Commit b40bd5ef authored by Marcel van Lohuizen's avatar Marcel van Lohuizen Committed by Rob Pike

exp/norm: implementation of decomposition and composing functionality.

forminfo.go:
- Wrappers for table data.
- Per Form dispatch table.
composition.go:
- reorderBuffer type.  Implements decomposition, reordering, and composition.
- Note: decompose and decomposeString fields in formInfo could be replaced by
  a pointer to the trie for the respective form.  The proposed design makes
  testing easier, though.
normalization.go:
- Temporarily added panic("not implemented") methods to make the tests run.
  These will be removed again with the next CL, which will introduce the
  implementation.

R=r, rogpeppe, mpvl, rsc
CC=golang-dev
https://golang.org/cl/4875043
parent 6b5962c2
......@@ -6,6 +6,9 @@ include ../../../Make.inc
TARG=exp/norm
GOFILES=\
composition.go\
forminfo.go\
normalize.go\
tables.go\
trie.go\
......
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package norm
import "utf8"
const (
maxCombiningChars = 30 + 2 // +2 to hold CGJ and Hangul overflow.
maxBackRunes = maxCombiningChars - 1
maxNFCExpansion = 3 // NFC(0x1D160)
maxNFKCExpansion = 18 // NFKC(0xFDFA)
maxRuneSizeInDecomp = 4
// Need to multiply by 2 as we don't reuse byte buffer space for recombining.
maxByteBufferSize = 2 * maxRuneSizeInDecomp * maxCombiningChars // 256
)
// reorderBuffer is used to normalize a single segment. Characters inserted with
// insert() are decomposed and reordered based on CCC. The compose() method can
// be used to recombine characters. Note that the byte buffer does not hold
// the UTF-8 characters in order. Only the rune array is maintained in sorted
// order. flush() writes the resulting segment to a byte array.
type reorderBuffer struct {
rune [maxCombiningChars]runeInfo // Per character info.
byte [maxByteBufferSize]byte // UTF-8 buffer. Referenced by runeInfo.pos.
nrune int // Number of runeInfos.
nbyte uint8 // Number or bytes.
f formInfo
}
// reset discards all characters from the buffer.
func (rb *reorderBuffer) reset() {
rb.nrune = 0
rb.nbyte = 0
}
// flush appends the normalized segment to out and resets rb.
func (rb *reorderBuffer) flush(out []byte) []byte {
for i := 0; i < rb.nrune; i++ {
start := rb.rune[i].pos
end := start + rb.rune[i].size
out = append(out, rb.byte[start:end]...)
}
rb.reset()
return out
}
// insertOrdered inserts a rune in the buffer, ordered by Canonical Combining Class.
// It returns false if the buffer is not large enough to hold the rune.
// It is used internally by insert.
func (rb *reorderBuffer) insertOrdered(info runeInfo) bool {
n := rb.nrune
if n >= maxCombiningChars {
return false
}
b := rb.rune[:]
cc := info.ccc
if cc > 0 {
// Find insertion position + move elements to make room.
for ; n > 0; n-- {
if b[n-1].ccc <= cc {
break
}
b[n] = b[n-1]
}
}
rb.nrune += 1
pos := uint8(rb.nbyte)
rb.nbyte += info.size
info.pos = pos
b[n] = info
return true
}
// insert inserts the given rune in the buffer ordered by CCC.
// It returns true if the buffer was large enough to hold the decomposed rune.
func (rb *reorderBuffer) insert(src []byte, info runeInfo) bool {
if info.size == 3 && isHangul(src) {
rune, _ := utf8.DecodeRune(src)
return rb.decomposeHangul(uint32(rune))
}
pos := rb.nbyte
if info.flags.hasDecomposition() {
dcomp := rb.f.decompose(src)
for i := 0; i < len(dcomp); i += int(info.size) {
info = rb.f.info(dcomp[i:])
if !rb.insertOrdered(info) {
return false
}
}
copy(rb.byte[pos:], dcomp)
} else {
if !rb.insertOrdered(info) {
return false
}
copy(rb.byte[pos:], src[:info.size])
}
return true
}
// insertString inserts the given rune in the buffer ordered by CCC.
// It returns true if the buffer was large enough to hold the decomposed rune.
func (rb *reorderBuffer) insertString(src string, info runeInfo) bool {
if info.size == 3 && isHangulString(src) {
rune, _ := utf8.DecodeRuneInString(src)
return rb.decomposeHangul(uint32(rune))
}
pos := rb.nbyte
dcomp := rb.f.decomposeString(src)
dn := len(dcomp)
if dn != 0 {
for i := 0; i < dn; i += int(info.size) {
info = rb.f.info(dcomp[i:])
if !rb.insertOrdered(info) {
return false
}
}
copy(rb.byte[pos:], dcomp)
} else {
if !rb.insertOrdered(info) {
return false
}
copy(rb.byte[pos:], src[:info.size])
}
return true
}
// appendRune inserts a rune at the end of the buffer. It is used for Hangul.
func (rb *reorderBuffer) appendRune(rune uint32) {
bn := rb.nbyte
sz := utf8.EncodeRune(rb.byte[bn:], int(rune))
rb.nbyte += uint8(sz)
rb.rune[rb.nrune] = runeInfo{bn, uint8(sz), 0, 0}
rb.nrune++
}
// assignRune sets a rune at position pos. It is used for Hangul and recomposition.
func (rb *reorderBuffer) assignRune(pos int, rune uint32) {
bn := rb.nbyte
sz := utf8.EncodeRune(rb.byte[bn:], int(rune))
rb.rune[pos] = runeInfo{bn, uint8(sz), 0, 0}
rb.nbyte += uint8(sz)
}
// runeAt returns the rune at position n. It is used for Hangul and recomposition.
func (rb *reorderBuffer) runeAt(n int) uint32 {
inf := rb.rune[n]
rune, _ := utf8.DecodeRune(rb.byte[inf.pos : inf.pos+inf.size])
return uint32(rune)
}
// bytesAt returns the UTF-8 encoding of the rune at position n.
// It is used for Hangul and recomposition.
func (rb *reorderBuffer) bytesAt(n int) []byte {
inf := rb.rune[n]
return rb.byte[inf.pos : int(inf.pos)+int(inf.size)]
}
// For Hangul we combine algorithmically, instead of using tables.
const (
hangulBase = 0xAC00 // UTF-8(hangulBase) -> EA B0 80
hangulBase0 = 0xEA
hangulBase1 = 0xB0
hangulBase2 = 0x80
hangulEnd = hangulBase + jamoLVTCount // UTF-8(0xD7A4) -> ED 9E A4
hangulEnd0 = 0xED
hangulEnd1 = 0x9E
hangulEnd2 = 0xA4
jamoLBase = 0x1100 // UTF-8(jamoLBase) -> E1 84 00
jamoLBase0 = 0xE1
jamoLBase1 = 0x84
jamoLEnd = 0x1113
jamoVBase = 0x1161
jamoVEnd = 0x1176
jamoTBase = 0x11A7
jamoTEnd = 0x11C3
jamoTCount = 28
jamoVCount = 21
jamoVTCount = 21 * 28
jamoLVTCount = 19 * 21 * 28
)
// Caller must verify that len(b) >= 3.
func isHangul(b []byte) bool {
b0 := b[0]
if b0 < hangulBase0 {
return false
}
b1 := b[1]
switch {
case b0 == hangulBase0:
return b1 >= hangulBase1
case b0 < hangulEnd0:
return true
case b0 > hangulEnd0:
return false
case b1 < hangulEnd1:
return true
}
return b1 == hangulEnd1 && b[2] < hangulEnd2
}
// Caller must verify that len(b) >= 3.
func isHangulString(b string) bool {
b0 := b[0]
if b0 < hangulBase0 {
return false
}
b1 := b[1]
switch {
case b0 == hangulBase0:
return b1 >= hangulBase1
case b0 < hangulEnd0:
return true
case b0 > hangulEnd0:
return false
case b1 < hangulEnd1:
return true
}
return b1 == hangulEnd1 && b[2] < hangulEnd2
}
// Caller must ensure len(b) >= 2.
func isJamoVT(b []byte) bool {
// True if (rune & 0xff00) == jamoLBase
return b[0] == jamoLBase0 && (b[1]&0xFC) == jamoLBase1
}
func isHangulWithoutJamoT(b []byte) bool {
c, _ := utf8.DecodeRune(b)
c -= hangulBase
return c < jamoLVTCount && c%jamoTCount == 0
}
// decomposeHangul algorithmically decomposes a Hangul rune into
// its Jamo components.
// See http://unicode.org/reports/tr15/#Hangul for details on decomposing Hangul.
func (rb *reorderBuffer) decomposeHangul(rune uint32) bool {
b := rb.rune[:]
n := rb.nrune
if n+3 > len(b) {
return false
}
rune -= hangulBase
x := rune % jamoTCount
rune /= jamoTCount
rb.appendRune(jamoLBase + rune/jamoVCount)
rb.appendRune(jamoVBase + rune%jamoVCount)
if x != 0 {
rb.appendRune(jamoTBase + x)
}
return true
}
// combineHangul algorithmically combines Jamo character components into Hangul.
// See http://unicode.org/reports/tr15/#Hangul for details on combining Hangul.
func (rb *reorderBuffer) combineHangul() {
k := 1
b := rb.rune[:]
bn := rb.nrune
for s, i := 0, 1; i < bn; i++ {
cccB := b[k-1].ccc
cccC := b[i].ccc
if cccB == 0 {
s = k - 1
}
if s != k-1 && cccB >= cccC {
// b[i] is blocked by greater-equal cccX below it
b[k] = b[i]
k++
} else {
l := rb.runeAt(s) // also used to compare to hangulBase
v := rb.runeAt(i) // also used to compare to jamoT
switch {
case jamoLBase <= l && l < jamoLEnd &&
jamoVBase <= v && v < jamoVEnd:
// 11xx plus 116x to LV
rb.assignRune(s, hangulBase+
(l-jamoLBase)*jamoVTCount+(v-jamoVBase)*jamoTCount)
case hangulBase <= l && l < hangulEnd &&
jamoTBase < v && v < jamoTEnd &&
((l-hangulBase)%jamoTCount) == 0:
// ACxx plus 11Ax to LVT
rb.assignRune(s, l+v-jamoTBase)
default:
b[k] = b[i]
k++
}
}
}
rb.nrune = k
}
// compose recombines the runes in the buffer.
// It should only be used to recompose a single segment, as it will not
// handle alternations between Hangul and non-Hangul characters correctly.
func (rb *reorderBuffer) compose() {
// UAX #15, section X5 , including Corrigendum #5
// "In any character sequence beginning with starter S, a character C is
// blocked from S if and only if there is some character B between S
// and C, and either B is a starter or it has the same or higher
// combining class as C."
k := 1
b := rb.rune[:]
bn := rb.nrune
for s, i := 0, 1; i < bn; i++ {
if isJamoVT(rb.bytesAt(i)) {
// Redo from start in Hangul mode. Necessary to support
// U+320E..U+321E in NFKC mode.
rb.combineHangul()
return
}
ii := b[i]
// We can only use combineForward as a filter if we later
// get the info for the combined character. This is more
// expensive than using the filter. Using combinesBackward()
// is safe.
if ii.flags.combinesBackward() {
cccB := b[k-1].ccc
cccC := ii.ccc
blocked := false // b[i] blocked by starter or greater or equal CCC?
if cccB == 0 {
s = k - 1
} else {
blocked = s != k-1 && cccB >= cccC
}
if !blocked {
combined := combine(rb.runeAt(s), rb.runeAt(i))
if combined != 0 {
rb.assignRune(s, combined)
continue
}
}
}
b[k] = b[i]
k++
}
rb.nrune = k
}
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package norm
import "testing"
// TestCase is used for most tests.
type TestCase struct {
in []int
out []int
}
type insertFunc func(rb *reorderBuffer, rune int) bool
func insert(rb *reorderBuffer, rune int) bool {
b := []byte(string(rune))
return rb.insert(b, rb.f.info(b))
}
func insertString(rb *reorderBuffer, rune int) bool {
s := string(rune)
return rb.insertString(s, rb.f.infoString(s))
}
func runTests(t *testing.T, name string, rb *reorderBuffer, f insertFunc, tests []TestCase) {
for i, test := range tests {
rb.reset()
for j, rune := range test.in {
b := []byte(string(rune))
if !rb.insert(b, rb.f.info(b)) {
t.Errorf("%s:%d: insert failed for rune %d", name, i, j)
}
}
if rb.f.composing {
rb.compose()
}
if rb.nrune != len(test.out) {
t.Errorf("%s:%d: length = %d; want %d", name, i, rb.nrune, len(test.out))
continue
}
for j, want := range test.out {
found := int(rb.runeAt(j))
if found != want {
t.Errorf("%s:%d: runeAt(%d) = %U; want %U", name, i, j, found, want)
}
}
}
}
func TestFlush(t *testing.T) {
rb := &reorderBuffer{f: *formTable[NFC]}
out := make([]byte, 0)
out = rb.flush(out)
if len(out) != 0 {
t.Errorf("wrote bytes on flush of empty buffer. (len(out) = %d)", len(out))
}
for _, r := range []int("world!") {
insert(rb, r)
}
out = []byte("Hello ")
out = rb.flush(out)
want := "Hello world!"
if string(out) != want {
t.Errorf(`output after flush was "%s"; want "%s"`, string(out), want)
}
if rb.nrune != 0 {
t.Errorf("flush: non-null size of info buffer (rb.nrune == %d)", rb.nrune)
}
if rb.nbyte != 0 {
t.Errorf("flush: non-null size of byte buffer (rb.nbyte == %d)", rb.nbyte)
}
}
var insertTests = []TestCase{
{[]int{'a'}, []int{'a'}},
{[]int{0x300}, []int{0x300}},
{[]int{0x300, 0x316}, []int{0x316, 0x300}}, // CCC(0x300)==230; CCC(0x316)==220
{[]int{0x316, 0x300}, []int{0x316, 0x300}},
{[]int{0x41, 0x316, 0x300}, []int{0x41, 0x316, 0x300}},
{[]int{0x41, 0x300, 0x316}, []int{0x41, 0x316, 0x300}},
{[]int{0x300, 0x316, 0x41}, []int{0x316, 0x300, 0x41}},
{[]int{0x41, 0x300, 0x40, 0x316}, []int{0x41, 0x300, 0x40, 0x316}},
}
func TestInsert(t *testing.T) {
rb := &reorderBuffer{f: *formTable[NFD]}
runTests(t, "TestInsert", rb, insert, insertTests)
}
func TestInsertString(t *testing.T) {
rb := &reorderBuffer{f: *formTable[NFD]}
runTests(t, "TestInsertString", rb, insertString, insertTests)
}
var decompositionNFDTest = []TestCase{
{[]int{0xC0}, []int{0x41, 0x300}},
{[]int{0xAC00}, []int{0x1100, 0x1161}},
{[]int{0x01C4}, []int{0x01C4}},
{[]int{0x320E}, []int{0x320E}},
{[]int("음ẻ과"), []int{0x110B, 0x1173, 0x11B7, 0x65, 0x309, 0x1100, 0x116A}},
}
var decompositionNFKDTest = []TestCase{
{[]int{0xC0}, []int{0x41, 0x300}},
{[]int{0xAC00}, []int{0x1100, 0x1161}},
{[]int{0x01C4}, []int{0x44, 0x5A, 0x030C}},
{[]int{0x320E}, []int{0x28, 0x1100, 0x1161, 0x29}},
}
func TestDecomposition(t *testing.T) {
rb := &reorderBuffer{}
rb.f = *formTable[NFD]
runTests(t, "TestDecompositionNFD", rb, insert, decompositionNFDTest)
rb.f = *formTable[NFKD]
runTests(t, "TestDecompositionNFKD", rb, insert, decompositionNFKDTest)
}
var compositionTest = []TestCase{
{[]int{0x41, 0x300}, []int{0xC0}},
{[]int{0x41, 0x316}, []int{0x41, 0x316}},
{[]int{0x41, 0x300, 0x35D}, []int{0xC0, 0x35D}},
{[]int{0x41, 0x316, 0x300}, []int{0xC0, 0x316}},
// blocking starter
{[]int{0x41, 0x316, 0x40, 0x300}, []int{0x41, 0x316, 0x40, 0x300}},
{[]int{0x1100, 0x1161}, []int{0xAC00}},
// parenthesized Hangul, alternate between ASCII and Hangul.
{[]int{0x28, 0x1100, 0x1161, 0x29}, []int{0x28, 0xAC00, 0x29}},
}
func TestComposition(t *testing.T) {
rb := &reorderBuffer{f: *formTable[NFC]}
runTests(t, "TestComposition", rb, insert, compositionTest)
}
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package norm
// This file contains Form-specific logic and wrappers for data in tables.go.
type runeInfo struct {
pos uint8 // start position in reorderBuffer; used in composition.go
size uint8 // length of UTF-8 encoding of this rune
ccc uint8 // canonical combining class
flags qcInfo // quick check flags
}
// functions dispatchable per form
type boundaryFunc func(f *formInfo, info runeInfo) bool
type lookupFunc func(b []byte) runeInfo
type lookupFuncString func(s string) runeInfo
type decompFunc func(b []byte) []byte
type decompFuncString func(s string) []byte
// formInfo holds Form-specific functions and tables.
type formInfo struct {
form Form
composing, compatibility bool // form type
decompose decompFunc
decomposeString decompFuncString
info lookupFunc
infoString lookupFuncString
boundaryBefore boundaryFunc
boundaryAfter boundaryFunc
}
var formTable []*formInfo
func init() {
formTable = make([]*formInfo, 4)
for i := range formTable {
f := &formInfo{}
formTable[i] = f
f.form = Form(i)
if Form(i) == NFKD || Form(i) == NFKC {
f.compatibility = true
f.decompose = decomposeNFKC
f.decomposeString = decomposeStringNFKC
f.info = lookupInfoNFKC
f.infoString = lookupInfoStringNFKC
} else {
f.decompose = decomposeNFC
f.decomposeString = decomposeStringNFC
f.info = lookupInfoNFC
f.infoString = lookupInfoStringNFC
}
if Form(i) == NFC || Form(i) == NFKC {
f.composing = true
f.boundaryBefore = compBoundaryBefore
f.boundaryAfter = compBoundaryAfter
} else {
f.boundaryBefore = decompBoundary
f.boundaryAfter = decompBoundary
}
}
}
func decompBoundary(f *formInfo, info runeInfo) bool {
if info.ccc == 0 && info.flags.isYesD() { // Implies isHangul(b) == true
return true
}
// We assume that the CCC of the first character in a decomposition
// is always non-zero if different from info.ccc and that we can return
// false at this point. This is verified by maketables.
return false
}
func compBoundaryBefore(f *formInfo, info runeInfo) bool {
if info.ccc == 0 && info.flags.isYesC() {
return true
}
// We assume that the CCC of the first character in a decomposition
// is always non-zero if different from info.ccc and that we can return
// false at this point. This is verified by maketables.
return false
}
func compBoundaryAfter(f *formInfo, info runeInfo) bool {
// This misses values where the last char in a decomposition is a
// boundary such as Hangul with JamoT.
// TODO(mpvl): verify this does not lead to segments that do
// not fit in the reorderBuffer.
return info.flags.isInert()
}
// We pack quick check data in 4 bits:
// 0: NFD_QC Yes (0) or No (1). No also means there is a decomposition.
// 1..2: NFC_QC Yes(00), No (01), or Maybe (11)
// 3: Combines forward (0 == false, 1 == true)
//
// When all 4 bits are zero, the character is inert, meaning it is never
// influenced by normalization.
//
// We pack the bits for both NFC/D and NFKC/D in one byte.
type qcInfo uint8
func (i qcInfo) isYesC() bool { return i&0x2 == 0 }
func (i qcInfo) isNoC() bool { return i&0x6 == 0x2 }
func (i qcInfo) isMaybe() bool { return i&0x4 != 0 }
func (i qcInfo) isYesD() bool { return i&0x1 == 0 }
func (i qcInfo) isNoD() bool { return i&0x1 != 0 }
func (i qcInfo) isInert() bool { return i&0xf == 0 }
func (i qcInfo) combinesForward() bool { return i&0x8 != 0 }
func (i qcInfo) combinesBackward() bool { return i&0x4 != 0 } // == isMaybe
func (i qcInfo) hasDecomposition() bool { return i&0x1 != 0 } // == isNoD
// Wrappers for tables.go
// The 16-bit value of the decompostion tries is an index into a byte
// array of UTF-8 decomposition sequences. The first byte is the number
// of bytes in the decomposition (excluding this length byte). The actual
// sequence starts at the offset+1.
func decomposeNFC(b []byte) []byte {
p := nfcDecompTrie.lookupUnsafe(b)
n := decomps[p]
p++
return decomps[p : p+uint16(n)]
}
func decomposeNFKC(b []byte) []byte {
p := nfkcDecompTrie.lookupUnsafe(b)
n := decomps[p]
p++
return decomps[p : p+uint16(n)]
}
func decomposeStringNFC(s string) []byte {
p := nfcDecompTrie.lookupStringUnsafe(s)
n := decomps[p]
p++
return decomps[p : p+uint16(n)]
}
func decomposeStringNFKC(s string) []byte {
p := nfkcDecompTrie.lookupStringUnsafe(s)
n := decomps[p]
p++
return decomps[p : p+uint16(n)]
}
// Recomposition
// We use 32-bit keys instead of 64-bit for the two codepoint keys.
// This clips off the bits of three entries, but we know this will not
// result in a collision. In the unlikely event that changes to
// UnicodeData.txt introduce collisions, the compiler will catch it.
// Note that the recomposition map for NFC and NFKC are identical.
// combine returns the combined rune or 0 if it doesn't exist.
func combine(a, b uint32) uint32 {
key := uint32(uint16(a))<<16 + uint32(uint16(b))
return recompMap[key]
}
// The 16-bit character info has the following bit layout:
// 0..7 CCC value.
// 8..11 qcInfo for NFC/NFD
// 12..15 qcInfo for NFKC/NFKD
func lookupInfoNFC(b []byte) runeInfo {
v, sz := charInfoTrie.lookup(b)
return runeInfo{0, uint8(sz), uint8(v), qcInfo(v >> 8)}
}
func lookupInfoStringNFC(s string) runeInfo {
v, sz := charInfoTrie.lookupString(s)
return runeInfo{0, uint8(sz), uint8(v), qcInfo(v >> 8)}
}
func lookupInfoNFKC(b []byte) runeInfo {
v, sz := charInfoTrie.lookup(b)
return runeInfo{0, uint8(sz), uint8(v), qcInfo(v >> 12)}
}
func lookupInfoStringNFKC(s string) runeInfo {
v, sz := charInfoTrie.lookupString(s)
return runeInfo{0, uint8(sz), uint8(v), qcInfo(v >> 12)}
}
......@@ -31,45 +31,69 @@ const (
)
// Bytes returns f(b). May return b if f(b) = b.
func (f Form) Bytes(b []byte) []byte
func (f Form) Bytes(b []byte) []byte {
panic("not implemented")
}
// String returns f(s).
func (f Form) String(s string) string
func (f Form) String(s string) string {
panic("not implemented")
}
// IsNormal returns true if b == f(b).
func (f Form) IsNormal(b []byte) bool
func (f Form) IsNormal(b []byte) bool {
panic("not implemented")
}
// IsNormalString returns true if s == f(s).
func (f Form) IsNormalString(s string) bool
func (f Form) IsNormalString(s string) bool {
panic("not implemented")
}
// Append returns f(append(out, b...)).
// The buffer out must be empty or equal to f(out).
func (f Form) Append(out, b []byte) []byte
func (f Form) Append(out, b []byte) []byte {
panic("not implemented")
}
// AppendString returns f(append(out, []byte(s))).
// The buffer out must be empty or equal to f(out).
func (f Form) AppendString(out []byte, s string) []byte
func (f Form) AppendString(out []byte, s string) []byte {
panic("not implemented")
}
// QuickSpan returns a boundary n such that b[0:n] == f(b[0:n]).
// It is not guaranteed to return the largest such n.
func (f Form) QuickSpan(b []byte) int
func (f Form) QuickSpan(b []byte) int {
panic("not implemented")
}
// QuickSpanString returns a boundary n such that b[0:n] == f(s[0:n]).
// It is not guaranteed to return the largest such n.
func (f Form) QuickSpanString(s string) int
func (f Form) QuickSpanString(s string) int {
panic("not implemented")
}
// FirstBoundary returns the position i of the first boundary in b.
// It returns len(b), false if b contains no boundaries.
func (f Form) FirstBoundary(b []byte) (i int, ok bool)
func (f Form) FirstBoundary(b []byte) (i int, ok bool) {
panic("not implemented")
}
// FirstBoundaryInString return the position i of the first boundary in s.
// It returns len(s), false if s contains no boundaries.
func (f Form) FirstBoundaryInString(s string) (i int, ok bool)
func (f Form) FirstBoundaryInString(s string) (i int, ok bool) {
panic("not implemented")
}
// LastBoundaryIn returns the position i of the last boundary in b.
// It returns 0, false if b contains no boundary.
func (f Form) LastBoundary(b []byte) (i int, ok bool)
func (f Form) LastBoundary(b []byte) (i int, ok bool) {
panic("not implemented")
}
// LastBoundaryInString returns the position i of the last boundary in s.
// It returns 0, false if s contains no boundary.
func (f Form) LastBoundaryInString(s string) (i int, ok bool)
func (f Form) LastBoundaryInString(s string) (i int, ok bool) {
panic("not implemented")
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment