethodByName("Dist")
if tt := v.Type(); tt != tfunc {
t.Errorf("Pointer Value MethodByName Type is %s; want %s", tt, tfunc)
}
i = v.Call([]Value{ValueOf(10)})[0].Int()
if i != 250 {
t.Errorf("Pointer Value MethodByName returned %d; want 250", i)
}
......@@ -1129,11 +1154,19 @@ func TestMethod(t *testing.T) {
}
}{p}
pv := ValueOf(s).Field(0)
i = pv.Method(0).Call([]Value{ValueOf(10)})[0].Int()
v = pv.Method(0)
if tt := v.Type(); tt != tfunc {
t.Errorf("Interface Method Type is %s; want %s", tt, tfunc)
}
i = v.Call([]Value{ValueOf(10)})[0].Int()
if i != 250 {
t.Errorf("Interface Method returned %d; want 250", i)
}
i = pv.MethodByName("Dist").Call([]Value{ValueOf(10)})[0].Int()
v = pv.MethodByName("Dist")
if tt := v.Type(); tt != tfunc {
t.Errorf("Interface MethodByName Type is %s; want %s", tt, tfunc)
}
i = v.Call([]Value{ValueOf(10)})[0].Int()
if i != 250 {
t.Errorf("Interface MethodByName returned %d; want 250", i)
}
......
......@@ -188,7 +188,7 @@ type Type interface {
// A Kind represents the specific kind of type that a Type represents.
// The zero Kind is not a valid kind.
type Kind uint8
type Kind uint
const (
Invalid Kind = iota
......@@ -455,14 +455,15 @@ func (t *uncommonType) Method(i int) (m Method) {
if p.name != nil {
m.Name = *p.name
}
flag := uint32(0)
fl := flag(Func) << flagKindShift
if p.pkgPath != nil {
m.PkgPath = *p.pkgPath
flag |= flagRO
fl |= flagRO
}
m.Type = toType(p.typ)
mt := toCommonType(p.typ)
m.Type = mt
fn := p.tfn
m.Func = valueFromIword(flag, m.Type, iword(fn))
m.Func = Value{mt, fn, fl}
m.Index = i
return
}
......@@ -768,7 +769,7 @@ func (t *structType) Field(i int) (f StructField) {
if i < 0 || i >= len(t.fields) {
return
}
p := t.fields[i]
p := &t.fields[i]
f.Type = toType(p.typ)
if p.name != nil {
f.Name = *p.name
......@@ -867,10 +868,12 @@ L:
if n == 1 {
// Found matching field.
if len(ff.Index) <= depth {
if depth >= len(ff.Index) {
ff.Index = make([]int, depth+1)
}
if len(ff.Index) > 1 {
ff.Index[depth] = fi
}
} else {
// None or more than one matching field found.
fd = inf
......@@ -906,9 +909,6 @@ func toCommonType(p *runtime.Type) *commonType {
t commonType
}
x := unsafe.Pointer(p)
if uintptr(x)&reflectFlags != 0 {
panic("reflect: invalid interface value")
}
return &(*hdr)(x).t
}
......@@ -944,10 +944,12 @@ func (t *commonType) runtimeType() *runtime.Type {
// PtrTo returns the pointer type with element t.
// For example, if t represents type Foo, PtrTo(t) represents *Foo.
func PtrTo(t Type) Type {
// If t records its pointer-to type, use it.
ct := t.(*commonType)
return t.(*commonType).ptrTo()
}
func (ct *commonType) ptrTo() *commonType {
if p := ct.ptrToThis; p != nil {
return toType(p)
return toCommonType(p)
}
// Otherwise, synthesize one.
......@@ -959,7 +961,7 @@ func PtrTo(t Type) Type {
if m := ptrMap.m; m != nil {
if p := m[ct]; p != nil {
ptrMap.RUnlock()
return p.commonType.toType()
return &p.commonType
}
}
ptrMap.RUnlock()
......@@ -971,7 +973,7 @@ func PtrTo(t Type) Type {
if p != nil {
// some other goroutine won the race and created it
ptrMap.Unlock()
return p
return &p.commonType
}
var rt struct {
......@@ -1003,7 +1005,7 @@ func PtrTo(t Type) Type {
ptrMap.m[ct] = p
ptrMap.Unlock()
return p.commonType.toType()
return &p.commonType
}
func (t *commonType) Implements(u Type) bool {
......
......@@ -11,6 +11,7 @@ import (
"unsafe"
)
const bigEndian = false // can be smarter if we find a big-endian machine
const ptrSize = unsafe.Sizeof((*byte)(nil))
const cannotSet = "cannot set value obtained from unexported struct field"
......@@ -53,14 +54,54 @@ func memmove(adst, asrc unsafe.Pointer, n uintptr) {
// its String method returns "<invalid Value>", and all other methods panic.
// Most functions and methods never return an invalid value.
// If one does, its documentation states the conditions explicitly.
//
// The fields of Value are exported so that clients can copy and
// pass Values around, but they should not be edited or inspected
// directly. A future language change may make it possible not to
// export these fields while still keeping Values usable as values.
type Value struct {
Internal interface{}
InternalMethod int
// typ holds the type of the value represented by a Value.
typ *commonType
// val holds the 1-word representation of the value.
// If flag's flagIndir bit is set, then val is a pointer to the data.
// Otherwise val is a word holding the actual data.
// When the data is smaller than a word, it begins at
// the first byte (in the memory address sense) of val.
// We use unsafe.Pointer so that the garbage collector
// knows that val could be a pointer.
val unsafe.Pointer
// flag holds metadata about the value.
// The lowest bits are flag bits:
// - flagRO: obtained via unexported field, so read-only
// - flagIndir: val holds a pointer to the data
// - flagAddr: v.CanAddr is true (implies flagIndir)
// - flagMethod: v is a method value.
// The next five bits give the Kind of the value.
// This repeats typ.Kind() except for method values.
// The remaining 23+ bits give a method number for method values.
// If flag.kind() != Func, code can assume that flagMethod is unset.
// If typ.size > ptrSize, code can assume that flagIndir is set.
flag
// A method value represents a curried method invocation
// like r.Read for some receiver r. The typ+val+flag bits describe
// the receiver r, but the flag's Kind bits say Func (methods are
// functions), and the top bits of the flag give the method number
// in r's type's method table.
}
type flag uintptr
const (
flagRO flag = 1 << iota
flagIndir
flagAddr
flagMethod
flagKindShift = iota
flagKindWidth = 5 // there are 27 kinds
flagKindMask flag = 1<<flagKindWidth - 1
flagMethodShift = flagKindShift + flagKindWidth
)
func (f flag) kind() Kind {
return Kind((f >> flagKindShift) & flagKindMask)
}
// A ValueError occurs when a Value method is invoked on
......@@ -92,17 +133,30 @@ func methodName() string {
// An iword is the word that would be stored in an
// interface to represent a given value v. Specifically, if v is
// bigger than a pointer, its word is a pointer to v's data.
// Otherwise, its word is a zero uintptr with the data stored
// in the leading bytes.
type iword uintptr
// Otherwise, its word holds the data stored
// in its leading bytes (so is not a pointer).
// Because the value sometimes holds a pointer, we use
// unsafe.Pointer to represent it, so that if iword appears
// in a struct, the garbage collector knows that might be
// a pointer.
type iword unsafe.Pointer
func (v Value) iword() iword {
if v.flag&flagIndir != 0 && v.typ.size <= ptrSize {
// Have indirect but want direct word.
return loadIword(v.val, v.typ.size)
}
return iword(v.val)
}
func loadIword(p unsafe.Pointer, size uintptr) iword {
// loadIword loads n bytes at p from memory into an iword.
func loadIword(p unsafe.Pointer, n uintptr) iword {
// Run the copy ourselves instead of calling memmove
// to avoid moving v to the heap.
w := iword(0)
switch size {
// to avoid moving w to the heap.
var w iword
switch n {
default:
panic("reflect: internal error: loadIword of " + strconv.Itoa(int(size)) + "-byte value")
panic("reflect: internal error: loadIword of " + strconv.Itoa(int(n)) + "-byte value")
case 0:
case 1:
*(*uint8)(unsafe.Pointer(&w)) = *(*uint8)(p)
......@@ -124,12 +178,13 @@ func loadIword(p unsafe.Pointer, size uintptr) iword {
return w
}
func storeIword(p unsafe.Pointer, w iword, size uintptr) {
// storeIword stores n bytes from w into p.
func storeIword(p unsafe.Pointer, w iword, n uintptr) {
// Run the copy ourselves instead of calling memmove
// to avoid moving v to the heap.
switch size {
// to avoid moving w to the heap.
switch n {
default:
panic("reflect: internal error: storeIword of " + strconv.Itoa(int(size)) + "-byte value")
panic("reflect: internal error: storeIword of " + strconv.Itoa(int(n)) + "-byte value")
case 0:
case 1:
*(*uint8)(p) = *(*uint8)(unsafe.Pointer(&w))
......@@ -170,232 +225,42 @@ type nonEmptyInterface struct {
word iword
}
// Regarding the implementation of Value:
//
// The Internal interface is a true interface value in the Go sense,
// but it also serves as a (type, address) pair in which one cannot
// be changed separately from the other. That is, it serves as a way
// to prevent unsafe mutations of the Internal state even though
// we cannot (yet?) hide the field while preserving the ability for
// clients to make copies of Values.
//
// The internal method converts a Value into the expanded internalValue struct.
// If we could avoid exporting fields we'd probably make internalValue the
// definition of Value.
//
// If a Value is addressable (CanAddr returns true), then the Internal
// interface value holds a pointer to the actual field data, and Set stores
// through that pointer. If a Value is not addressable (CanAddr returns false),
// then the Internal interface value holds the actual value.
//
// In addition to whether a value is addressable, we track whether it was
// obtained by using an unexported struct field. Such values are allowed
// to be read, mainly to make fmt.Print more useful, but they are not
// allowed to be written. We call such values read-only.
//
// A Value can be set (via the Set, SetUint, etc. methods) only if it is both
// addressable and not read-only.
//
// The two permission bits - addressable and read-only - are stored in
// the bottom two bits of the type pointer in the interface value.
//
// ordinary value: Internal = value
// addressable value: Internal = value, Internal.typ |= flagAddr
// read-only value: Internal = value, Internal.typ |= flagRO
// addressable, read-only value: Internal = value, Internal.typ |= flagAddr | flagRO
//
// It is important that the read-only values have the extra bit set
// (as opposed to using the bit to mean writable), because client code
// can grab the interface field and try to use it. Having the extra bit
// set makes the type pointer compare not equal to any real type,
// so that a client cannot, say, write through v.Internal.(*int).
// The runtime routines that access interface types reject types with
// low bits set.
//
// If a Value fv = v.Method(i), then fv = v with the InternalMethod
// field set to i+1. Methods are never addressable.
//
// All in all, this is a lot of effort just to avoid making this new API
// depend on a language change we'll probably do anyway, but
// it's helpful to keep the two separate, and much of the logic is
// necessary to implement the Interface method anyway.
const (
flagAddr uint32 = 1 << iota // holds address of value
flagRO // read-only
reflectFlags = 3
)
// An internalValue is the unpacked form of a Value.
// The zero Value unpacks to a zero internalValue
type internalValue struct {
typ *commonType // type of value
kind Kind // kind of value
flag uint32
word iword
addr unsafe.Pointer
rcvr iword
method bool
nilmethod bool
}
func (v Value) internal() internalValue {
var iv internalValue
eface := *(*emptyInterface)(unsafe.Pointer(&v.Internal))
p := uintptr(unsafe.Pointer(eface.typ))
iv.typ = toCommonType((*runtime.Type)(unsafe.Pointer(p &^ reflectFlags)))
if iv.typ == nil {
return iv
}
iv.flag = uint32(p & reflectFlags)
iv.word = eface.word
if iv.flag&flagAddr != 0 {
iv.addr = unsafe.Pointer(iv.word)
iv.typ = iv.typ.Elem().common()
if iv.typ.size <= ptrSize {
iv.word = loadIword(iv.addr, iv.typ.size)
}
} else {
if iv.typ.size > ptrSize {
iv.addr = unsafe.Pointer(iv.word)
}
}
iv.kind = iv.typ.Kind()
// Is this a method? If so, iv describes the receiver.
// Rewrite to describe the method function.
if v.InternalMethod != 0 {
// If this Value is a method value (x.Method(i) for some Value x)
// then we will invoke it using the interface form of the method,
// which always passes the receiver as a single word.
// Record that information.
i := v.InternalMethod - 1
if iv.kind == Interface {
it := (*interfaceType)(unsafe.Pointer(iv.typ))
if i < 0 || i >= len(it.methods) {
panic("reflect: broken Value")
}
m := &it.methods[i]
if m.pkgPath != nil {
iv.flag |= flagRO
}
iv.typ = toCommonType(m.typ)
iface := (*nonEmptyInterface)(iv.addr)
if iface.itab == nil {
iv.word = 0
iv.nilmethod = true
} else {
iv.word = iword(iface.itab.fun[i])
}
iv.rcvr = iface.word
} else {
ut := iv.typ.uncommon()
if ut == nil || i < 0 || i >= len(ut.methods) {
panic("reflect: broken Value")
}
m := &ut.methods[i]
if m.pkgPath != nil {
iv.flag |= flagRO
}
iv.typ = toCommonType(m.mtyp)
iv.rcvr = iv.word
iv.word = iword(m.ifn)
}
iv.kind = Func
iv.method = true
iv.flag &^= flagAddr
iv.addr = nil
}
return iv
}
// packValue returns a Value with the given flag bits, type, and interface word.
func packValue(flag uint32, typ *runtime.Type, word iword) Value {
if typ == nil {
panic("packValue")
}
t := uintptr(unsafe.Pointer(typ))
t |= uintptr(flag)
eface := emptyInterface{(*runtime.Type)(unsafe.Pointer(t)), word}
return Value{Internal: *(*interface{})(unsafe.Pointer(&eface))}
}
var dummy struct {
b bool
x interface{}
}
// Dummy annotation marking that the value x escapes,
// for use in cases where the reflect code is so clever that
// the compiler cannot follow.
func escapes(x interface{}) {
if dummy.b {
dummy.x = x
}
}
// valueFromAddr returns a Value using the given type and address.
func valueFromAddr(flag uint32, typ Type, addr unsafe.Pointer) Value {
// TODO(rsc): Eliminate this terrible hack.
// The escape analysis knows that addr is a pointer
// but it doesn't see addr get passed to anything
// that keeps it. packValue keeps it, but packValue
// takes a uintptr (iword(addr)), and integers (non-pointers)
// are assumed not to matter. The escapes function works
// because return values always escape (for now).
escapes(addr)
if flag&flagAddr != 0 {
// Addressable, so the internal value is
// an interface containing a pointer to the real value.
return packValue(flag, PtrTo(typ).runtimeType(), iword(addr))
}
var w iword
if n := typ.Size(); n <= ptrSize {
// In line, so the interface word is the actual value.
w = loadIword(addr, n)
} else {
// Not in line: the interface word is the address.
w = iword(addr)
}
return packValue(flag, typ.runtimeType(), w)
}
// valueFromIword returns a Value using the given type and interface word.
func valueFromIword(flag uint32, typ Type, w iword) Value {
if flag&flagAddr != 0 {
panic("reflect: internal error: valueFromIword addressable")
}
return packValue(flag, typ.runtimeType(), w)
}
func (iv internalValue) mustBe(want Kind) {
if iv.kind != want {
panic(&ValueError{methodName(), iv.kind})
// mustBe panics if f's kind is not expected.
// Making this a method on flag instead of on Value
// (and embedding flag in Value) means that we can write
// the very clear v.mustBe(Bool) and have it compile into
// v.flag.mustBe(Bool), which will only bother to copy the
// single important word for the receiver.
func (f flag) mustBe(expected Kind) {
k := f.kind()
if k != expected {
panic(&ValueError{methodName(), k})
}
}
func (iv internalValue) mustBeExported() {
if iv.kind == 0 {
panic(&ValueError{methodName(), iv.kind})
// mustBeExported panics if f records that the value was obtained using
// an unexported field.
func (f flag) mustBeExported() {
if f == 0 {
panic(&ValueError{methodName(), 0})
}
if iv.flag&flagRO != 0 {
if f&flagRO != 0 {
panic(methodName() + " using value obtained using unexported field")
}
}
func (iv internalValue) mustBeAssignable() {
if iv.kind == 0 {
panic(&ValueError{methodName(), iv.kind})
// mustBeAssignable panics if f records that the value is not assignable,
// which is to say that either it was obtained using an unexported field
// or it is not addressable.
func (f flag) mustBeAssignable() {
if f == 0 {
panic(&ValueError{methodName(), Invalid})
}
// Assignable if addressable and not read-only.
if iv.flag&flagRO != 0 {
if f&flagRO != 0 {
panic(methodName() + " using value obtained using unexported field")
}
if iv.flag&flagAddr == 0 {
if f&flagAddr == 0 {
panic(methodName() + " using unaddressable value")
}
}
......@@ -406,31 +271,31 @@ func (iv internalValue) mustBeAssignable() {
// or slice element in order to call a method that requires a
// pointer receiver.
func (v Value) Addr() Value {
iv := v.internal()
if iv.flag&flagAddr == 0 {
if v.flag&flagAddr == 0 {
panic("reflect.Value.Addr of unaddressable value")
}
return valueFromIword(iv.flag&flagRO, PtrTo(iv.typ.toType()), iword(iv.addr))
return Value{v.typ.ptrTo(), v.val, (v.flag & flagRO) | flag(Ptr)<<flagKindShift}
}
// Bool returns v's underlying value.
// It panics if v's kind is not Bool.
func (v Value) Bool() bool {
iv := v.internal()
iv.mustBe(Bool)
return *(*bool)(unsafe.Pointer(&iv.word))
v.mustBe(Bool)
if v.flag&flagIndir != 0 {
return *(*bool)(v.val)
}
return *(*bool)(unsafe.Pointer(&v.val))
}
// Bytes returns v's underlying value.
// It panics if v's underlying value is not a slice of bytes.
func (v Value) Bytes() []byte {
iv := v.internal()
iv.mustBe(Slice)
typ := iv.typ.toType()
if typ.Elem().Kind() != Uint8 {
v.mustBe(Slice)
if v.typ.Elem().Kind() != Uint8 {
panic("reflect.Value.Bytes of non-byte slice")
}
return *(*[]byte)(iv.addr)
// Slice is always bigger than a word; assume flagIndir.
return *(*[]byte)(v.val)
}
// CanAddr returns true if the value's address can be obtained with Addr.
......@@ -439,8 +304,7 @@ func (v Value) Bytes() []byte {
// a field of an addressable struct, or the result of dereferencing a pointer.
// If CanAddr returns false, calling Addr will panic.
func (v Value) CanAddr() bool {
iv := v.internal()
return iv.flag&flagAddr != 0
return v.flag&flagAddr != 0
}
// CanSet returns true if the value of v can be changed.
......@@ -449,8 +313,7 @@ func (v Value) CanAddr() bool {
// If CanSet returns false, calling Set or any type-specific
// setter (e.g., SetBool, SetInt64) will panic.
func (v Value) CanSet() bool {
iv := v.internal()
return iv.flag&(flagAddr|flagRO) == flagAddr
return v.flag&(flagAddr|flagRO) == flagAddr
}
// Call calls the function v with the input arguments in.
......@@ -462,10 +325,9 @@ func (v Value) CanSet() bool {
// If v is a variadic function, Call creates the variadic slice parameter
// itself, copying in the corresponding values.
func (v Value) Call(in []Value) []Value {
iv := v.internal()
iv.mustBe(Func)
iv.mustBeExported()
return iv.call("Call", in)
v.mustBe(Func)
v.mustBeExported()
return v.call("Call", in)
}
// CallSlice calls the variadic function v with the input arguments in,
......@@ -476,22 +338,60 @@ func (v Value) Call(in []Value) []Value {
// As in Go, each input argument must be assignable to the
// type of the function's corresponding input parameter.
func (v Value) CallSlice(in []Value) []Value {
iv := v.internal()
iv.mustBe(Func)
iv.mustBeExported()
return iv.call("CallSlice", in)
v.mustBe(Func)
v.mustBeExported()
return v.call("CallSlice", in)
}
func (iv internalValue) call(method string, in []Value) []Value {
if iv.word == 0 {
if iv.nilmethod {
panic("reflect.Value.Call: call of method on nil interface value")
func (v Value) call(method string, in []Value) []Value {
// Get function pointer, type.
t := v.typ
var (
fn unsafe.Pointer
rcvr iword
)
if v.flag&flagMethod != 0 {
i := int(v.flag) >> flagMethodShift
if v.typ.Kind() == Interface {
tt := (*interfaceType)(unsafe.Pointer(v.typ))
if i < 0 || i >= len(tt.methods) {
panic("reflect: broken Value")
}
m := &tt.methods[i]
if m.pkgPath != nil {
panic(method + " of unexported method")
}
t = toCommonType(m.typ)
iface := (*nonEmptyInterface)(v.val)
if iface.itab == nil {
panic(method + " of method on nil interface value")
}
fn = iface.itab.fun[i]
rcvr = iface.word
} else {
ut := v.typ.uncommon()
if ut == nil || i < 0 || i >= len(ut.methods) {
panic("reflect: broken Value")
}
m := &ut.methods[i]
if m.pkgPath != nil {
panic(method + " of unexported method")
}
fn = m.ifn
t = toCommonType(m.mtyp)
rcvr = v.iword()
}
} else if v.flag&flagIndir != 0 {
fn = *(*unsafe.Pointer)(v.val)
} else {
fn = v.val
}
if fn == nil {
panic("reflect.Value.Call: call of nil function")
}
isSlice := method == "CallSlice"
t := iv.typ
n := t.NumIn()
if isSlice {
if !t.IsVariadic() {
......@@ -553,8 +453,8 @@ func (iv internalValue) call(method string, in []Value) []Value {
// and probably wrong for gccgo, but so
// is most of this function.
size := uintptr(0)
if iv.method {
// extra word for interface value
if v.flag&flagMethod != 0 {
// extra word for receiver interface word
size += ptrSize
}
for i := 0; i < nin; i++ {
......@@ -591,31 +491,30 @@ func (iv internalValue) call(method string, in []Value) []Value {
args := make([]*int, size/ptrSize)
ptr := uintptr(unsafe.Pointer(&args[0]))
off := uintptr(0)
if iv.method {
if v.flag&flagMethod != 0 {
// Hard-wired first argument.
*(*iword)(unsafe.Pointer(ptr)) = iv.rcvr
*(*iword)(unsafe.Pointer(ptr)) = rcvr
off = ptrSize
}
for i, v := range in {
iv := v.internal()
iv.mustBeExported()
v.mustBeExported()
targ := t.In(i).(*commonType)
a := uintptr(targ.align)
off = (off + a - 1) &^ (a - 1)
n := targ.size
addr := unsafe.Pointer(ptr + off)
iv = convertForAssignment("reflect.Value.Call", addr, targ, iv)
if iv.addr == nil {
storeIword(addr, iv.word, n)
v = v.assignTo("reflect.Value.Call", targ, (*interface{})(addr))
if v.flag&flagIndir == 0 {
storeIword(addr, iword(v.val), n)
} else {
memmove(addr, iv.addr, n)
memmove(addr, v.val, n)
}
off += n
}
off = (off + ptrSize - 1) &^ (ptrSize - 1)
// Call.
call(unsafe.Pointer(iv.word), unsafe.Pointer(ptr), uint32(size))
call(fn, unsafe.Pointer(ptr), uint32(size))
// Copy return values out of args.
//
......@@ -625,7 +524,8 @@ func (iv internalValue) call(method string, in []Value) []Value {
tv := t.Out(i)
a := uintptr(tv.Align())
off = (off + a - 1) &^ (a - 1)
ret[i] = valueFromAddr(0, tv, unsafe.Pointer(ptr+off))
fl := flagIndir | flag(tv.Kind())<<flagKindShift
ret[i] = Value{tv.common(), unsafe.Pointer(ptr + off), fl}
off += tv.Size()
}
......@@ -635,42 +535,42 @@ func (iv internalValue) call(method string, in []Value) []Value {
// Cap returns v's capacity.
// It panics if v's Kind is not Array, Chan, or Slice.
func (v Value) Cap() int {
iv := v.internal()
switch iv.kind {
k := v.kind()
switch k {
case Array:
return iv.typ.Len()
return v.typ.Len()
case Chan:
return int(chancap(iv.word))
return int(chancap(v.iword()))
case Slice:
return (*SliceHeader)(iv.addr).Cap
// Slice is always bigger than a word; assume flagIndir.
return (*SliceHeader)(v.val).Cap
}
panic(&ValueError{"reflect.Value.Cap", iv.kind})
panic(&ValueError{"reflect.Value.Cap", k})
}
// Close closes the channel v.
// It panics if v's Kind is not Chan.
func (v Value) Close() {
iv := v.internal()
iv.mustBe(Chan)
iv.mustBeExported()
ch := iv.word
chanclose(ch)
v.mustBe(Chan)
v.mustBeExported()
chanclose(v.iword())
}
// Complex returns v's underlying value, as a complex128.
// It panics if v's Kind is not Complex64 or Complex128
func (v Value) Complex() complex128 {
iv := v.internal()
switch iv.kind {
k := v.kind()
switch k {
case Complex64:
if iv.addr == nil {
return complex128(*(*complex64)(unsafe.Pointer(&iv.word)))
if v.flag&flagIndir != 0 {
return complex128(*(*complex64)(v.val))
}
return complex128(*(*complex64)(iv.addr))
return complex128(*(*complex64)(unsafe.Pointer(&v.val)))
case Complex128:
return *(*complex128)(iv.addr)
// complex128 is always bigger than a word; assume flagIndir.
return *(*complex128)(v.val)
}
panic(&ValueError{"reflect.Value.Complex", iv.kind})
panic(&ValueError{"reflect.Value.Complex", k})
}
// Elem returns the value that the interface v contains
......@@ -678,90 +578,94 @@ func (v Value) Complex() complex128 {
// It panics if v's Kind is not Interface or Ptr.
// It returns the zero Value if v is nil.
func (v Value) Elem() Value {
iv := v.internal()
return iv.Elem()
}
func (iv internalValue) Elem() Value {
switch iv.kind {
k := v.kind()
switch k {
case Interface:
// Empty interface and non-empty interface have different layouts.
// Convert to empty interface.
var eface emptyInterface
if iv.typ.NumMethod() == 0 {
eface = *(*emptyInterface)(iv.addr)
var (
typ *commonType
val unsafe.Pointer
)
if v.typ.NumMethod() == 0 {
eface := (*emptyInterface)(v.val)
if eface.typ == nil {
// nil interface value
return Value{}
}
typ = toCommonType(eface.typ)
val = unsafe.Pointer(eface.word)
} else {
iface := (*nonEmptyInterface)(iv.addr)
if iface.itab != nil {
eface.typ = iface.itab.typ
iface := (*nonEmptyInterface)(v.val)
if iface.itab == nil {
// nil interface value
return Value{}
}
eface.word = iface.word
typ = toCommonType(iface.itab.typ)
val = unsafe.Pointer(iface.word)
}
if eface.typ == nil {
return Value{}
fl := v.flag & flagRO
fl |= flag(typ.Kind()) << flagKindShift
if typ.size > ptrSize {
fl |= flagIndir
}
return valueFromIword(iv.flag&flagRO, toType(eface.typ), eface.word)
return Value{typ, val, fl}
case Ptr:
val := v.val
if v.flag&flagIndir != 0 {
val = *(*unsafe.Pointer)(val)
}
// The returned value's address is v's value.
if iv.word == 0 {
if val == nil {
return Value{}
}
return valueFromAddr(iv.flag&flagRO|flagAddr, iv.typ.Elem(), unsafe.Pointer(iv.word))
tt := (*ptrType)(unsafe.Pointer(v.typ))
typ := toCommonType(tt.elem)
fl := v.flag&flagRO | flagIndir | flagAddr
fl |= flag(typ.Kind() << flagKindShift)
return Value{typ, val, fl}
}
panic(&ValueError{"reflect.Value.Elem", iv.kind})
panic(&ValueError{"reflect.Value.Elem", k})
}
// Field returns the i'th field of the struct v.
// It panics if v's Kind is not Struct or i is out of range.
func (v Value) Field(i int) Value {
iv := v.internal()
iv.mustBe(Struct)
t := iv.typ.toType()
if i < 0 || i >= t.NumField() {
v.mustBe(Struct)
tt := (*structType)(unsafe.Pointer(v.typ))
if i < 0 || i >= len(tt.fields) {
panic("reflect: Field index out of range")
}
f := t.Field(i)
field := &tt.fields[i]
typ := toCommonType(field.typ)
// Inherit permission bits from v.
flag := iv.flag
fl := v.flag & (flagRO | flagIndir | flagAddr)
// Using an unexported field forces flagRO.
if f.PkgPath != "" {
flag |= flagRO
if field.pkgPath != nil {
fl |= flagRO
}
return valueFromValueOffset(flag, f.Type, iv, f.Offset)
}
fl |= flag(typ.Kind()) << flagKindShift
// valueFromValueOffset returns a sub-value of outer
// (outer is an array or a struct) with the given flag and type
// starting at the given byte offset into outer.
func valueFromValueOffset(flag uint32, typ Type, outer internalValue, offset uintptr) Value {
if outer.addr != nil {
return valueFromAddr(flag, typ, unsafe.Pointer(uintptr(outer.addr)+offset))
var val unsafe.Pointer
switch {
case fl&flagIndir != 0:
// Indirect. Just bump pointer.
val = unsafe.Pointer(uintptr(v.val) + field.offset)
case bigEndian:
// Direct. Discard leading bytes.
val = unsafe.Pointer(uintptr(v.val) << (field.offset * 8))
default:
// Direct. Discard leading bytes.
val = unsafe.Pointer(uintptr(v.val) >> (field.offset * 8))
}
// outer is so tiny it is in line.
// We have to use outer.word and derive
// the new word (it cannot possibly be bigger).
// In line, so not addressable.
if flag&flagAddr != 0 {
panic("reflect: internal error: misuse of valueFromValueOffset")
}
b := *(*[ptrSize]byte)(unsafe.Pointer(&outer.word))
for i := uintptr(0); i < typ.Size(); i++ {
b[i] = b[offset+i]
}
for i := typ.Size(); i < ptrSize; i++ {
b[i] = 0
}
w := *(*iword)(unsafe.Pointer(&b))
return valueFromIword(flag, typ, w)
return Value{typ, val, fl}
}
// FieldByIndex returns the nested field corresponding to index.
// It panics if v's Kind is not struct.
func (v Value) FieldByIndex(index []int) Value {
v.internal().mustBe(Struct)
v.mustBe(Struct)
for i, x := range index {
if i > 0 {
if v.Kind() == Ptr && v.Elem().Kind() == Struct {
......@@ -777,9 +681,8 @@ func (v Value) FieldByIndex(index []int) Value {
// It returns the zero Value if no field was found.
// It panics if v's Kind is not struct.
func (v Value) FieldByName(name string) Value {
iv := v.internal()
iv.mustBe(Struct)
if f, ok := iv.typ.FieldByName(name); ok {
v.mustBe(Struct)
if f, ok := v.typ.FieldByName(name); ok {
return v.FieldByIndex(f.Index)
}
return Value{}
......@@ -790,8 +693,8 @@ func (v Value) FieldByName(name string) Value {
// It panics if v's Kind is not struct.
// It returns the zero Value if no field was found.
func (v Value) FieldByNameFunc(match func(string) bool) Value {
v.internal().mustBe(Struct)
if f, ok := v.Type().FieldByNameFunc(match); ok {
v.mustBe(Struct)
if f, ok := v.typ.FieldByNameFunc(match); ok {
return v.FieldByIndex(f.Index)
}
return Value{}
......@@ -800,83 +703,101 @@ func (v Value) FieldByNameFunc(match func(string) bool) Value {
// Float returns v's underlying value, as an float64.
// It panics if v's Kind is not Float32 or Float64
func (v Value) Float() float64 {
iv := v.internal()
switch iv.kind {
k := v.kind()
switch k {
case Float32:
return float64(*(*float32)(unsafe.Pointer(&iv.word)))
if v.flag&flagIndir != 0 {
return float64(*(*float32)(v.val))
}
return float64(*(*float32)(unsafe.Pointer(&v.val)))
case Float64:
// If the pointer width can fit an entire float64,
// the value is in line when stored in an interface.
if iv.addr == nil {
return *(*float64)(unsafe.Pointer(&iv.word))
if v.flag&flagIndir != 0 {
return *(*float64)(v.val)
}
// Otherwise we have a pointer.
return *(*float64)(iv.addr)
return *(*float64)(unsafe.Pointer(&v.val))
}
panic(&ValueError{"reflect.Value.Float", iv.kind})
panic(&ValueError{"reflect.Value.Float", k})
}
// Index returns v's i'th element.
// It panics if v's Kind is not Array or Slice or i is out of range.
func (v Value) Index(i int) Value {
iv := v.internal()
switch iv.kind {
default:
panic(&ValueError{"reflect.Value.Index", iv.kind})
k := v.kind()
switch k {
case Array:
flag := iv.flag // element flag same as overall array
t := iv.typ.toType()
if i < 0 || i > t.Len() {
tt := (*arrayType)(unsafe.Pointer(v.typ))
if i < 0 || i > int(tt.len) {
panic("reflect: array index out of range")
}
typ := t.Elem()
return valueFromValueOffset(flag, typ, iv, uintptr(i)*typ.Size())
typ := toCommonType(tt.elem)
fl := v.flag & (flagRO | flagIndir | flagAddr) // bits same as overall array
fl |= flag(typ.Kind()) << flagKindShift
offset := uintptr(i) * typ.size
var val unsafe.Pointer
switch {
case fl&flagIndir != 0:
// Indirect. Just bump pointer.
val = unsafe.Pointer(uintptr(v.val) + offset)
case bigEndian:
// Direct. Discard leading bytes.
val = unsafe.Pointer(uintptr(v.val) << (offset * 8))
default:
// Direct. Discard leading bytes.
val = unsafe.Pointer(uintptr(v.val) >> (offset * 8))
}
return Value{typ, val, fl}
case Slice:
// Element flag same as Elem of Ptr.
// Addressable, possibly read-only.
flag := iv.flag&flagRO | flagAddr
s := (*SliceHeader)(iv.addr)
// Addressable, indirect, possibly read-only.
fl := flagAddr | flagIndir | v.flag&flagRO
s := (*SliceHeader)(v.val)
if i < 0 || i >= s.Len {
panic("reflect: slice index out of range")
}
typ := iv.typ.Elem()
addr := unsafe.Pointer(s.Data + uintptr(i)*typ.Size())
return valueFromAddr(flag, typ, addr)
tt := (*sliceType)(unsafe.Pointer(v.typ))
typ := toCommonType(tt.elem)
fl |= flag(typ.Kind()) << flagKindShift
val := unsafe.Pointer(s.Data + uintptr(i)*typ.size)
return Value{typ, val, fl}
}
panic("not reached")
panic(&ValueError{"reflect.Value.Index", k})
}
// Int returns v's underlying value, as an int64.
// It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64.
func (v Value) Int() int64 {
iv := v.internal()
switch iv.kind {
k := v.kind()
var p unsafe.Pointer
if v.flag&flagIndir != 0 {
p = v.val
} else {
// The escape analysis is good enough that &v.val
// does not trigger a heap allocation.
p = unsafe.Pointer(&v.val)
}
switch k {
case Int:
return int64(*(*int)(unsafe.Pointer(&iv.word)))
return int64(*(*int)(p))
case Int8:
return int64(*(*int8)(unsafe.Pointer(&iv.word)))
return int64(*(*int8)(p))
case Int16:
return int64(*(*int16)(unsafe.Pointer(&iv.word)))
return int64(*(*int16)(p))
case Int32:
return int64(*(*int32)(unsafe.Pointer(&iv.word)))
return int64(*(*int32)(p))
case Int64:
if iv.addr == nil {
return *(*int64)(unsafe.Pointer(&iv.word))
}
return *(*int64)(iv.addr)
return int64(*(*int64)(p))
}
panic(&ValueError{"reflect.Value.Int", iv.kind})
panic(&ValueError{"reflect.Value.Int", k})
}
// CanInterface returns true if Interface can be used without panicking.
func (v Value) CanInterface() bool {
iv := v.internal()
if iv.kind == Invalid {
panic(&ValueError{"reflect.Value.CanInterface", iv.kind})
if v.flag == 0 {
panic(&ValueError{"reflect.Value.CanInterface", Invalid})
}
return v.InternalMethod == 0 && iv.flag&flagRO == 0
return v.flag&(flagMethod|flagRO) == 0
}
// Interface returns v's value as an interface{}.
......@@ -888,70 +809,72 @@ func (v Value) Interface() interface{} {
}
func valueInterface(v Value, safe bool) interface{} {
iv := v.internal()
return iv.valueInterface(safe)
}
func (iv internalValue) valueInterface(safe bool) interface{} {
if iv.kind == 0 {
panic(&ValueError{"reflect.Value.Interface", iv.kind})
if v.flag == 0 {
panic(&ValueError{"reflect.Value.Interface", 0})
}
if iv.method {
if v.flag&flagMethod != 0 {
panic("reflect.Value.Interface: cannot create interface value for method with bound receiver")
}
if safe && iv.flag&flagRO != 0 {
if safe && v.flag&flagRO != 0 {
// Do not allow access to unexported values via Interface,
// because they might be pointers that should not be
// writable or methods or function that should not be callable.
panic("reflect.Value.Interface: cannot return value obtained from unexported field or method")
}
if iv.kind == Interface {
k := v.kind()
if k == Interface {
// Special case: return the element inside the interface.
// Won't recurse further because an interface cannot contain an interface.
if iv.IsNil() {
return nil
// Empty interface has one layout, all interfaces with
// methods have a second layout.
if v.NumMethod() == 0 {
return *(*interface{})(v.val)
}
return iv.Elem().Interface()
return *(*interface {
M()
})(v.val)
}
// Non-interface value.
var eface emptyInterface
eface.typ = iv.typ.runtimeType()
eface.word = iv.word
eface.typ = v.typ.runtimeType()
eface.word = v.iword()
return *(*interface{})(unsafe.Pointer(&eface))
}
// InterfaceData returns the interface v's value as a uintptr pair.
// It panics if v's Kind is not Interface.
func (v Value) InterfaceData() [2]uintptr {
iv := v.internal()
iv.mustBe(Interface)
v.mustBe(Interface)
// We treat this as a read operation, so we allow
// it even for unexported data, because the caller
// has to import "unsafe" to turn it into something
// that can be abused.
return *(*[2]uintptr)(iv.addr)
// Interface value is always bigger than a word; assume flagIndir.
return *(*[2]uintptr)(v.val)
}
// IsNil returns true if v is a nil value.
// It panics if v's Kind is not Chan, Func, Interface, Map, Ptr, or Slice.
func (v Value) IsNil() bool {
return v.internal().IsNil()
}
func (iv internalValue) IsNil() bool {
switch iv.kind {
k := v.kind()
switch k {
case Chan, Func, Map, Ptr:
if iv.method {
if v.flag&flagMethod != 0 {
panic("reflect: IsNil of method Value")
}
return iv.word == 0
ptr := v.val
if v.flag&flagIndir != 0 {
ptr = *(*unsafe.Pointer)(ptr)
}
return ptr == nil
case Interface, Slice:
// Both interface and slice are nil if first word is 0.
return *(*uintptr)(iv.addr) == 0
// Both are always bigger than a word; assume flagIndir.
return *(*unsafe.Pointer)(v.val) == nil
}
panic(&ValueError{"reflect.Value.IsNil", iv.kind})
panic(&ValueError{"reflect.Value.IsNil", k})
}
// IsValid returns true if v represents a value.
......@@ -960,32 +883,35 @@ func (iv internalValue) IsNil() bool {
// Most functions and methods never return an invalid value.
// If one does, its documentation states the conditions explicitly.
func (v Value) IsValid() bool {
return v.Internal != nil
return v.flag != 0
}
// Kind returns v's Kind.
// If v is the zero Value (IsValid returns false), Kind returns Invalid.
func (v Value) Kind() Kind {
return v.internal().kind
return v.kind()
}
// Len returns v's length.
// It panics if v's Kind is not Array, Chan, Map, Slice, or String.
func (v Value) Len() int {
iv := v.internal()
switch iv.kind {
k := v.kind()
switch k {
case Array:
return iv.typ.Len()
tt := (*arrayType)(unsafe.Pointer(v.typ))
return int(tt.len)
case Chan:
return int(chanlen(iv.word))
return int(chanlen(v.iword()))
case Map:
return int(maplen(iv.word))
return int(maplen(v.iword()))
case Slice:
return (*SliceHeader)(iv.addr).Len
// Slice is bigger than a word; assume flagIndir.
return (*SliceHeader)(v.val).Len
case String:
return (*StringHeader)(iv.addr).Len
// String is bigger than a word; assume flagIndir.
return (*StringHeader)(v.val).Len
}
panic(&ValueError{"reflect.Value.Len", iv.kind})
panic(&ValueError{"reflect.Value.Len", k})
}
// MapIndex returns the value associated with key in the map v.
......@@ -993,29 +919,29 @@ func (v Value) Len() int {
// It returns the zero Value if key is not found in the map or if v represents a nil map.
// As in Go, the key's value must be assignable to the map's key type.
func (v Value) MapIndex(key Value) Value {
iv := v.internal()
iv.mustBe(Map)
typ := iv.typ.toType()
v.mustBe(Map)
tt := (*mapType)(unsafe.Pointer(v.typ))
// Do not require ikey to be exported, so that DeepEqual
// Do not require key to be exported, so that DeepEqual
// and other programs can use all the keys returned by
// MapKeys as arguments to MapIndex. If either the map
// or the key is unexported, though, the result will be
// considered unexported.
ikey := key.internal()
ikey = convertForAssignment("reflect.Value.MapIndex", nil, typ.Key(), ikey)
if iv.word == 0 {
return Value{}
}
// considered unexported. This is consistent with the
// behavior for structs, which allow read but not write
// of unexported fields.
key = key.assignTo("reflect.Value.MapIndex", toCommonType(tt.key), nil)
flag := (iv.flag | ikey.flag) & flagRO
elemType := typ.Elem()
elemWord, ok := mapaccess(typ.runtimeType(), iv.word, ikey.word)
word, ok := mapaccess(v.typ.runtimeType(), v.iword(), key.iword())
if !ok {
return Value{}
}
return valueFromIword(flag, elemType, elemWord)
typ := toCommonType(tt.elem)
fl := (v.flag | key.flag) & flagRO
if typ.size > ptrSize {
fl |= flagIndir
}
fl |= flag(typ.Kind()) << flagKindShift
return Value{typ, unsafe.Pointer(word), fl}
}
// MapKeys returns a slice containing all the keys present in the map,
......@@ -1023,17 +949,22 @@ func (v Value) MapIndex(key Value) Value {
// It panics if v's Kind is not Map.
// It returns an empty slice if v represents a nil map.
func (v Value) MapKeys() []Value {
iv := v.internal()
iv.mustBe(Map)
keyType := iv.typ.Key()
v.mustBe(Map)
tt := (*mapType)(unsafe.Pointer(v.typ))
keyType := toCommonType(tt.key)
flag := iv.flag & flagRO
m := iv.word
fl := v.flag & flagRO
fl |= flag(keyType.Kind()) << flagKindShift
if keyType.size > ptrSize {
fl |= flagIndir
}
m := v.iword()
mlen := int32(0)
if m != 0 {
if m != nil {
mlen = maplen(m)
}
it := mapiterinit(iv.typ.runtimeType(), m)
it := mapiterinit(v.typ.runtimeType(), m)
a := make([]Value, mlen)
var i int
for i = 0; i < len(a); i++ {
......@@ -1041,7 +972,7 @@ func (v Value) MapKeys() []Value {
if !ok {
break
}
a[i] = valueFromIword(flag, keyType, keyWord)
a[i] = Value{keyType, unsafe.Pointer(keyWord), fl}
mapiternext(it)
}
return a[:i]
......@@ -1052,23 +983,27 @@ func (v Value) MapKeys() []Value {
// a receiver; the returned function will always use v as the receiver.
// Method panics if i is out of range.
func (v Value) Method(i int) Value {
iv := v.internal()
if iv.kind == Invalid {
if v.typ == nil {
panic(&ValueError{"reflect.Value.Method", Invalid})
}
if i < 0 || i >= iv.typ.NumMethod() {
if v.flag&flagMethod != 0 || i < 0 || i >= v.typ.NumMethod() {
panic("reflect: Method index out of range")
}
return Value{v.Internal, i + 1}
fl := v.flag & (flagRO | flagAddr | flagIndir)
fl |= flag(Func) << flagKindShift
fl |= flag(i)<<flagMethodShift | flagMethod
return Value{v.typ, v.val, fl}
}
// NumMethod returns the number of methods in the value's method set.
func (v Value) NumMethod() int {
iv := v.internal()
if iv.kind == Invalid {
if v.typ == nil {
panic(&ValueError{"reflect.Value.NumMethod", Invalid})
}
return iv.typ.NumMethod()
if v.flag&flagMethod != 0 {
return 0
}
return v.typ.NumMethod()
}
// MethodByName returns a function value corresponding to the method
......@@ -1077,49 +1012,51 @@ func (v Value) NumMethod() int {
// a receiver; the returned function will always use v as the receiver.
// It returns the zero Value if no method was found.
func (v Value) MethodByName(name string) Value {
iv := v.internal()
if iv.kind == Invalid {
if v.typ == nil {
panic(&ValueError{"reflect.Value.MethodByName", Invalid})
}
m, ok := iv.typ.MethodByName(name)
if ok {
return Value{v.Internal, m.Index + 1}
if v.flag&flagMethod != 0 {
return Value{}
}
m, ok := v.typ.MethodByName(name)
if !ok {
return Value{}
}
return v.Method(m.Index)
}
// NumField returns the number of fields in the struct v.
// It panics if v's Kind is not Struct.
func (v Value) NumField() int {
iv := v.internal()
iv.mustBe(Struct)
return iv.typ.NumField()
v.mustBe(Struct)
tt := (*structType)(unsafe.Pointer(v.typ))
return len(tt.fields)
}
// OverflowComplex returns true if the complex128 x cannot be represented by v's type.
// It panics if v's Kind is not Complex64 or Complex128.
func (v Value) OverflowComplex(x complex128) bool {
iv := v.internal()
switch iv.kind {
k := v.kind()
switch k {
case Complex64:
return overflowFloat32(real(x)) || overflowFloat32(imag(x))
case Complex128:
return false
}
panic(&ValueError{"reflect.Value.OverflowComplex", iv.kind})
panic(&ValueError{"reflect.Value.OverflowComplex", k})
}
// OverflowFloat returns true if the float64 x cannot be represented by v's type.
// It panics if v's Kind is not Float32 or Float64.
func (v Value) OverflowFloat(x float64) bool {
iv := v.internal()
switch iv.kind {
k := v.kind()
switch k {
case Float32:
return overflowFloat32(x)
case Float64:
return false
}
panic(&ValueError{"reflect.Value.OverflowFloat", iv.kind})
panic(&ValueError{"reflect.Value.OverflowFloat", k})
}
func overflowFloat32(x float64) bool {
......@@ -1132,27 +1069,27 @@ func overflowFloat32(x float64) bool {
// OverflowInt returns true if the int64 x cannot be represented by v's type.
// It panics if v's Kind is not Int, Int8, int16, Int32, or Int64.
func (v Value) OverflowInt(x int64) bool {
iv := v.internal()
switch iv.kind {
k := v.kind()
switch k {
case Int, Int8, Int16, Int32, Int64:
bitSize := iv.typ.size * 8
bitSize := v.typ.size * 8
trunc := (x << (64 - bitSize)) >> (64 - bitSize)
return x != trunc
}
panic(&ValueError{"reflect.Value.OverflowInt", iv.kind})
panic(&ValueError{"reflect.Value.OverflowInt", k})
}
// OverflowUint returns true if the uint64 x cannot be represented by v's type.
// It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64.
func (v Value) OverflowUint(x uint64) bool {
iv := v.internal()
switch iv.kind {
k := v.kind()
switch k {
case Uint, Uintptr, Uint8, Uint16, Uint32, Uint64:
bitSize := iv.typ.size * 8
bitSize := v.typ.size * 8
trunc := (x << (64 - bitSize)) >> (64 - bitSize)
return x != trunc
}
panic(&ValueError{"reflect.Value.OverflowUint", iv.kind})
panic(&ValueError{"reflect.Value.OverflowUint", k})
}
// Pointer returns v's value as a uintptr.
......@@ -1161,17 +1098,21 @@ func (v Value) OverflowUint(x uint64) bool {
// without importing the unsafe package explicitly.
// It panics if v's Kind is not Chan, Func, Map, Ptr, Slice, or UnsafePointer.
func (v Value) Pointer() uintptr {
iv := v.internal()
switch iv.kind {
k := v.kind()
switch k {
case Chan, Func, Map, Ptr, UnsafePointer:
if iv.kind == Func && v.InternalMethod != 0 {
if k == Func && v.flag&flagMethod != 0 {
panic("reflect.Value.Pointer of method Value")
}
return uintptr(iv.word)
p := v.val
if v.flag&flagIndir != 0 {
p = *(*unsafe.Pointer)(p)
}
return uintptr(p)
case Slice:
return (*SliceHeader)(iv.addr).Data
return (*SliceHeader)(v.val).Data
}
panic(&ValueError{"reflect.Value.Pointer", iv.kind})
panic(&ValueError{"reflect.Value.Pointer", k})
}
// Recv receives and returns a value from the channel v.
......@@ -1180,25 +1121,26 @@ func (v Value) Pointer() uintptr {
// The boolean value ok is true if the value x corresponds to a send
// on the channel, false if it is a zero value received because the channel is closed.
func (v Value) Recv() (x Value, ok bool) {
iv := v.internal()
iv.mustBe(Chan)
iv.mustBeExported()
return iv.recv(false)
v.mustBe(Chan)
v.mustBeExported()
return v.recv(false)
}
// internal recv, possibly non-blocking (nb)
func (iv internalValue) recv(nb bool) (val Value, ok bool) {
t := iv.typ.toType()
if t.ChanDir()&RecvDir == 0 {
// internal recv, possibly non-blocking (nb).
// v is known to be a channel.
func (v Value) recv(nb bool) (val Value, ok bool) {
tt := (*chanType)(unsafe.Pointer(v.typ))
if ChanDir(tt.dir)&RecvDir == 0 {
panic("recv on send-only channel")
}
ch := iv.word
if ch == 0 {
panic("recv on nil channel")
}
valWord, selected, ok := chanrecv(iv.typ.runtimeType(), ch, nb)
word, selected, ok := chanrecv(v.typ.runtimeType(), v.iword(), nb)
if selected {
val = valueFromIword(0, t.Elem(), valWord)
typ := toCommonType(tt.elem)
fl := flag(typ.Kind()) << flagKindShift
if typ.size > ptrSize {
fl |= flagIndir
}
val = Value{typ, unsafe.Pointer(word), fl}
}
return
}
......@@ -1207,128 +1149,114 @@ func (iv internalValue) recv(nb bool) (val Value, ok bool) {
// It panics if v's kind is not Chan or if x's type is not the same type as v's element type.
// As in Go, x's value must be assignable to the channel's element type.
func (v Value) Send(x Value) {
iv := v.internal()
iv.mustBe(Chan)
iv.mustBeExported()
iv.send(x, false)
v.mustBe(Chan)
v.mustBeExported()
v.send(x, false)
}
// internal send, possibly non-blocking
func (iv internalValue) send(x Value, nb bool) (selected bool) {
t := iv.typ.toType()
if t.ChanDir()&SendDir == 0 {
// internal send, possibly non-blocking.
// v is known to be a channel.
func (v Value) send(x Value, nb bool) (selected bool) {
tt := (*chanType)(unsafe.Pointer(v.typ))
if ChanDir(tt.dir)&SendDir == 0 {
panic("send on recv-only channel")
}
ix := x.internal()
ix.mustBeExported() // do not let unexported x leak
ix = convertForAssignment("reflect.Value.Send", nil, t.Elem(), ix)
ch := iv.word
if ch == 0 {
panic("send on nil channel")
}
return chansend(iv.typ.runtimeType(), ch, ix.word, nb)
x.mustBeExported()
x = x.assignTo("reflect.Value.Send", toCommonType(tt.elem), nil)
return chansend(v.typ.runtimeType(), v.iword(), x.iword(), nb)
}
// Set assigns x to the value v.
// It panics if CanSet returns false.
// As in Go, x's value must be assignable to v's type.
func (v Value) Set(x Value) {
iv := v.internal()
ix := x.internal()
iv.mustBeAssignable()
ix.mustBeExported() // do not let unexported x leak
ix = convertForAssignment("reflect.Set", iv.addr, iv.typ, ix)
n := ix.typ.size
if n <= ptrSize {
storeIword(iv.addr, ix.word, n)
v.mustBeAssignable()
x.mustBeExported() // do not let unexported x leak
var target *interface{}
if v.kind() == Interface {
target = (*interface{})(v.val)
}
x = x.assignTo("reflect.Set", v.typ, target)
if x.flag&flagIndir != 0 {
memmove(v.val, x.val, v.typ.size)
} else {
memmove(iv.addr, ix.addr, n)
storeIword(v.val, iword(x.val), v.typ.size)
}
}
// SetBool sets v's underlying value.
// It panics if v's Kind is not Bool or if CanSet() is false.
func (v Value) SetBool(x bool) {
iv := v.internal()
iv.mustBeAssignable()
iv.mustBe(Bool)
*(*bool)(iv.addr) = x
v.mustBeAssignable()
v.mustBe(Bool)
*(*bool)(v.val) = x
}
// SetBytes sets v's underlying value.
// It panics if v's underlying value is not a slice of bytes.
func (v Value) SetBytes(x []byte) {
iv := v.internal()
iv.mustBeAssignable()
iv.mustBe(Slice)
typ := iv.typ.toType()
if typ.Elem().Kind() != Uint8 {
v.mustBeAssignable()
v.mustBe(Slice)
if v.typ.Elem().Kind() != Uint8 {
panic("reflect.Value.SetBytes of non-byte slice")
}
*(*[]byte)(iv.addr) = x
*(*[]byte)(v.val) = x
}
// SetComplex sets v's underlying value to x.
// It panics if v's Kind is not Complex64 or Complex128, or if CanSet() is false.
func (v Value) SetComplex(x complex128) {
iv := v.internal()
iv.mustBeAssignable()
switch iv.kind {
v.mustBeAssignable()
switch k := v.kind(); k {
default:
panic(&ValueError{"reflect.Value.SetComplex", iv.kind})
panic(&ValueError{"reflect.Value.SetComplex", k})
case Complex64:
*(*complex64)(iv.addr) = complex64(x)
*(*complex64)(v.val) = complex64(x)
case Complex128:
*(*complex128)(iv.addr) = x
*(*complex128)(v.val) = x
}
}
// SetFloat sets v's underlying value to x.
// It panics if v's Kind is not Float32 or Float64, or if CanSet() is false.
func (v Value) SetFloat(x float64) {
iv := v.internal()
iv.mustBeAssignable()
switch iv.kind {
v.mustBeAssignable()
switch k := v.kind(); k {
default:
panic(&ValueError{"reflect.Value.SetFloat", iv.kind})
panic(&ValueError{"reflect.Value.SetFloat", k})
case Float32:
*(*float32)(iv.addr) = float32(x)
*(*float32)(v.val) = float32(x)
case Float64:
*(*float64)(iv.addr) = x
*(*float64)(v.val) = x
}
}
// SetInt sets v's underlying value to x.
// It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64, or if CanSet() is false.
func (v Value) SetInt(x int64) {
iv := v.internal()
iv.mustBeAssignable()
switch iv.kind {
v.mustBeAssignable()
switch k := v.kind(); k {
default:
panic(&ValueError{"reflect.Value.SetInt", iv.kind})
panic(&ValueError{"reflect.Value.SetInt", k})
case Int:
*(*int)(iv.addr) = int(x)
*(*int)(v.val) = int(x)
case Int8:
*(*int8)(iv.addr) = int8(x)
*(*int8)(v.val) = int8(x)
case Int16:
*(*int16)(iv.addr) = int16(x)
*(*int16)(v.val) = int16(x)
case Int32:
*(*int32)(iv.addr) = int32(x)
*(*int32)(v.val) = int32(x)
case Int64:
*(*int64)(iv.addr) = x
*(*int64)(v.val) = x
}
}
// SetLen sets v's length to n.
// It panics if v's Kind is not Slice.
func (v Value) SetLen(n int) {
iv := v.internal()
iv.mustBeAssignable()
iv.mustBe(Slice)
s := (*SliceHeader)(iv.addr)
v.mustBeAssignable()
v.mustBe(Slice)
s := (*SliceHeader)(v.val)
if n < 0 || n > int(s.Cap) {
panic("reflect: slice length out of range in SetLen")
}
......@@ -1341,88 +1269,84 @@ func (v Value) SetLen(n int) {
// As in Go, key's value must be assignable to the map's key type,
// and val's value must be assignable to the map's value type.
func (v Value) SetMapIndex(key, val Value) {
iv := v.internal()
ikey := key.internal()
ival := val.internal()
iv.mustBe(Map)
iv.mustBeExported()
ikey.mustBeExported()
ikey = convertForAssignment("reflect.Value.SetMapIndex", nil, iv.typ.Key(), ikey)
if ival.kind != Invalid {
ival.mustBeExported()
ival = convertForAssignment("reflect.Value.SetMapIndex", nil, iv.typ.Elem(), ival)
v.mustBe(Map)
v.mustBeExported()
key.mustBeExported()
tt := (*mapType)(unsafe.Pointer(v.typ))
key = key.assignTo("reflect.Value.SetMapIndex", toCommonType(tt.key), nil)
if val.typ != nil {
val.mustBeExported()
val = val.assignTo("reflect.Value.SetMapIndex", toCommonType(tt.elem), nil)
}
mapassign(iv.typ.runtimeType(), iv.word, ikey.word, ival.word, ival.kind != Invalid)
mapassign(v.typ.runtimeType(), v.iword(), key.iword(), val.iword(), val.typ != nil)
}
// SetUint sets v's underlying value to x.
// It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64, or if CanSet() is false.
func (v Value) SetUint(x uint64) {
iv := v.internal()
iv.mustBeAssignable()
switch iv.kind {
v.mustBeAssignable()
switch k := v.kind(); k {
default:
panic(&ValueError{"reflect.Value.SetUint", iv.kind})
panic(&ValueError{"reflect.Value.SetUint", k})
case Uint:
*(*uint)(iv.addr) = uint(x)
*(*uint)(v.val) = uint(x)
case Uint8:
*(*uint8)(iv.addr) = uint8(x)
*(*uint8)(v.val) = uint8(x)
case Uint16:
*(*uint16)(iv.addr) = uint16(x)
*(*uint16)(v.val) = uint16(x)
case Uint32:
*(*uint32)(iv.addr) = uint32(x)
*(*uint32)(v.val) = uint32(x)
case Uint64:
*(*uint64)(iv.addr) = x
*(*uint64)(v.val) = x
case Uintptr:
*(*uintptr)(iv.addr) = uintptr(x)
*(*uintptr)(v.val) = uintptr(x)
}
}
// SetPointer sets the unsafe.Pointer value v to x.
// It panics if v's Kind is not UnsafePointer.
func (v Value) SetPointer(x unsafe.Pointer) {
iv := v.internal()
iv.mustBeAssignable()
iv.mustBe(UnsafePointer)
*(*unsafe.Pointer)(iv.addr) = x
v.mustBeAssignable()
v.mustBe(UnsafePointer)
*(*unsafe.Pointer)(v.val) = x
}
// SetString sets v's underlying value to x.
// It panics if v's Kind is not String or if CanSet() is false.
func (v Value) SetString(x string) {
iv := v.internal()
iv.mustBeAssignable()
iv.mustBe(String)
*(*string)(iv.addr) = x
v.mustBeAssignable()
v.mustBe(String)
*(*string)(v.val) = x
}
// Slice returns a slice of v.
// It panics if v's Kind is not Array or Slice.
func (v Value) Slice(beg, end int) Value {
iv := v.internal()
if iv.kind != Array && iv.kind != Slice {
panic(&ValueError{"reflect.Value.Slice", iv.kind})
}
cap := v.Cap()
if beg < 0 || end < beg || end > cap {
panic("reflect.Value.Slice: slice index out of bounds")
}
var typ Type
var base uintptr
switch iv.kind {
var (
cap int
typ *sliceType
base unsafe.Pointer
)
switch k := v.kind(); k {
default:
panic(&ValueError{"reflect.Value.Slice", k})
case Array:
if iv.flag&flagAddr == 0 {
if v.flag&flagAddr == 0 {
panic("reflect.Value.Slice: slice of unaddressable array")
}
typ = toType((*arrayType)(unsafe.Pointer(iv.typ)).slice)
base = uintptr(iv.addr)
tt := (*arrayType)(unsafe.Pointer(v.typ))
cap = int(tt.len)
typ = (*sliceType)(unsafe.Pointer(toCommonType(tt.slice)))
base = v.val
case Slice:
typ = iv.typ.toType()
base = (*SliceHeader)(iv.addr).Data
typ = (*sliceType)(unsafe.Pointer(v.typ))
s := (*SliceHeader)(v.val)
base = unsafe.Pointer(s.Data)
cap = s.Cap
}
if beg < 0 || end < beg || end > cap {
panic("reflect.Value.Slice: slice index out of bounds")
}
// Declare slice so that gc can see the base pointer in it.
......@@ -1430,11 +1354,12 @@ func (v Value) Slice(beg, end int) Value {
// Reinterpret as *SliceHeader to edit.
s := (*SliceHeader)(unsafe.Pointer(&x))
s.Data = base + uintptr(beg)*typ.Elem().Size()
s.Data = uintptr(base) + uintptr(beg)*toCommonType(typ.elem).Size()
s.Len = end - beg
s.Cap = end - beg
return valueFromAddr(iv.flag&flagRO, typ, unsafe.Pointer(&x))
fl := v.flag&flagRO | flagIndir | flag(Slice)<<flagKindShift
return Value{typ.common(), unsafe.Pointer(&x), fl}
}
// String returns the string v's underlying value, as a string.
......@@ -1442,16 +1367,15 @@ func (v Value) Slice(beg, end int) Value {
// Unlike the other getters, it does not panic if v's Kind is not String.
// Instead, it returns a string of the form "<T value>" where T is v's type.
func (v Value) String() string {
iv := v.internal()
switch iv.kind {
switch k := v.kind(); k {
case Invalid:
return "<invalid Value>"
case String:
return *(*string)(iv.addr)
return *(*string)(v.val)
}
// If you call String on a reflect.Value of other type, it's better to
// print something than to panic. Useful in debugging.
return "<" + iv.typ.String() + " Value>"
return "<" + v.typ.String() + " Value>"
}
// TryRecv attempts to receive a value from the channel v but will not block.
......@@ -1460,10 +1384,9 @@ func (v Value) String() string {
// The boolean ok is true if the value x corresponds to a send
// on the channel, false if it is a zero value received because the channel is closed.
func (v Value) TryRecv() (x Value, ok bool) {
iv := v.internal()
iv.mustBe(Chan)
iv.mustBeExported()
return iv.recv(true)
v.mustBe(Chan)
v.mustBeExported()
return v.recv(true)
}
// TrySend attempts to send x on the channel v but will not block.
......@@ -1471,57 +1394,83 @@ func (v Value) TryRecv() (x Value, ok bool) {
// It returns true if the value was sent, false otherwise.
// As in Go, x's value must be assignable to the channel's element type.
func (v Value) TrySend(x Value) bool {
iv := v.internal()
iv.mustBe(Chan)
iv.mustBeExported()
return iv.send(x, true)
v.mustBe(Chan)
v.mustBeExported()
return v.send(x, true)
}
// Type returns v's type.
func (v Value) Type() Type {
t := v.internal().typ
if t == nil {
f := v.flag
if f == 0 {
panic(&ValueError{"reflect.Value.Type", Invalid})
}
return t.toType()
if f&flagMethod == 0 {
// Easy case
return v.typ
}
// Method value.
// v.typ describes the receiver, not the method type.
i := int(v.flag) >> flagMethodShift
if v.typ.Kind() == Interface {
// Method on interface.
tt := (*interfaceType)(unsafe.Pointer(v.typ))
if i < 0 || i >= len(tt.methods) {
panic("reflect: broken Value")
}
m := &tt.methods[i]
return toCommonType(m.typ)
}
// Method on concrete type.
ut := v.typ.uncommon()
if ut == nil || i < 0 || i >= len(ut.methods) {
panic("reflect: broken Value")
}
m := &ut.methods[i]
return toCommonType(m.mtyp)
}
// Uint returns v's underlying value, as a uint64.
// It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64.
func (v Value) Uint() uint64 {
iv := v.internal()
switch iv.kind {
k := v.kind()
var p unsafe.Pointer
if v.flag&flagIndir != 0 {
p = v.val
} else {
// The escape analysis is good enough that &v.val
// does not trigger a heap allocation.
p = unsafe.Pointer(&v.val)
}
switch k {
case Uint:
return uint64(*(*uint)(unsafe.Pointer(&iv.word)))
return uint64(*(*uint)(p))
case Uint8:
return uint64(*(*uint8)(unsafe.Pointer(&iv.word)))
return uint64(*(*uint8)(p))
case Uint16:
return uint64(*(*uint16)(unsafe.Pointer(&iv.word)))
return uint64(*(*uint16)(p))
case Uint32:
return uint64(*(*uint32)(unsafe.Pointer(&iv.word)))
case Uintptr:
return uint64(*(*uintptr)(unsafe.Pointer(&iv.word)))
return uint64(*(*uint32)(p))
case Uint64:
if iv.addr == nil {
return *(*uint64)(unsafe.Pointer(&iv.word))
}
return *(*uint64)(iv.addr)
return uint64(*(*uint64)(p))
case Uintptr:
return uint64(*(*uintptr)(p))
}
panic(&ValueError{"reflect.Value.Uint", iv.kind})
panic(&ValueError{"reflect.Value.Uint", k})
}
// UnsafeAddr returns a pointer to v's data.
// It is for advanced clients that also import the "unsafe" package.
// It panics if v is not addressable.
func (v Value) UnsafeAddr() uintptr {
iv := v.internal()
if iv.kind == Invalid {
panic(&ValueError{"reflect.Value.UnsafeAddr", iv.kind})
if v.typ == nil {
panic(&ValueError{"reflect.Value.UnsafeAddr", Invalid})
}
if iv.flag&flagAddr == 0 {
if v.flag&flagAddr == 0 {
panic("reflect.Value.UnsafeAddr of unaddressable value")
}
return uintptr(iv.addr)
return uintptr(v.val)
}
// StringHeader is the runtime representation of a string.
......@@ -1541,7 +1490,7 @@ type SliceHeader struct {
func typesMustMatch(what string, t1, t2 Type) {
if t1 != t2 {
panic("reflect: " + what + ": " + t1.String() + " != " + t2.String())
panic(what + ": " + t1.String() + " != " + t2.String())
}
}
......@@ -1576,7 +1525,7 @@ func grow(s Value, extra int) (Value, int, int) {
// Append appends the values x to a slice s and returns the resulting slice.
// As in Go, each x's value must be assignable to the slice's element type.
func Append(s Value, x ...Value) Value {
s.internal().mustBe(Slice)
s.mustBe(Slice)
s, i0, i1 := grow(s, len(x))
for i, j := i0, 0; i < i1; i, j = i+1, j+1 {
s.Index(i).Set(x[j])
......@@ -1587,8 +1536,8 @@ func Append(s Value, x ...Value) Value {
// AppendSlice appends a slice t to a slice s and returns the resulting slice.
// The slices s and t must have the same element type.
func AppendSlice(s, t Value) Value {
s.internal().mustBe(Slice)
t.internal().mustBe(Slice)
s.mustBe(Slice)
t.mustBe(Slice)
typesMustMatch("reflect.AppendSlice", s.Type().Elem(), t.Type().Elem())
s, i0, i1 := grow(s, t.Len())
Copy(s.Slice(i0, i1), t)
......@@ -1601,23 +1550,23 @@ func AppendSlice(s, t Value) Value {
// Dst and src each must have kind Slice or Array, and
// dst and src must have the same element type.
func Copy(dst, src Value) int {
idst := dst.internal()
isrc := src.internal()
if idst.kind != Array && idst.kind != Slice {
panic(&ValueError{"reflect.Copy", idst.kind})
dk := dst.kind()
if dk != Array && dk != Slice {
panic(&ValueError{"reflect.Copy", dk})
}
if idst.kind == Array {
idst.mustBeAssignable()
if dk == Array {
dst.mustBeAssignable()
}
idst.mustBeExported()
if isrc.kind != Array && isrc.kind != Slice {
panic(&ValueError{"reflect.Copy", isrc.kind})
dst.mustBeExported()
sk := src.kind()
if sk != Array && sk != Slice {
panic(&ValueError{"reflect.Copy", sk})
}
isrc.mustBeExported()
src.mustBeExported()
de := idst.typ.Elem()
se := isrc.typ.Elem()
de := dst.typ.Elem()
se := src.typ.Elem()
typesMustMatch("reflect.Copy", de, se)
n := dst.Len()
......@@ -1627,7 +1576,7 @@ func Copy(dst, src Value) int {
// If sk is an in-line array, cannot take its address.
// Instead, copy element by element.
if isrc.addr == nil {
if src.flag&flagIndir == 0 {
for i := 0; i < n; i++ {
dst.Index(i).Set(src.Index(i))
}
......@@ -1636,15 +1585,15 @@ func Copy(dst, src Value) int {
// Copy via memmove.
var da, sa unsafe.Pointer
if idst.kind == Array {
da = idst.addr
if dk == Array {
da = dst.val
} else {
da = unsafe.Pointer((*SliceHeader)(idst.addr).Data)
da = unsafe.Pointer((*SliceHeader)(dst.val).Data)
}
if isrc.kind == Array {
sa = isrc.addr
if sk == Array {
sa = src.val
} else {
sa = unsafe.Pointer((*SliceHeader)(isrc.addr).Data)
sa = unsafe.Pointer((*SliceHeader)(src.val).Data)
}
memmove(da, sa, uintptr(n)*de.Size())
return n
......@@ -1658,7 +1607,7 @@ func Copy(dst, src Value) int {
// for the specified slice type, length, and capacity.
func MakeSlice(typ Type, len, cap int) Value {
if typ.Kind() != Slice {
panic("reflect: MakeSlice of non-slice type")
panic("reflect.MakeSlice of non-slice type")
}
// Declare slice so that gc can see the base pointer in it.
......@@ -1670,31 +1619,31 @@ func MakeSlice(typ Type, len, cap int) Value {
s.Len = len
s.Cap = cap
return valueFromAddr(0, typ, unsafe.Pointer(&x))
return Value{typ.common(), unsafe.Pointer(&x), flagIndir | flag(Slice)<<flagKindShift}
}
// MakeChan creates a new channel with the specified type and buffer size.
func MakeChan(typ Type, buffer int) Value {
if typ.Kind() != Chan {
panic("reflect: MakeChan of non-chan type")
panic("reflect.MakeChan of non-chan type")
}
if buffer < 0 {
panic("MakeChan: negative buffer size")
panic("reflect.MakeChan: negative buffer size")
}
if typ.ChanDir() != BothDir {
panic("MakeChan: unidirectional channel type")
panic("reflect.MakeChan: unidirectional channel type")
}
ch := makechan(typ.runtimeType(), uint32(buffer))
return valueFromIword(0, typ, ch)
return Value{typ.common(), unsafe.Pointer(ch), flag(Chan) << flagKindShift}
}
// MakeMap creates a new map of the specified type.
func MakeMap(typ Type) Value {
if typ.Kind() != Map {
panic("reflect: MakeMap of non-map type")
panic("reflect.MakeMap of non-map type")
}
m := makemap(typ.runtimeType())
return valueFromIword(0, typ, m)
return Value{typ.common(), unsafe.Pointer(m), flag(Map) << flagKindShift}
}
// Indirect returns the value that v points to.
......@@ -1724,7 +1673,12 @@ func ValueOf(i interface{}) Value {
// For an interface value with the noAddr bit set,
// the representation is identical to an empty interface.
eface := *(*emptyInterface)(unsafe.Pointer(&i))
return packValue(0, eface.typ, eface.word)
typ := toCommonType(eface.typ)
fl := flag(typ.Kind()) << flagKindShift
if typ.size > ptrSize {
fl |= flagIndir
}
return Value{typ, unsafe.Pointer(eface.word), fl}
}
// Zero returns a Value representing a zero value for the specified type.
......@@ -1735,10 +1689,12 @@ func Zero(typ Type) Value {
if typ == nil {
panic("reflect: Zero(nil)")
}
if typ.Size() <= ptrSize {
return valueFromIword(0, typ, 0)
t := typ.common()
fl := flag(t.Kind()) << flagKindShift
if t.size <= ptrSize {
return Value{t, nil, fl}
}
return valueFromAddr(0, typ, unsafe.New(typ))
return Value{t, unsafe.New(typ), fl | flagIndir}
}
// New returns a Value representing a pointer to a new zero value
......@@ -1748,40 +1704,42 @@ func New(typ Type) Value {
panic("reflect: New(nil)")
}
ptr := unsafe.New(typ)
return valueFromIword(0, PtrTo(typ), iword(ptr))
fl := flag(Ptr) << flagKindShift
return Value{typ.common().ptrTo(), ptr, fl}
}
// convertForAssignment
func convertForAssignment(what string, addr unsafe.Pointer, dst Type, iv internalValue) internalValue {
if iv.method {
panic(what + ": cannot assign method value to type " + dst.String())
// assignTo returns a value v that can be assigned directly to typ.
// It panics if v is not assignable to typ.
// For a conversion to an interface type, target is a suggested scratch space to use.
func (v Value) assignTo(context string, dst *commonType, target *interface{}) Value {
if v.flag&flagMethod != 0 {
panic(context + ": cannot assign method value to type " + dst.String())
}
dst1 := dst.(*commonType)
if directlyAssignable(dst1, iv.typ) {
switch {
case directlyAssignable(dst, v.typ):
// Overwrite type so that they match.
// Same memory layout, so no harm done.
iv.typ = dst1
return iv
}
if implements(dst1, iv.typ) {
if addr == nil {
addr = unsafe.Pointer(new(interface{}))
v.typ = dst
fl := v.flag & (flagRO | flagAddr | flagIndir)
fl |= flag(dst.Kind()) << flagKindShift
return Value{dst, v.val, fl}
case implements(dst, v.typ):
if target == nil {
target = new(interface{})
}
x := iv.valueInterface(false)
x := valueInterface(v, false)
if dst.NumMethod() == 0 {
*(*interface{})(addr) = x
*target = x
} else {
ifaceE2I(dst1.runtimeType(), x, addr)
ifaceE2I(dst.runtimeType(), x, unsafe.Pointer(target))
}
iv.addr = addr
iv.word = iword(addr)
iv.typ = dst1
return iv
return Value{dst, unsafe.Pointer(target), flagIndir | flag(Interface)<<flagKindShift}
}
// Failed.
panic(what + ": value of type " + iv.typ.String() + " is not assignable to type " + dst.String())
panic(context + ": value of type " + v.typ.String() + " is not assignable to type " + dst.String())
}
// implemented in ../pkg/runtime
......@@ -1792,7 +1750,7 @@ func chanrecv(t *runtime.Type, ch iword, nb bool) (val iword, selected, received
func chansend(t *runtime.Type, ch iword, val iword, nb bool) bool
func makechan(typ *runtime.Type, size uint32) (ch iword)
func makemap(t *runtime.Type) iword
func makemap(t *runtime.Type) (m iword)
func mapaccess(t *runtime.Type, m iword, key iword) (val iword, ok bool)
func mapassign(t *runtime.Type, m iword, key, val iword, ok bool)
func mapiterinit(t *runtime.Type, m iword) *byte
......@@ -1802,3 +1760,17 @@ func maplen(m iword) int32
func call(fn, arg unsafe.Pointer, n uint32)
func ifaceE2I(t *runtime.Type, src interface{}, dst unsafe.Pointer)
// Dummy annotation marking that the value x escapes,
// for use in cases where the reflect code is so clever that
// the compiler cannot follow.
func escapes(x interface{}) {
if dummy.b {
dummy.x = x
}
}
var dummy struct {
b bool
x interface{}
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment