Commit b30e1d72 authored by Josh Bleecher Snyder's avatar Josh Bleecher Snyder

cmd/compile: consolidate alg code

Pull all alg-related code into its own file.
subr.go is a Hobbesian Leviathan.

100% code movement. Cleanup and improvements to follow.

Change-Id: Ib9c8f66563fdda90c6e8cf646d366a9487a4648d
Reviewed-on: https://go-review.googlesource.com/19980Reviewed-by: default avatarDave Cheney <dave@cheney.net>
Run-TryBot: Dave Cheney <dave@cheney.net>
Reviewed-by: default avatarBrad Fitzpatrick <bradfitz@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
parent f5f8b384
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gc
import "fmt"
const (
// These values are known by runtime.
ANOEQ = iota
AMEM0
AMEM8
AMEM16
AMEM32
AMEM64
AMEM128
ASTRING
AINTER
ANILINTER
AFLOAT32
AFLOAT64
ACPLX64
ACPLX128
AMEM = 100
)
func algtype(t *Type) int {
a := algtype1(t, nil)
if a == AMEM {
switch t.Width {
case 0:
return AMEM0
case 1:
return AMEM8
case 2:
return AMEM16
case 4:
return AMEM32
case 8:
return AMEM64
case 16:
return AMEM128
}
}
return a
}
func algtype1(t *Type, bad **Type) int {
if bad != nil {
*bad = nil
}
if t.Broke {
return AMEM
}
if t.Noalg {
return ANOEQ
}
switch t.Etype {
// will be defined later.
case TANY, TFORW:
*bad = t
return -1
case TINT8,
TUINT8,
TINT16,
TUINT16,
TINT32,
TUINT32,
TINT64,
TUINT64,
TINT,
TUINT,
TUINTPTR,
TBOOL,
TPTR32,
TPTR64,
TCHAN,
TUNSAFEPTR:
return AMEM
case TFUNC, TMAP:
if bad != nil {
*bad = t
}
return ANOEQ
case TFLOAT32:
return AFLOAT32
case TFLOAT64:
return AFLOAT64
case TCOMPLEX64:
return ACPLX64
case TCOMPLEX128:
return ACPLX128
case TSTRING:
return ASTRING
case TINTER:
if isnilinter(t) {
return ANILINTER
}
return AINTER
case TARRAY:
if Isslice(t) {
if bad != nil {
*bad = t
}
return ANOEQ
}
a := algtype1(t.Type, bad)
if a == ANOEQ || a == AMEM {
if a == ANOEQ && bad != nil {
*bad = t
}
return a
}
switch t.Bound {
case 0:
// We checked above that the element type is comparable.
return AMEM
case 1:
// Single-element array is same as its lone element.
return a
}
return -1 // needs special compare
case TSTRUCT:
if t.Type != nil && t.Type.Down == nil && !isblanksym(t.Type.Sym) {
// One-field struct is same as that one field alone.
return algtype1(t.Type.Type, bad)
}
ret := AMEM
var a int
for t1 := t.Type; t1 != nil; t1 = t1.Down {
// All fields must be comparable.
a = algtype1(t1.Type, bad)
if a == ANOEQ {
return ANOEQ
}
// Blank fields, padded fields, fields with non-memory
// equality need special compare.
if a != AMEM || isblanksym(t1.Sym) || ispaddedfield(t1, t.Width) {
ret = -1
continue
}
}
return ret
}
Fatalf("algtype1: unexpected type %v", t)
return 0
}
// Generate a helper function to compute the hash of a value of type t.
func genhash(sym *Sym, t *Type) {
if Debug['r'] != 0 {
fmt.Printf("genhash %v %v\n", sym, t)
}
lineno = 1 // less confusing than end of input
dclcontext = PEXTERN
markdcl()
// func sym(p *T, h uintptr) uintptr
fn := Nod(ODCLFUNC, nil, nil)
fn.Func.Nname = newname(sym)
fn.Func.Nname.Class = PFUNC
tfn := Nod(OTFUNC, nil, nil)
fn.Func.Nname.Name.Param.Ntype = tfn
n := Nod(ODCLFIELD, newname(Lookup("p")), typenod(Ptrto(t)))
tfn.List = list(tfn.List, n)
np := n.Left
n = Nod(ODCLFIELD, newname(Lookup("h")), typenod(Types[TUINTPTR]))
tfn.List = list(tfn.List, n)
nh := n.Left
n = Nod(ODCLFIELD, nil, typenod(Types[TUINTPTR])) // return value
tfn.Rlist = list(tfn.Rlist, n)
funchdr(fn)
typecheck(&fn.Func.Nname.Name.Param.Ntype, Etype)
// genhash is only called for types that have equality but
// cannot be handled by the standard algorithms,
// so t must be either an array or a struct.
switch t.Etype {
default:
Fatalf("genhash %v", t)
case TARRAY:
if Isslice(t) {
Fatalf("genhash %v", t)
}
// An array of pure memory would be handled by the
// standard algorithm, so the element type must not be
// pure memory.
hashel := hashfor(t.Type)
n := Nod(ORANGE, nil, Nod(OIND, np, nil))
ni := newname(Lookup("i"))
ni.Type = Types[TINT]
n.List = list1(ni)
n.Colas = true
colasdefn(n.List, n)
ni = n.List.N
// h = hashel(&p[i], h)
call := Nod(OCALL, hashel, nil)
nx := Nod(OINDEX, np, ni)
nx.Bounded = true
na := Nod(OADDR, nx, nil)
na.Etype = 1 // no escape to heap
call.List = list(call.List, na)
call.List = list(call.List, nh)
n.Nbody = list(n.Nbody, Nod(OAS, nh, call))
fn.Nbody = list(fn.Nbody, n)
// Walk the struct using memhash for runs of AMEM
// and calling specific hash functions for the others.
case TSTRUCT:
var call *Node
var nx *Node
var na *Node
var hashel *Node
t1 := t.Type
for {
first, size, next := memrun(t, t1)
t1 = next
// Run memhash for fields up to this one.
if first != nil {
hashel = hashmem(first.Type)
// h = hashel(&p.first, size, h)
call = Nod(OCALL, hashel, nil)
nx = Nod(OXDOT, np, newname(first.Sym)) // TODO: fields from other packages?
na = Nod(OADDR, nx, nil)
na.Etype = 1 // no escape to heap
call.List = list(call.List, na)
call.List = list(call.List, nh)
call.List = list(call.List, Nodintconst(size))
fn.Nbody = list(fn.Nbody, Nod(OAS, nh, call))
}
if t1 == nil {
break
}
if isblanksym(t1.Sym) {
t1 = t1.Down
continue
}
if algtype1(t1.Type, nil) == AMEM {
// Our memory run might have been stopped by padding or a blank field.
// If the next field is memory-ish, it could be the start of a new run.
continue
}
hashel = hashfor(t1.Type)
call = Nod(OCALL, hashel, nil)
nx = Nod(OXDOT, np, newname(t1.Sym)) // TODO: fields from other packages?
na = Nod(OADDR, nx, nil)
na.Etype = 1 // no escape to heap
call.List = list(call.List, na)
call.List = list(call.List, nh)
fn.Nbody = list(fn.Nbody, Nod(OAS, nh, call))
t1 = t1.Down
}
}
r := Nod(ORETURN, nil, nil)
r.List = list(r.List, nh)
fn.Nbody = list(fn.Nbody, r)
if Debug['r'] != 0 {
dumplist("genhash body", fn.Nbody)
}
funcbody(fn)
Curfn = fn
fn.Func.Dupok = true
typecheck(&fn, Etop)
typechecklist(fn.Nbody, Etop)
Curfn = nil
// Disable safemode while compiling this code: the code we
// generate internally can refer to unsafe.Pointer.
// In this case it can happen if we need to generate an ==
// for a struct containing a reflect.Value, which itself has
// an unexported field of type unsafe.Pointer.
old_safemode := safemode
safemode = 0
funccompile(fn)
safemode = old_safemode
}
func hashfor(t *Type) *Node {
var sym *Sym
a := algtype1(t, nil)
switch a {
case AMEM:
Fatalf("hashfor with AMEM type")
case AINTER:
sym = Pkglookup("interhash", Runtimepkg)
case ANILINTER:
sym = Pkglookup("nilinterhash", Runtimepkg)
case ASTRING:
sym = Pkglookup("strhash", Runtimepkg)
case AFLOAT32:
sym = Pkglookup("f32hash", Runtimepkg)
case AFLOAT64:
sym = Pkglookup("f64hash", Runtimepkg)
case ACPLX64:
sym = Pkglookup("c64hash", Runtimepkg)
case ACPLX128:
sym = Pkglookup("c128hash", Runtimepkg)
default:
sym = typesymprefix(".hash", t)
}
n := newname(sym)
n.Class = PFUNC
tfn := Nod(OTFUNC, nil, nil)
tfn.List = list(tfn.List, Nod(ODCLFIELD, nil, typenod(Ptrto(t))))
tfn.List = list(tfn.List, Nod(ODCLFIELD, nil, typenod(Types[TUINTPTR])))
tfn.Rlist = list(tfn.Rlist, Nod(ODCLFIELD, nil, typenod(Types[TUINTPTR])))
typecheck(&tfn, Etype)
n.Type = tfn.Type
return n
}
// geneq generates a helper function to
// check equality of two values of type t.
func geneq(sym *Sym, t *Type) {
if Debug['r'] != 0 {
fmt.Printf("geneq %v %v\n", sym, t)
}
lineno = 1 // less confusing than end of input
dclcontext = PEXTERN
markdcl()
// func sym(p, q *T) bool
fn := Nod(ODCLFUNC, nil, nil)
fn.Func.Nname = newname(sym)
fn.Func.Nname.Class = PFUNC
tfn := Nod(OTFUNC, nil, nil)
fn.Func.Nname.Name.Param.Ntype = tfn
n := Nod(ODCLFIELD, newname(Lookup("p")), typenod(Ptrto(t)))
tfn.List = list(tfn.List, n)
np := n.Left
n = Nod(ODCLFIELD, newname(Lookup("q")), typenod(Ptrto(t)))
tfn.List = list(tfn.List, n)
nq := n.Left
n = Nod(ODCLFIELD, nil, typenod(Types[TBOOL]))
tfn.Rlist = list(tfn.Rlist, n)
funchdr(fn)
// geneq is only called for types that have equality but
// cannot be handled by the standard algorithms,
// so t must be either an array or a struct.
switch t.Etype {
default:
Fatalf("geneq %v", t)
case TARRAY:
if Isslice(t) {
Fatalf("geneq %v", t)
}
// An array of pure memory would be handled by the
// standard memequal, so the element type must not be
// pure memory. Even if we unrolled the range loop,
// each iteration would be a function call, so don't bother
// unrolling.
nrange := Nod(ORANGE, nil, Nod(OIND, np, nil))
ni := newname(Lookup("i"))
ni.Type = Types[TINT]
nrange.List = list1(ni)
nrange.Colas = true
colasdefn(nrange.List, nrange)
ni = nrange.List.N
// if p[i] != q[i] { return false }
nx := Nod(OINDEX, np, ni)
nx.Bounded = true
ny := Nod(OINDEX, nq, ni)
ny.Bounded = true
nif := Nod(OIF, nil, nil)
nif.Left = Nod(ONE, nx, ny)
r := Nod(ORETURN, nil, nil)
r.List = list(r.List, Nodbool(false))
nif.Nbody = list(nif.Nbody, r)
nrange.Nbody = list(nrange.Nbody, nif)
fn.Nbody = list(fn.Nbody, nrange)
// return true
ret := Nod(ORETURN, nil, nil)
ret.List = list(ret.List, Nodbool(true))
fn.Nbody = list(fn.Nbody, ret)
// Walk the struct using memequal for runs of AMEM
// and calling specific equality tests for the others.
// Skip blank-named fields.
case TSTRUCT:
var conjuncts []*Node
t1 := t.Type
for {
first, size, next := memrun(t, t1)
t1 = next
// Run memequal for fields up to this one.
// TODO(rsc): All the calls to newname are wrong for
// cross-package unexported fields.
if first != nil {
if first.Down == t1 {
conjuncts = append(conjuncts, eqfield(np, nq, newname(first.Sym)))
} else if first.Down.Down == t1 {
conjuncts = append(conjuncts, eqfield(np, nq, newname(first.Sym)))
first = first.Down
if !isblanksym(first.Sym) {
conjuncts = append(conjuncts, eqfield(np, nq, newname(first.Sym)))
}
} else {
// More than two fields: use memequal.
conjuncts = append(conjuncts, eqmem(np, nq, newname(first.Sym), size))
}
}
if t1 == nil {
break
}
if isblanksym(t1.Sym) {
t1 = t1.Down
continue
}
if algtype1(t1.Type, nil) == AMEM {
// Our memory run might have been stopped by padding or a blank field.
// If the next field is memory-ish, it could be the start of a new run.
continue
}
// Check this field, which is not just memory.
conjuncts = append(conjuncts, eqfield(np, nq, newname(t1.Sym)))
t1 = t1.Down
}
var and *Node
switch len(conjuncts) {
case 0:
and = Nodbool(true)
case 1:
and = conjuncts[0]
default:
and = Nod(OANDAND, conjuncts[0], conjuncts[1])
for _, conjunct := range conjuncts[2:] {
and = Nod(OANDAND, and, conjunct)
}
}
ret := Nod(ORETURN, nil, nil)
ret.List = list(ret.List, and)
fn.Nbody = list(fn.Nbody, ret)
}
if Debug['r'] != 0 {
dumplist("geneq body", fn.Nbody)
}
funcbody(fn)
Curfn = fn
fn.Func.Dupok = true
typecheck(&fn, Etop)
typechecklist(fn.Nbody, Etop)
Curfn = nil
// Disable safemode while compiling this code: the code we
// generate internally can refer to unsafe.Pointer.
// In this case it can happen if we need to generate an ==
// for a struct containing a reflect.Value, which itself has
// an unexported field of type unsafe.Pointer.
old_safemode := safemode
safemode = 0
// Disable checknils while compiling this code.
// We are comparing a struct or an array,
// neither of which can be nil, and our comparisons
// are shallow.
Disable_checknil++
funccompile(fn)
safemode = old_safemode
Disable_checknil--
}
// eqfield returns the node
// p.field == q.field
func eqfield(p *Node, q *Node, field *Node) *Node {
nx := Nod(OXDOT, p, field)
ny := Nod(OXDOT, q, field)
ne := Nod(OEQ, nx, ny)
return ne
}
// eqmem returns the node
// memequal(&p.field, &q.field [, size])
func eqmem(p *Node, q *Node, field *Node, size int64) *Node {
var needsize int
nx := Nod(OADDR, Nod(OXDOT, p, field), nil)
nx.Etype = 1 // does not escape
ny := Nod(OADDR, Nod(OXDOT, q, field), nil)
ny.Etype = 1 // does not escape
typecheck(&nx, Erv)
typecheck(&ny, Erv)
call := Nod(OCALL, eqmemfunc(size, nx.Type.Type, &needsize), nil)
call.List = list(call.List, nx)
call.List = list(call.List, ny)
if needsize != 0 {
call.List = list(call.List, Nodintconst(size))
}
return call
}
func eqmemfunc(size int64, type_ *Type, needsize *int) *Node {
var fn *Node
switch size {
default:
fn = syslook("memequal", 1)
*needsize = 1
case 1, 2, 4, 8, 16:
buf := fmt.Sprintf("memequal%d", int(size)*8)
fn = syslook(buf, 1)
*needsize = 0
}
substArgTypes(fn, type_, type_)
return fn
}
// memrun finds runs of struct fields for which memory-only algs are appropriate.
// t is the parent struct type, and field is the field at which to start.
// first is the first field in the memory run.
// size is the length in bytes of the memory included in the run.
// next is the next field after the memory run.
func memrun(t *Type, field *Type) (first *Type, size int64, next *Type) {
var offend int64
for {
if field == nil || algtype1(field.Type, nil) != AMEM || isblanksym(field.Sym) {
break
}
offend = field.Width + field.Type.Width
if first == nil {
first = field
}
// If it's a memory field but it's padded, stop here.
if ispaddedfield(field, t.Width) {
field = field.Down
break
}
field = field.Down
}
if first != nil {
size = offend - first.Width // first.Width is offset
}
return first, size, field
}
// ispaddedfield reports whether the given field
// is followed by padding. For the case where t is
// the last field, total gives the size of the enclosing struct.
func ispaddedfield(t *Type, total int64) bool {
if t.Etype != TFIELD {
Fatalf("ispaddedfield called non-field %v", t)
}
if t.Down == nil {
return t.Width+t.Type.Width != total
}
return t.Width+t.Type.Width != t.Down.Width
}
...@@ -26,25 +26,6 @@ const ( ...@@ -26,25 +26,6 @@ const (
MaxStackVarSize = 10 * 1024 * 1024 MaxStackVarSize = 10 * 1024 * 1024
) )
const (
// These values are known by runtime.
ANOEQ = iota
AMEM0
AMEM8
AMEM16
AMEM32
AMEM64
AMEM128
ASTRING
AINTER
ANILINTER
AFLOAT32
AFLOAT64
ACPLX64
ACPLX128
AMEM = 100
)
const ( const (
// Maximum size in bits for Mpints before signalling // Maximum size in bits for Mpints before signalling
// overflow and also mantissa precision for Mpflts. // overflow and also mantissa precision for Mpflts.
......
...@@ -348,162 +348,6 @@ func saveorignode(n *Node) { ...@@ -348,162 +348,6 @@ func saveorignode(n *Node) {
n.Orig = norig n.Orig = norig
} }
// ispaddedfield reports whether the given field
// is followed by padding. For the case where t is
// the last field, total gives the size of the enclosing struct.
func ispaddedfield(t *Type, total int64) bool {
if t.Etype != TFIELD {
Fatalf("ispaddedfield called non-field %v", t)
}
if t.Down == nil {
return t.Width+t.Type.Width != total
}
return t.Width+t.Type.Width != t.Down.Width
}
func algtype1(t *Type, bad **Type) int {
if bad != nil {
*bad = nil
}
if t.Broke {
return AMEM
}
if t.Noalg {
return ANOEQ
}
switch t.Etype {
// will be defined later.
case TANY, TFORW:
*bad = t
return -1
case TINT8,
TUINT8,
TINT16,
TUINT16,
TINT32,
TUINT32,
TINT64,
TUINT64,
TINT,
TUINT,
TUINTPTR,
TBOOL,
TPTR32,
TPTR64,
TCHAN,
TUNSAFEPTR:
return AMEM
case TFUNC, TMAP:
if bad != nil {
*bad = t
}
return ANOEQ
case TFLOAT32:
return AFLOAT32
case TFLOAT64:
return AFLOAT64
case TCOMPLEX64:
return ACPLX64
case TCOMPLEX128:
return ACPLX128
case TSTRING:
return ASTRING
case TINTER:
if isnilinter(t) {
return ANILINTER
}
return AINTER
case TARRAY:
if Isslice(t) {
if bad != nil {
*bad = t
}
return ANOEQ
}
a := algtype1(t.Type, bad)
if a == ANOEQ || a == AMEM {
if a == ANOEQ && bad != nil {
*bad = t
}
return a
}
switch t.Bound {
case 0:
// We checked above that the element type is comparable.
return AMEM
case 1:
// Single-element array is same as its lone element.
return a
}
return -1 // needs special compare
case TSTRUCT:
if t.Type != nil && t.Type.Down == nil && !isblanksym(t.Type.Sym) {
// One-field struct is same as that one field alone.
return algtype1(t.Type.Type, bad)
}
ret := AMEM
var a int
for t1 := t.Type; t1 != nil; t1 = t1.Down {
// All fields must be comparable.
a = algtype1(t1.Type, bad)
if a == ANOEQ {
return ANOEQ
}
// Blank fields, padded fields, fields with non-memory
// equality need special compare.
if a != AMEM || isblanksym(t1.Sym) || ispaddedfield(t1, t.Width) {
ret = -1
continue
}
}
return ret
}
Fatalf("algtype1: unexpected type %v", t)
return 0
}
func algtype(t *Type) int {
a := algtype1(t, nil)
if a == AMEM {
switch t.Width {
case 0:
return AMEM0
case 1:
return AMEM8
case 2:
return AMEM16
case 4:
return AMEM32
case 8:
return AMEM64
case 16:
return AMEM128
}
}
return a
}
func maptype(key *Type, val *Type) *Type { func maptype(key *Type, val *Type) *Type {
if key != nil { if key != nil {
var bad *Type var bad *Type
...@@ -2395,450 +2239,6 @@ func hashmem(t *Type) *Node { ...@@ -2395,450 +2239,6 @@ func hashmem(t *Type) *Node {
return n return n
} }
func hashfor(t *Type) *Node {
var sym *Sym
a := algtype1(t, nil)
switch a {
case AMEM:
Fatalf("hashfor with AMEM type")
case AINTER:
sym = Pkglookup("interhash", Runtimepkg)
case ANILINTER:
sym = Pkglookup("nilinterhash", Runtimepkg)
case ASTRING:
sym = Pkglookup("strhash", Runtimepkg)
case AFLOAT32:
sym = Pkglookup("f32hash", Runtimepkg)
case AFLOAT64:
sym = Pkglookup("f64hash", Runtimepkg)
case ACPLX64:
sym = Pkglookup("c64hash", Runtimepkg)
case ACPLX128:
sym = Pkglookup("c128hash", Runtimepkg)
default:
sym = typesymprefix(".hash", t)
}
n := newname(sym)
n.Class = PFUNC
tfn := Nod(OTFUNC, nil, nil)
tfn.List = list(tfn.List, Nod(ODCLFIELD, nil, typenod(Ptrto(t))))
tfn.List = list(tfn.List, Nod(ODCLFIELD, nil, typenod(Types[TUINTPTR])))
tfn.Rlist = list(tfn.Rlist, Nod(ODCLFIELD, nil, typenod(Types[TUINTPTR])))
typecheck(&tfn, Etype)
n.Type = tfn.Type
return n
}
// Generate a helper function to compute the hash of a value of type t.
func genhash(sym *Sym, t *Type) {
if Debug['r'] != 0 {
fmt.Printf("genhash %v %v\n", sym, t)
}
lineno = 1 // less confusing than end of input
dclcontext = PEXTERN
markdcl()
// func sym(p *T, h uintptr) uintptr
fn := Nod(ODCLFUNC, nil, nil)
fn.Func.Nname = newname(sym)
fn.Func.Nname.Class = PFUNC
tfn := Nod(OTFUNC, nil, nil)
fn.Func.Nname.Name.Param.Ntype = tfn
n := Nod(ODCLFIELD, newname(Lookup("p")), typenod(Ptrto(t)))
tfn.List = list(tfn.List, n)
np := n.Left
n = Nod(ODCLFIELD, newname(Lookup("h")), typenod(Types[TUINTPTR]))
tfn.List = list(tfn.List, n)
nh := n.Left
n = Nod(ODCLFIELD, nil, typenod(Types[TUINTPTR])) // return value
tfn.Rlist = list(tfn.Rlist, n)
funchdr(fn)
typecheck(&fn.Func.Nname.Name.Param.Ntype, Etype)
// genhash is only called for types that have equality but
// cannot be handled by the standard algorithms,
// so t must be either an array or a struct.
switch t.Etype {
default:
Fatalf("genhash %v", t)
case TARRAY:
if Isslice(t) {
Fatalf("genhash %v", t)
}
// An array of pure memory would be handled by the
// standard algorithm, so the element type must not be
// pure memory.
hashel := hashfor(t.Type)
n := Nod(ORANGE, nil, Nod(OIND, np, nil))
ni := newname(Lookup("i"))
ni.Type = Types[TINT]
n.List = list1(ni)
n.Colas = true
colasdefn(n.List, n)
ni = n.List.N
// h = hashel(&p[i], h)
call := Nod(OCALL, hashel, nil)
nx := Nod(OINDEX, np, ni)
nx.Bounded = true
na := Nod(OADDR, nx, nil)
na.Etype = 1 // no escape to heap
call.List = list(call.List, na)
call.List = list(call.List, nh)
n.Nbody = list(n.Nbody, Nod(OAS, nh, call))
fn.Nbody = list(fn.Nbody, n)
// Walk the struct using memhash for runs of AMEM
// and calling specific hash functions for the others.
case TSTRUCT:
var call *Node
var nx *Node
var na *Node
var hashel *Node
t1 := t.Type
for {
first, size, next := memrun(t, t1)
t1 = next
// Run memhash for fields up to this one.
if first != nil {
hashel = hashmem(first.Type)
// h = hashel(&p.first, size, h)
call = Nod(OCALL, hashel, nil)
nx = Nod(OXDOT, np, newname(first.Sym)) // TODO: fields from other packages?
na = Nod(OADDR, nx, nil)
na.Etype = 1 // no escape to heap
call.List = list(call.List, na)
call.List = list(call.List, nh)
call.List = list(call.List, Nodintconst(size))
fn.Nbody = list(fn.Nbody, Nod(OAS, nh, call))
}
if t1 == nil {
break
}
if isblanksym(t1.Sym) {
t1 = t1.Down
continue
}
if algtype1(t1.Type, nil) == AMEM {
// Our memory run might have been stopped by padding or a blank field.
// If the next field is memory-ish, it could be the start of a new run.
continue
}
hashel = hashfor(t1.Type)
call = Nod(OCALL, hashel, nil)
nx = Nod(OXDOT, np, newname(t1.Sym)) // TODO: fields from other packages?
na = Nod(OADDR, nx, nil)
na.Etype = 1 // no escape to heap
call.List = list(call.List, na)
call.List = list(call.List, nh)
fn.Nbody = list(fn.Nbody, Nod(OAS, nh, call))
t1 = t1.Down
}
}
r := Nod(ORETURN, nil, nil)
r.List = list(r.List, nh)
fn.Nbody = list(fn.Nbody, r)
if Debug['r'] != 0 {
dumplist("genhash body", fn.Nbody)
}
funcbody(fn)
Curfn = fn
fn.Func.Dupok = true
typecheck(&fn, Etop)
typechecklist(fn.Nbody, Etop)
Curfn = nil
// Disable safemode while compiling this code: the code we
// generate internally can refer to unsafe.Pointer.
// In this case it can happen if we need to generate an ==
// for a struct containing a reflect.Value, which itself has
// an unexported field of type unsafe.Pointer.
old_safemode := safemode
safemode = 0
funccompile(fn)
safemode = old_safemode
}
// eqfield returns the node
// p.field == q.field
func eqfield(p *Node, q *Node, field *Node) *Node {
nx := Nod(OXDOT, p, field)
ny := Nod(OXDOT, q, field)
ne := Nod(OEQ, nx, ny)
return ne
}
func eqmemfunc(size int64, type_ *Type, needsize *int) *Node {
var fn *Node
switch size {
default:
fn = syslook("memequal", 1)
*needsize = 1
case 1, 2, 4, 8, 16:
buf := fmt.Sprintf("memequal%d", int(size)*8)
fn = syslook(buf, 1)
*needsize = 0
}
substArgTypes(fn, type_, type_)
return fn
}
// eqmem returns the node
// memequal(&p.field, &q.field [, size])
func eqmem(p *Node, q *Node, field *Node, size int64) *Node {
var needsize int
nx := Nod(OADDR, Nod(OXDOT, p, field), nil)
nx.Etype = 1 // does not escape
ny := Nod(OADDR, Nod(OXDOT, q, field), nil)
ny.Etype = 1 // does not escape
typecheck(&nx, Erv)
typecheck(&ny, Erv)
call := Nod(OCALL, eqmemfunc(size, nx.Type.Type, &needsize), nil)
call.List = list(call.List, nx)
call.List = list(call.List, ny)
if needsize != 0 {
call.List = list(call.List, Nodintconst(size))
}
return call
}
// geneq generates a helper function to
// check equality of two values of type t.
func geneq(sym *Sym, t *Type) {
if Debug['r'] != 0 {
fmt.Printf("geneq %v %v\n", sym, t)
}
lineno = 1 // less confusing than end of input
dclcontext = PEXTERN
markdcl()
// func sym(p, q *T) bool
fn := Nod(ODCLFUNC, nil, nil)
fn.Func.Nname = newname(sym)
fn.Func.Nname.Class = PFUNC
tfn := Nod(OTFUNC, nil, nil)
fn.Func.Nname.Name.Param.Ntype = tfn
n := Nod(ODCLFIELD, newname(Lookup("p")), typenod(Ptrto(t)))
tfn.List = list(tfn.List, n)
np := n.Left
n = Nod(ODCLFIELD, newname(Lookup("q")), typenod(Ptrto(t)))
tfn.List = list(tfn.List, n)
nq := n.Left
n = Nod(ODCLFIELD, nil, typenod(Types[TBOOL]))
tfn.Rlist = list(tfn.Rlist, n)
funchdr(fn)
// geneq is only called for types that have equality but
// cannot be handled by the standard algorithms,
// so t must be either an array or a struct.
switch t.Etype {
default:
Fatalf("geneq %v", t)
case TARRAY:
if Isslice(t) {
Fatalf("geneq %v", t)
}
// An array of pure memory would be handled by the
// standard memequal, so the element type must not be
// pure memory. Even if we unrolled the range loop,
// each iteration would be a function call, so don't bother
// unrolling.
nrange := Nod(ORANGE, nil, Nod(OIND, np, nil))
ni := newname(Lookup("i"))
ni.Type = Types[TINT]
nrange.List = list1(ni)
nrange.Colas = true
colasdefn(nrange.List, nrange)
ni = nrange.List.N
// if p[i] != q[i] { return false }
nx := Nod(OINDEX, np, ni)
nx.Bounded = true
ny := Nod(OINDEX, nq, ni)
ny.Bounded = true
nif := Nod(OIF, nil, nil)
nif.Left = Nod(ONE, nx, ny)
r := Nod(ORETURN, nil, nil)
r.List = list(r.List, Nodbool(false))
nif.Nbody = list(nif.Nbody, r)
nrange.Nbody = list(nrange.Nbody, nif)
fn.Nbody = list(fn.Nbody, nrange)
// return true
ret := Nod(ORETURN, nil, nil)
ret.List = list(ret.List, Nodbool(true))
fn.Nbody = list(fn.Nbody, ret)
// Walk the struct using memequal for runs of AMEM
// and calling specific equality tests for the others.
// Skip blank-named fields.
case TSTRUCT:
var conjuncts []*Node
t1 := t.Type
for {
first, size, next := memrun(t, t1)
t1 = next
// Run memequal for fields up to this one.
// TODO(rsc): All the calls to newname are wrong for
// cross-package unexported fields.
if first != nil {
if first.Down == t1 {
conjuncts = append(conjuncts, eqfield(np, nq, newname(first.Sym)))
} else if first.Down.Down == t1 {
conjuncts = append(conjuncts, eqfield(np, nq, newname(first.Sym)))
first = first.Down
if !isblanksym(first.Sym) {
conjuncts = append(conjuncts, eqfield(np, nq, newname(first.Sym)))
}
} else {
// More than two fields: use memequal.
conjuncts = append(conjuncts, eqmem(np, nq, newname(first.Sym), size))
}
}
if t1 == nil {
break
}
if isblanksym(t1.Sym) {
t1 = t1.Down
continue
}
if algtype1(t1.Type, nil) == AMEM {
// Our memory run might have been stopped by padding or a blank field.
// If the next field is memory-ish, it could be the start of a new run.
continue
}
// Check this field, which is not just memory.
conjuncts = append(conjuncts, eqfield(np, nq, newname(t1.Sym)))
t1 = t1.Down
}
var and *Node
switch len(conjuncts) {
case 0:
and = Nodbool(true)
case 1:
and = conjuncts[0]
default:
and = Nod(OANDAND, conjuncts[0], conjuncts[1])
for _, conjunct := range conjuncts[2:] {
and = Nod(OANDAND, and, conjunct)
}
}
ret := Nod(ORETURN, nil, nil)
ret.List = list(ret.List, and)
fn.Nbody = list(fn.Nbody, ret)
}
if Debug['r'] != 0 {
dumplist("geneq body", fn.Nbody)
}
funcbody(fn)
Curfn = fn
fn.Func.Dupok = true
typecheck(&fn, Etop)
typechecklist(fn.Nbody, Etop)
Curfn = nil
// Disable safemode while compiling this code: the code we
// generate internally can refer to unsafe.Pointer.
// In this case it can happen if we need to generate an ==
// for a struct containing a reflect.Value, which itself has
// an unexported field of type unsafe.Pointer.
old_safemode := safemode
safemode = 0
// Disable checknils while compiling this code.
// We are comparing a struct or an array,
// neither of which can be nil, and our comparisons
// are shallow.
Disable_checknil++
funccompile(fn)
safemode = old_safemode
Disable_checknil--
}
// memrun finds runs of struct fields for which memory-only algs are appropriate.
// t is the parent struct type, and field is the field at which to start.
// first is the first field in the memory run.
// size is the length in bytes of the memory included in the run.
// next is the next field after the memory run.
func memrun(t *Type, field *Type) (first *Type, size int64, next *Type) {
var offend int64
for {
if field == nil || algtype1(field.Type, nil) != AMEM || isblanksym(field.Sym) {
break
}
offend = field.Width + field.Type.Width
if first == nil {
first = field
}
// If it's a memory field but it's padded, stop here.
if ispaddedfield(field, t.Width) {
field = field.Down
break
}
field = field.Down
}
if first != nil {
size = offend - first.Width // first.Width is offset
}
return first, size, field
}
func ifacelookdot(s *Sym, t *Type, followptr *bool, ignorecase int) *Type { func ifacelookdot(s *Sym, t *Type, followptr *bool, ignorecase int) *Type {
*followptr = false *followptr = false
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment