Commit bc0b4f0d authored by Ken Thompson's avatar Ken Thompson

mike's map code

R=r
OCL=19146
CL=19146
parent c4d8dc0b
......@@ -18,7 +18,7 @@ LIBOFILES=\
rt2_$(GOARCH).$O\
sys_$(GOARCH)_$(GOOS).$O\
runtime.$O\
map.$O\
hashmap.$O\
chan.$O\
iface.$O\
array.$O\
......@@ -30,7 +30,7 @@ LIBOFILES=\
OFILES=$(RT0OFILES) $(LIBOFILES)
OS_H=$(GOARCH)_$(GOOS).h
HFILES=runtime.h $(OS_H_)
HFILES=runtime.h hashmap.h $(OS_H_)
install: rt0 $(LIB) runtime.acid
cp $(RT0OFILES) $(GOROOT)/lib
......
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "runtime.h"
#include "hashmap.h"
/* Return a pointer to the struct/union of type "type"
whose "field" field is addressed by pointer "p". */
struct hash { /* a hash table; initialize with hash_init() */
uint32 count; /* elements in table - must be first */
uint8 datasize; /* amount of data to store in entry */
uint8 max_power; /* max power of 2 to create sub-tables */
uint8 max_probes; /* max entries to probe before rehashing */
int32 changes; /* inc'ed whenever a subtable is created/grown */
hash_hash_t (*data_hash) (uint32, void *a); /* return hash of *a */
uint32 (*data_eq) (uint32, void *a, void *b); /* return whether *a == *b */
void (*data_del) (uint32, void *arg, void *data); /* invoked on deletion */
struct hash_subtable *st; /* first-level table */
uint32 keysize;
uint32 valsize;
uint32 ko;
uint32 vo;
uint32 po;
Alg* keyalg;
Alg* valalg;
};
struct hash_entry {
hash_hash_t hash; /* hash value of data */
byte data[1]; /* user data has "datasize" bytes */
};
struct hash_subtable {
uint8 power; /* bits used to index this table */
uint8 used; /* bits in hash used before reaching this table */
uint8 datasize; /* bytes of client data in an entry */
uint8 max_probes; /* max number of probes when searching */
int16 limit_bytes; /* max_probes * (datasize+sizeof (hash_hash_t)) */
struct hash_entry *end; /* points just past end of entry[] */
struct hash_entry entry[1]; /* 2**power+max_probes-1 elements of elemsize bytes */
};
#define HASH_DATA_EQ(h,x,y) ((*h->data_eq) (h->keysize, (x), (y)))
#define HASH_REHASH 0x2 /* an internal flag */
/* the number of bits used is stored in the flags word too */
#define HASH_USED(x) ((x) >> 2)
#define HASH_MAKE_USED(x) ((x) << 2)
#define HASH_LOW 6
#define HASH_ONE (((hash_hash_t)1) << HASH_LOW)
#define HASH_MASK (HASH_ONE - 1)
#define HASH_ADJUST(x) (((x) < HASH_ONE) << HASH_LOW)
#define HASH_BITS (sizeof (hash_hash_t) * 8)
#define HASH_SUBHASH HASH_MASK
#define HASH_NIL 0
#define HASH_NIL_MEMSET 0
#define HASH_OFFSET(base, byte_offset) \
((struct hash_entry *) (((byte *) (base)) + (byte_offset)))
/* return a hash layer with 2**power empty entries */
static struct hash_subtable *
hash_subtable_new (struct hash *h, int32 power, int32 used)
{
int32 elemsize = h->datasize + offsetof (struct hash_entry, data[0]);
int32 bytes = elemsize << power;
struct hash_subtable *st;
int32 limit_bytes = h->max_probes * elemsize;
int32 max_probes = h->max_probes;
if (bytes < limit_bytes) {
limit_bytes = bytes;
max_probes = 1 << power;
}
bytes += limit_bytes - elemsize;
st = malloc (offsetof (struct hash_subtable, entry[0]) + bytes);
st->power = power;
st->used = used;
st->datasize = h->datasize;
st->max_probes = max_probes;
st->limit_bytes = limit_bytes;
st->end = HASH_OFFSET (st->entry, bytes);
memset (st->entry, HASH_NIL_MEMSET, bytes);
return (st);
}
static void
init_sizes (int64 hint, int32 *init_power, int32 *max_power)
{
int32 log = 0;
int32 i;
for (i = 32; i != 0; i >>= 1) {
if ((hint >> (log + i)) != 0) {
log += i;
}
}
log += 1 + (((hint << 3) >> log) >= 11); /* round up for utilization */
if (log <= 14) {
*init_power = log;
} else {
*init_power = 12;
}
*max_power = 12;
}
static void
hash_init (struct hash *h,
int32 datasize,
hash_hash_t (*data_hash) (uint32, void *),
uint32 (*data_eq) (uint32, void *, void *),
void (*data_del) (uint32, void *, void *),
int64 hint)
{
int32 init_power;
int32 max_power;
if(datasize < sizeof (void *))
datasize = sizeof (void *);
init_sizes (hint, &init_power, &max_power);
h->datasize = datasize;
h->max_power = max_power;
h->max_probes = 15;
assert (h->datasize == datasize);
assert (h->max_power == max_power);
assert (sizeof (void *) <= h->datasize || h->max_power == 255);
h->count = 0;
h->changes = 0;
h->data_hash = data_hash;
h->data_eq = data_eq;
h->data_del = data_del;
h->st = hash_subtable_new (h, init_power, 0);
}
static void
hash_remove_n (struct hash_subtable *st, struct hash_entry *dst_e, int32 n)
{
int32 elemsize = st->datasize + offsetof (struct hash_entry, data[0]);
struct hash_entry *src_e = HASH_OFFSET (dst_e, n * elemsize);
struct hash_entry *end_e = st->end;
int32 shift = HASH_BITS - (st->power + st->used);
int32 index_mask = (((hash_hash_t)1) << st->power) - 1;
int32 dst_i = (((byte *) dst_e) - ((byte *) st->entry)) / elemsize;
int32 src_i = dst_i + n;
hash_hash_t hash;
int32 skip;
int32 bytes;
while (dst_e != src_e) {
if (src_e != end_e) {
struct hash_entry *cp_e = src_e;
int32 save_dst_i = dst_i;
while (cp_e != end_e && (hash = cp_e->hash) != HASH_NIL &&
((hash >> shift) & index_mask) <= dst_i) {
cp_e = HASH_OFFSET (cp_e, elemsize);
dst_i++;
}
bytes = ((byte *) cp_e) - (byte *) src_e;
memmove (dst_e, src_e, bytes);
dst_e = HASH_OFFSET (dst_e, bytes);
src_e = cp_e;
src_i += dst_i - save_dst_i;
if (src_e != end_e && (hash = src_e->hash) != HASH_NIL) {
skip = ((hash >> shift) & index_mask) - dst_i;
} else {
skip = src_i - dst_i;
}
} else {
skip = src_i - dst_i;
}
bytes = skip * elemsize;
memset (dst_e, HASH_NIL_MEMSET, bytes);
dst_e = HASH_OFFSET (dst_e, bytes);
dst_i += skip;
}
}
static int32
hash_insert_internal (struct hash_subtable **pst, int32 flags, hash_hash_t hash,
struct hash *h, void *data, void **pres);
static void
hash_conv (struct hash *h,
struct hash_subtable *st, int32 flags,
hash_hash_t hash,
struct hash_entry *e)
{
int32 new_flags = (flags + HASH_MAKE_USED (st->power)) | HASH_REHASH;
int32 shift = HASH_BITS - HASH_USED (new_flags);
hash_hash_t prefix_mask = (-(hash_hash_t)1) << shift;
int32 elemsize = h->datasize + offsetof (struct hash_entry, data[0]);
void *dummy_result;
struct hash_entry *de;
int32 index_mask = (1 << st->power) - 1;
hash_hash_t e_hash;
struct hash_entry *pe = HASH_OFFSET (e, -elemsize);
while (e != st->entry && (e_hash = pe->hash) != HASH_NIL && (e_hash & HASH_MASK) != HASH_SUBHASH) {
e = pe;
pe = HASH_OFFSET (pe, -elemsize);
}
de = e;
while (e != st->end &&
(e_hash = e->hash) != HASH_NIL &&
(e_hash & HASH_MASK) != HASH_SUBHASH) {
struct hash_entry *target_e = HASH_OFFSET (st->entry, ((e_hash >> shift) & index_mask) * elemsize);
struct hash_entry *ne = HASH_OFFSET (e, elemsize);
hash_hash_t current = e_hash & prefix_mask;
if (de < target_e) {
memset (de, HASH_NIL_MEMSET, ((byte *) target_e) - (byte *) de);
de = target_e;
}
if ((hash & prefix_mask) == current ||
(ne != st->end && (e_hash = ne->hash) != HASH_NIL &&
(e_hash & prefix_mask) == current)) {
struct hash_subtable *new_st = hash_subtable_new (h, 1, HASH_USED (new_flags));
int32 rc = hash_insert_internal (&new_st, new_flags, e->hash, h, e->data, &dummy_result);
assert (rc == 0);
memcpy(dummy_result, e->data, h->datasize);
e = ne;
while (e != st->end && (e_hash = e->hash) != HASH_NIL && (e_hash & prefix_mask) == current) {
assert ((e_hash & HASH_MASK) != HASH_SUBHASH);
rc = hash_insert_internal (&new_st, new_flags, e_hash, h, e->data, &dummy_result);
assert (rc == 0);
memcpy(dummy_result, e->data, h->datasize);
e = HASH_OFFSET (e, elemsize);
}
memset (de->data, HASH_NIL_MEMSET, h->datasize);
*(struct hash_subtable **)de->data = new_st;
de->hash = current | HASH_SUBHASH;
} else {
if (e != de) {
memcpy (de, e, elemsize);
}
e = HASH_OFFSET (e, elemsize);
}
de = HASH_OFFSET (de, elemsize);
}
if (e != de) {
hash_remove_n (st, de, (((byte *) e) - (byte *) de) / elemsize);
}
}
static void
hash_grow (struct hash *h, struct hash_subtable **pst, int32 flags)
{
struct hash_subtable *old_st = *pst;
int32 elemsize = h->datasize + offsetof (struct hash_entry, data[0]);
*pst = hash_subtable_new (h, old_st->power + 1, HASH_USED (flags));
struct hash_entry *end_e = old_st->end;
struct hash_entry *e;
void *dummy_result;
int32 used = 0;
flags |= HASH_REHASH;
for (e = old_st->entry; e != end_e; e = HASH_OFFSET (e, elemsize)) {
hash_hash_t hash = e->hash;
if (hash != HASH_NIL) {
int32 rc = hash_insert_internal (pst, flags, e->hash, h, e->data, &dummy_result);
assert (rc == 0);
memcpy(dummy_result, e->data, h->datasize);
used++;
}
}
free (old_st);
}
int32
hash_lookup (struct hash *h, void *data, void **pres)
{
int32 elemsize = h->datasize + offsetof (struct hash_entry, data[0]);
hash_hash_t hash = (*h->data_hash) (h->keysize, data) & ~HASH_MASK;
struct hash_subtable *st = h->st;
int32 used = 0;
hash_hash_t e_hash;
struct hash_entry *e;
struct hash_entry *end_e;
hash += HASH_ADJUST (hash);
for (;;) {
int32 shift = HASH_BITS - (st->power + used);
int32 index_mask = (1 << st->power) - 1;
int32 i = (hash >> shift) & index_mask; /* i is the natural position of hash */
e = HASH_OFFSET (st->entry, i * elemsize); /* e points to element i */
e_hash = e->hash;
if ((e_hash & HASH_MASK) != HASH_SUBHASH) { /* a subtable */
break;
}
used += st->power;
st = *(struct hash_subtable **)e->data;
}
end_e = HASH_OFFSET (e, st->limit_bytes);
while (e != end_e && (e_hash = e->hash) != HASH_NIL && e_hash < hash) {
e = HASH_OFFSET (e, elemsize);
}
while (e != end_e && ((e_hash = e->hash) ^ hash) < HASH_SUBHASH) {
if (HASH_DATA_EQ (h, data, e->data)) { /* a match */
*pres = e->data;
return (1);
}
e = HASH_OFFSET (e, elemsize);
}
USED(e_hash);
*pres = 0;
return (0);
}
int32
hash_remove (struct hash *h, void *data, void *arg)
{
int32 elemsize = h->datasize + offsetof (struct hash_entry, data[0]);
hash_hash_t hash = (*h->data_hash) (h->keysize, data) & ~HASH_MASK;
struct hash_subtable *st = h->st;
int32 used = 0;
hash_hash_t e_hash;
struct hash_entry *e;
struct hash_entry *end_e;
hash += HASH_ADJUST (hash);
for (;;) {
int32 shift = HASH_BITS - (st->power + used);
int32 index_mask = (1 << st->power) - 1;
int32 i = (hash >> shift) & index_mask; /* i is the natural position of hash */
e = HASH_OFFSET (st->entry, i * elemsize); /* e points to element i */
e_hash = e->hash;
if ((e_hash & HASH_MASK) != HASH_SUBHASH) { /* a subtable */
break;
}
used += st->power;
st = *(struct hash_subtable **)e->data;
}
end_e = HASH_OFFSET (e, st->limit_bytes);
while (e != end_e && (e_hash = e->hash) != HASH_NIL && e_hash < hash) {
e = HASH_OFFSET (e, elemsize);
}
while (e != end_e && ((e_hash = e->hash) ^ hash) < HASH_SUBHASH) {
if (HASH_DATA_EQ (h, data, e->data)) { /* a match */
(*h->data_del) (h->keysize, arg, e->data);
hash_remove_n (st, e, 1);
h->count--;
return (1);
}
e = HASH_OFFSET (e, elemsize);
}
USED(e_hash);
return (0);
}
static int32
hash_insert_internal (struct hash_subtable **pst, int32 flags, hash_hash_t hash,
struct hash *h, void *data, void **pres)
{
int32 elemsize = h->datasize + offsetof (struct hash_entry, data[0]);
if ((flags & HASH_REHASH) == 0) {
hash += HASH_ADJUST (hash);
hash &= ~HASH_MASK;
}
for (;;) {
struct hash_subtable *st = *pst;
int32 shift = HASH_BITS - (st->power + HASH_USED (flags));
int32 index_mask = (1 << st->power) - 1;
int32 i = (hash >> shift) & index_mask; /* i is the natural position of hash */
struct hash_entry *start_e =
HASH_OFFSET (st->entry, i * elemsize); /* start_e is the pointer to element i */
struct hash_entry *e = start_e; /* e is going to range over [start_e, end_e) */
struct hash_entry *end_e;
hash_hash_t e_hash = e->hash;
if ((e_hash & HASH_MASK) == HASH_SUBHASH) { /* a subtable */
pst = (struct hash_subtable **) e->data;
flags += HASH_MAKE_USED (st->power);
continue;
}
end_e = HASH_OFFSET (start_e, st->limit_bytes);
while (e != end_e && (e_hash = e->hash) != HASH_NIL && e_hash < hash) {
e = HASH_OFFSET (e, elemsize);
i++;
}
if (e != end_e && e_hash != HASH_NIL) {
/* ins_e ranges over the elements that may match */
struct hash_entry *ins_e = e;
int32 ins_i = i;
hash_hash_t ins_e_hash;
while (ins_e != end_e && ((e_hash = ins_e->hash) ^ hash) < HASH_SUBHASH) {
if (HASH_DATA_EQ (h, data, ins_e->data)) { /* a match */
*pres = ins_e->data;
return (1);
}
assert (e_hash != hash || (flags & HASH_REHASH) == 0);
hash += (e_hash == hash); /* adjust hash if it collides */
ins_e = HASH_OFFSET (ins_e, elemsize);
ins_i++;
if (e_hash <= hash) { /* set e to insertion point */
e = ins_e;
i = ins_i;
}
}
/* set ins_e to the insertion point for the new element */
ins_e = e;
ins_i = i;
ins_e_hash = 0;
/* move ins_e to point at the end of the contiguous block, but
stop if any element can't be moved by one up */
while (ins_e != st->end && (ins_e_hash = ins_e->hash) != HASH_NIL &&
ins_i + 1 - ((ins_e_hash >> shift) & index_mask) < st->max_probes &&
(ins_e_hash & HASH_MASK) != HASH_SUBHASH) {
ins_e = HASH_OFFSET (ins_e, elemsize);
ins_i++;
}
if (e == end_e || ins_e == st->end || ins_e_hash != HASH_NIL) {
e = end_e; /* can't insert; must grow or convert to subtable */
} else { /* make space for element */
memmove (HASH_OFFSET (e, elemsize), e, ((byte *) ins_e) - (byte *) e);
}
}
if (e != end_e) {
e->hash = hash;
*pres = e->data;
return (0);
}
h->changes++;
if (st->power < h->max_power) {
hash_grow (h, pst, flags);
} else {
hash_conv (h, st, flags, hash, start_e);
}
}
}
int32
hash_insert (struct hash *h, void *data, void **pres)
{
int32 rc = hash_insert_internal (&h->st, 0, (*h->data_hash) (h->keysize, data), h, data, pres);
h->count += (rc == 0); /* increment count if element didn't previously exist */
return (rc);
}
uint32
hash_count (struct hash *h)
{
return (h->count);
}
static void
iter_restart (struct hash_iter *it, struct hash_subtable *st, int32 used)
{
int32 elemsize = it->elemsize;
hash_hash_t last_hash = it->last_hash;
struct hash_entry *e;
hash_hash_t e_hash;
struct hash_iter_sub *sub = &it->subtable_state[it->i];
struct hash_entry *end;
for (;;) {
int32 shift = HASH_BITS - (st->power + used);
int32 index_mask = (1 << st->power) - 1;
int32 i = (last_hash >> shift) & index_mask;
end = st->end;
e = HASH_OFFSET (st->entry, i * elemsize);
sub->start = st->entry;
sub->end = end;
if ((e->hash & HASH_MASK) != HASH_SUBHASH) {
break;
}
sub->e = HASH_OFFSET (e, elemsize);
sub = &it->subtable_state[++(it->i)];
used += st->power;
st = *(struct hash_subtable **)e->data;
}
while (e != end && ((e_hash = e->hash) == HASH_NIL || e_hash <= last_hash)) {
e = HASH_OFFSET (e, elemsize);
}
sub->e = e;
}
void *
hash_next (struct hash_iter *it)
{
int32 elemsize = it->elemsize;
struct hash_iter_sub *sub = &it->subtable_state[it->i];
struct hash_entry *e = sub->e;
struct hash_entry *end = sub->end;
hash_hash_t e_hash = 0;
if (it->changes != it->h->changes) { /* hash table's structure changed; recompute */
it->changes = it->h->changes;
it->i = 0;
iter_restart (it, it->h->st, 0);
sub = &it->subtable_state[it->i];
e = sub->e;
end = sub->end;
}
if (e != sub->start && it->last_hash != HASH_OFFSET (e, -elemsize)->hash) {
struct hash_entry *start = HASH_OFFSET (e, -(elemsize * it->h->max_probes));
struct hash_entry *pe = HASH_OFFSET (e, -elemsize);
hash_hash_t last_hash = it->last_hash;
if (start < sub->start) {
start = sub->start;
}
while (e != start && ((e_hash = pe->hash) == HASH_NIL || last_hash < e_hash)) {
e = pe;
pe = HASH_OFFSET (pe, -elemsize);
}
while (e != end && ((e_hash = e->hash) == HASH_NIL || e_hash <= last_hash)) {
e = HASH_OFFSET (e, elemsize);
}
}
for (;;) {
while (e != end && (e_hash = e->hash) == HASH_NIL) {
e = HASH_OFFSET (e, elemsize);
}
if (e == end) {
if (it->i == 0) {
it->last_hash = HASH_OFFSET (e, -elemsize)->hash;
sub->e = e;
return (0);
} else {
it->i--;
sub = &it->subtable_state[it->i];
e = sub->e;
end = sub->end;
}
} else if ((e_hash & HASH_MASK) != HASH_SUBHASH) {
it->last_hash = e->hash;
sub->e = HASH_OFFSET (e, elemsize);
return (e->data);
} else {
struct hash_subtable *st =
*(struct hash_subtable **)e->data;
sub->e = HASH_OFFSET (e, elemsize);
it->i++;
assert (it->i < sizeof (it->subtable_state) /
sizeof (it->subtable_state[0]));
sub = &it->subtable_state[it->i];
sub->e = e = st->entry;
sub->start = st->entry;
sub->end = end = st->end;
}
}
}
void
hash_iter_init (struct hash *h, struct hash_iter *it)
{
it->elemsize = h->datasize + offsetof (struct hash_entry, data[0]);
it->changes = h->changes;
it->i = 0;
it->h = h;
it->last_hash = 0;
it->subtable_state[0].e = h->st->entry;
it->subtable_state[0].start = h->st->entry;
it->subtable_state[0].end = h->st->end;
}
static void
clean_st (struct hash_subtable *st, int32 *slots, int32 *used)
{
int32 elemsize = st->datasize + offsetof (struct hash_entry, data[0]);
struct hash_entry *e = st->entry;
struct hash_entry *end = st->end;
int32 lslots = (((byte *) end) - (byte *) e) / elemsize;
int32 lused = 0;
while (e != end) {
hash_hash_t hash = e->hash;
if ((hash & HASH_MASK) == HASH_SUBHASH) {
clean_st (*(struct hash_subtable **)e->data, slots, used);
} else {
lused += (hash != HASH_NIL);
}
e = HASH_OFFSET (e, elemsize);
}
free (st);
*slots += lslots;
*used += lused;
}
void
hash_destroy (struct hash *h)
{
int32 slots = 0;
int32 used = 0;
clean_st (h->st, &slots, &used);
free (h);
}
static void
hash_visit_internal (struct hash_subtable *st,
int32 used, int32 level,
void (*data_visit) (void *arg, int32 level, void *data),
void *arg)
{
int32 elemsize = st->datasize + offsetof (struct hash_entry, data[0]);
struct hash_entry *e = st->entry;
int32 shift = HASH_BITS - (used + st->power);
int32 i = 0;
while (e != st->end) {
int32 index = ((e->hash >> (shift - 1)) >> 1) & ((1 << st->power) - 1);
if ((e->hash & HASH_MASK) == HASH_SUBHASH) {
(*data_visit) (arg, level, e->data);
hash_visit_internal (*(struct hash_subtable **)e->data,
used + st->power, level + 1, data_visit, arg);
} else {
(*data_visit) (arg, level, e->data);
}
if (e->hash != HASH_NIL) {
assert (i < index + st->max_probes);
assert (index <= i);
}
e = HASH_OFFSET (e, elemsize);
i++;
}
}
void
hash_visit (struct hash *h, void (*data_visit) (void *arg, int32 level, void *data), void *arg)
{
hash_visit_internal (h->st, 0, 0, data_visit, arg);
}
//
/// interfaces to go runtime
//
static void
donothing(uint32 s, void *a, void *b)
{
USED(s);
USED(a);
USED(b);
}
typedef struct hash Hmap;
static int32 debug = 0;
// newmap(keysize uint32, valsize uint32,
// keyalg uint32, valalg uint32,
// hint uint32) (hmap *map[any]any);
void
sys·newmap(uint32 keysize, uint32 valsize,
uint32 keyalg, uint32 valalg, uint32 hint,
Hmap* ret)
{
Hmap *h;
if(keyalg >= 3 ||
valalg >= 3) {
prints("0<=");
sys·printint(keyalg);
prints("<");
sys·printint(nelem(algarray));
prints("\n0<=");
sys·printint(valalg);
prints("<");
sys·printint(nelem(algarray));
prints("\n");
throw("sys·newmap: key/val algorithm out of range");
}
h = mal(sizeof(*h));
hash_init(h, keysize+valsize,
algarray[keyalg].hash,
algarray[keyalg].equal,
donothing,
hint);
h->keysize = keysize;
h->valsize = valsize;
h->keyalg = &algarray[keyalg];
h->valalg = &algarray[valalg];
// these calculations are compiler dependent
h->ko = rnd(sizeof(h), keysize);
h->vo = rnd(h->ko+keysize, valsize);
h->po = rnd(h->vo+valsize, 1);
ret = h;
FLUSH(&ret);
if(debug) {
prints("newmap: map=");
sys·printpointer(h);
prints("; keysize=");
sys·printint(keysize);
prints("; valsize=");
sys·printint(valsize);
prints("; keyalg=");
sys·printint(keyalg);
prints("; valalg=");
sys·printint(valalg);
prints("; ko=");
sys·printint(h->ko);
prints("; vo=");
sys·printint(h->vo);
prints("; po=");
sys·printint(h->po);
prints("\n");
}
}
// mapaccess1(hmap *map[any]any, key any) (val any);
void
sys·mapaccess1(Hmap *h, ...)
{
byte *ak, *av;
byte *res;
int32 hit;
ak = (byte*)&h + h->ko;
av = (byte*)&h + h->vo;
res = nil;
hit = hash_lookup(h, ak, (void**)&res);
if(!hit)
throw("sys·mapaccess1: key not in map");
h->valalg->copy(h->valsize, av, res+h->keysize);
if(debug) {
prints("sys·mapaccess1: map=");
sys·printpointer(h);
prints("; key=");
h->keyalg->print(h->keysize, ak);
prints("; val=");
h->valalg->print(h->valsize, av);
prints("; hit=");
sys·printint(hit);
prints("; res=");
sys·printpointer(res);
prints("\n");
}
}
// mapaccess2(hmap *map[any]any, key any) (val any, pres bool);
void
sys·mapaccess2(Hmap *h, ...)
{
byte *ak, *av, *ap;
byte *res;
int32 hit;
ak = (byte*)&h + h->ko;
av = (byte*)&h + h->vo;
ap = (byte*)&h + h->po;
res = nil;
hit = hash_lookup(h, ak, (void**)&res);
if(!hit) {
*ap = false;
h->valalg->copy(h->valsize, av, nil);
} else {
*ap = true;
h->valalg->copy(h->valsize, av, res+h->keysize);
}
if(debug) {
prints("sys·mapaccess2: map=");
sys·printpointer(h);
prints("; key=");
h->keyalg->print(h->keysize, ak);
prints("; val=");
h->valalg->print(h->valsize, av);
prints("; hit=");
sys·printint(hit);
prints("; res=");
sys·printpointer(res);
prints("; pres=");
sys·printbool(*ap);
prints("\n");
}
}
static void
mapassign(Hmap *h, byte *ak, byte *av)
{
byte *res;
int32 hit;
res = nil;
hit = hash_insert(h, ak, (void**)&res);
h->keyalg->copy(h->keysize, res, ak);
h->valalg->copy(h->valsize, res+h->keysize, av);
if(debug) {
prints("mapassign: map=");
sys·printpointer(h);
prints("; key=");
h->keyalg->print(h->keysize, ak);
prints("; val=");
h->valalg->print(h->valsize, av);
prints("; hit=");
sys·printint(hit);
prints("; res=");
sys·printpointer(res);
prints("\n");
}
}
// mapassign1(hmap *map[any]any, key any, val any);
void
sys·mapassign1(Hmap *h, ...)
{
byte *ak, *av;
ak = (byte*)&h + h->ko;
av = (byte*)&h + h->vo;
mapassign(h, ak, av);
}
// mapassign2(hmap *map[any]any, key any, val any, pres bool);
void
sys·mapassign2(Hmap *h, ...)
{
byte *ak, *av, *ap;
byte *res;
int32 hit;
ak = (byte*)&h + h->ko;
av = (byte*)&h + h->vo;
ap = (byte*)&h + h->po;
if(*ap == true) {
// assign
mapassign(h, ak, av);
return;
}
// delete
hit = hash_remove(h, ak, (void**)&res);
if(debug) {
prints("mapassign2: map=");
sys·printpointer(h);
prints("; key=");
h->keyalg->print(h->keysize, ak);
prints("; hit=");
sys·printint(hit);
prints("; res=");
sys·printpointer(res);
prints("\n");
}
}
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
/* A hash table.
Example, hashing nul-terminated char*s:
hash_hash_t str_hash (void *v) {
char *s;
hash_hash_t hash = 0;
for (s = *(char **)v; *s != 0; s++) {
hash = (hash ^ *s) * 2654435769U;
}
return (hash);
}
int str_eq (void *a, void *b) {
return (strcmp (*(char **)a, *(char **)b) == 0);
}
void str_del (void *arg, void *data) {
*(char **)arg = *(char **)data;
}
struct hash *h = hash_new (sizeof (char *), &str_hash, &str_eq, &str_del, 3, 12, 15);
... 3=> 2**3 entries initial size
... 12=> 2**12 entries before sprouting sub-tables
... 15=> number of adjacent probes to attempt before growing
Example lookup:
char *key = "foobar";
char **result_ptr;
if (hash_lookup (h, &key, (void **) &result_ptr)) {
printf ("found in table: %s\n", *result_ptr);
} else {
printf ("not found in table\n");
}
Example insertion:
char *key = strdup ("foobar");
char **result_ptr;
if (hash_lookup (h, &key, (void **) &result_ptr)) {
printf ("found in table: %s\n", *result_ptr);
printf ("to overwrite, do *result_ptr = key\n");
} else {
printf ("not found in table; inserted as %s\n", *result_ptr);
assert (*result_ptr == key);
}
Example deletion:
char *key = "foobar";
char *result;
if (hash_remove (h, &key, &result)) {
printf ("key found and deleted from table\n");
printf ("called str_del (&result, data) to copy data to result: %s\n", result);
} else {
printf ("not found in table\n");
}
Example iteration over the elements of *h:
char **data;
struct hash_iter it;
hash_iter_init (h, &it);
for (data = hash_next (&it); data != 0; data = hash_next (&it)) {
printf ("%s\n", *data);
}
*/
#define malloc mal
#define free(a) USED(a)
#define offsetof(s,m) (uint32)(&(((s*)0)->m))
#define memset(a,b,c) sys·memclr((byte*)(a), (uint32)(c))
#define memmove(a,b,c) mmov((byte*)(a),(byte*)(b),(uint32)(c))
#define memcpy(a,b,c) mcpy((byte*)(a),(byte*)(b),(uint32)(c))
#define assert(a) if(!(a)) throw("assert")
struct hash; /* opaque */
struct hash_subtable; /* opaque */
struct hash_entry; /* opaque */
typedef uint64 uintptr_t;
typedef uintptr_t hash_hash_t;
struct hash_iter {
int32 elemsize; /* size of elements in table */
int32 changes; /* number of changes observed last time */
int32 i; /* stack pointer in subtable_state */
hash_hash_t last_hash; /* last hash value returned */
struct hash *h; /* the hash table */
struct hash_iter_sub {
struct hash_entry *e; /* pointer into subtable */
struct hash_entry *start; /* start of subtable */
struct hash_entry *end; /* end of subtable */
} subtable_state[16]; /* Should be large enough unless the hashing is
so bad that many distinct data values hash
to the same hash value. */
};
/* Return a hashtable h 2**init_power empty entries, each with
"datasize" data bytes.
(*data_hash)(a) should return the hash value of data element *a.
(*data_eq)(a,b) should return whether the data at "a" and the data at "b"
are equal.
(*data_del)(arg, a) will be invoked when data element *a is about to be removed
from the table. "arg" is the argument passed to "hash_remove()".
Growing is accomplished by resizing if the current tables size is less than
a threshold, and by adding subtables otherwise. hint should be set
the expected maximum size of the table.
"datasize" should be in [sizeof (void*), ..., 255]. If you need a
bigger "datasize", store a pointer to another piece of memory. */
//struct hash *hash_new (int32 datasize,
// hash_hash_t (*data_hash) (void *),
// int32 (*data_eq) (void *, void *),
// void (*data_del) (void *, void *),
// int64 hint);
/* Lookup *data in *h. If the data is found, return 1 and place a pointer to
the found element in *pres. Otherwise return 0 and place 0 in *pres. */
int32 hash_lookup (struct hash *h, void *data, void **pres);
/* Lookup *data in *h. If the data is found, execute (*data_del) (arg, p)
where p points to the data in the table, then remove it from *h and return
1. Otherwise return 0. */
int32 hash_remove (struct hash *h, void *data, void *arg);
/* Lookup *data in *h. If the data is found, return 1, and place a pointer
to the found element in *pres. Otherwise, return 0, allocate a region
for the data to be inserted, and place a pointer to the inserted element
in *pres; it is the caller's responsibility to copy the data to be
inserted to the pointer returned in *pres in this case.
If using garbage collection, it is the caller's responsibility to
add references for **pres if HASH_ADDED is returned. */
int32 hash_insert (struct hash *h, void *data, void **pres);
/* Return the number of elements in the table. */
uint32 hash_count (struct hash *h);
/* The following call is useful only if not using garbage collection on the
table.
Remove all sub-tables associated with *h.
This undoes the effects of hash_init().
If other memory pointed to by user data must be freed, the caller is
responsible for doiing do by iterating over *h first; see
hash_iter_init()/hash_next(). */
void hash_destroy (struct hash *h);
/*----- iteration -----*/
/* Initialize *it from *h. */
void hash_iter_init (struct hash *h, struct hash_iter *it);
/* Return the next used entry in the table which which *it was initialized. */
void *hash_next (struct hash_iter *it);
/*---- test interface ----*/
/* Call (*data_visit) (arg, level, data) for every data entry in the table,
whether used or not. "level" is the subtable level, 0 means first level. */
/* TESTING ONLY: DO NOT USE THIS ROUTINE IN NORMAL CODE */
void hash_visit (struct hash *h, void (*data_visit) (void *arg, int32 level, void *data), void *arg);
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "runtime.h"
static int32 debug = 0;
typedef struct Link Link;
typedef struct Hmap Hmap;
struct Link
{
Link* link;
byte data[8];
};
struct Hmap
{
uint32 len; // must be first
uint32 keysize;
uint32 valsize;
uint32 hint;
uint32 valoffset;
uint32 ko;
uint32 vo;
uint32 po;
Alg* keyalg;
Alg* valalg;
Link* link;
};
// newmap(keysize uint32, valsize uint32,
// keyalg uint32, valalg uint32,
// hint uint32) (hmap *map[any]any);
void
sys·newmap(uint32 keysize, uint32 valsize,
uint32 keyalg, uint32 valalg, uint32 hint,
Hmap* ret)
{
Hmap *m;
if(keyalg >= 3 ||
valalg >= 3) {
prints("0<=");
sys·printint(keyalg);
prints("<");
sys·printint(nelem(algarray));
prints("\n0<=");
sys·printint(valalg);
prints("<");
sys·printint(nelem(algarray));
prints("\n");
throw("sys·newmap: key/val algorithm out of range");
}
m = mal(sizeof(*m));
m->len = 0;
m->keysize = keysize;
m->valsize = valsize;
m->keyalg = &algarray[keyalg];
m->valalg = &algarray[valalg];
m->hint = hint;
// these calculations are compiler dependent
m->valoffset = rnd(keysize, valsize);
m->ko = rnd(sizeof(m), keysize);
m->vo = rnd(m->ko+keysize, valsize);
m->po = rnd(m->vo+valsize, 1);
ret = m;
FLUSH(&ret);
if(debug) {
prints("newmap: map=");
sys·printpointer(m);
prints("; keysize=");
sys·printint(keysize);
prints("; valsize=");
sys·printint(valsize);
prints("; keyalg=");
sys·printint(keyalg);
prints("; valalg=");
sys·printint(valalg);
prints("; valoffset=");
sys·printint(m->valoffset);
prints("; ko=");
sys·printint(m->ko);
prints("; vo=");
sys·printint(m->vo);
prints("; po=");
sys·printint(m->po);
prints("\n");
}
}
// mapaccess1(hmap *map[any]any, key any) (val any);
void
sys·mapaccess1(Hmap *m, ...)
{
Link *l;
byte *ak, *av;
ak = (byte*)&m + m->ko;
av = (byte*)&m + m->vo;
for(l=m->link; l!=nil; l=l->link) {
if(m->keyalg->equal(m->keysize, ak, l->data)) {
m->valalg->copy(m->valsize, av, l->data+m->valoffset);
goto out;
}
}
m->valalg->copy(m->valsize, av, 0);
throw("sys·mapaccess1: key not in map");
out:
if(debug) {
prints("sys·mapaccess1: map=");
sys·printpointer(m);
prints("; key=");
m->keyalg->print(m->keysize, ak);
prints("; val=");
m->valalg->print(m->valsize, av);
prints("\n");
}
}
// mapaccess2(hmap *map[any]any, key any) (val any, pres bool);
void
sys·mapaccess2(Hmap *m, ...)
{
Link *l;
byte *ak, *av, *ap;
ak = (byte*)&m + m->ko;
av = (byte*)&m + m->vo;
ap = (byte*)&m + m->po;
for(l=m->link; l!=nil; l=l->link) {
if(m->keyalg->equal(m->keysize, ak, l->data)) {
*ap = true;
m->valalg->copy(m->valsize, av, l->data+m->valoffset);
goto out;
}
}
*ap = false;
m->valalg->copy(m->valsize, av, nil);
out:
if(debug) {
prints("sys·mapaccess2: map=");
sys·printpointer(m);
prints("; key=");
m->keyalg->print(m->keysize, ak);
prints("; val=");
m->valalg->print(m->valsize, av);
prints("; pres=");
sys·printbool(*ap);
prints("\n");
}
}
static void
sys·mapassign(Hmap *m, byte *ak, byte *av)
{
Link *l;
// mapassign(hmap *map[any]any, key any, val any);
for(l=m->link; l!=nil; l=l->link) {
if(m->keyalg->equal(m->keysize, ak, l->data))
goto out;
}
l = mal((sizeof(*l)-8) + m->keysize + m->valsize);
l->link = m->link;
m->link = l;
m->keyalg->copy(m->keysize, l->data, ak);
m->len++;
out:
m->valalg->copy(m->valsize, l->data+m->valoffset, av);
if(debug) {
prints("mapassign: map=");
sys·printpointer(m);
prints("; key=");
m->keyalg->print(m->keysize, ak);
prints("; val=");
m->valalg->print(m->valsize, av);
prints("\n");
}
}
// mapassign1(hmap *map[any]any, key any, val any);
void
sys·mapassign1(Hmap *m, ...)
{
byte *ak, *av;
ak = (byte*)&m + m->ko;
av = (byte*)&m + m->vo;
sys·mapassign(m, ak, av);
}
// mapassign2(hmap *map[any]any, key any, val any, pres bool);
void
sys·mapassign2(Hmap *m, ...)
{
Link **ll;
byte *ak, *av, *ap;
ak = (byte*)&m + m->ko;
av = (byte*)&m + m->vo;
ap = (byte*)&m + m->po;
if(*ap == true) {
// assign
sys·mapassign(m, ak, av);
return;
}
// delete
for(ll=&m->link; (*ll)!=nil; ll=&(*ll)->link) {
if(m->keyalg->equal(m->keysize, ak, (*ll)->data)) {
m->valalg->copy(m->valsize, (*ll)->data+m->valoffset, nil);
(*ll) = (*ll)->link;
m->len--;
if(debug) {
prints("mapdelete (found): map=");
sys·printpointer(m);
prints("; key=");
m->keyalg->print(m->keysize, ak);
prints("\n");
}
return;
}
}
if(debug) {
prints("mapdelete (not found): map=");
sys·printpointer(m);
prints("; key=");
m->keyalg->print(m->keysize, ak);
prints(" *** not found\n");
}
}
......@@ -87,6 +87,28 @@ mcpy(byte *t, byte *f, uint32 n)
}
}
void
mmov(byte *t, byte *f, uint32 n)
{
if(t < f) {
while(n > 0) {
*t = *f;
t++;
f++;
n--;
}
} else {
t += n;
f += n;
while(n > 0) {
t--;
f--;
*t = *f;
n--;
}
}
}
uint32
rnd(uint32 n, uint32 m)
{
......@@ -582,9 +604,17 @@ check(void)
static uint64
memhash(uint32 s, void *a)
{
USED(s, a);
prints("memhash\n");
return 0x12345;
byte *b;
uint64 hash;
b = a;
hash = 33054211828000289ULL;
while(s > 0) {
hash = (hash ^ *b) * 23344194077549503ULL;
b++;
s--;
}
return hash;
}
static uint32
......@@ -644,9 +674,7 @@ memcopy(uint32 s, void *a, void *b)
static uint64
stringhash(uint32 s, string *a)
{
USED(s, a);
prints("stringhash\n");
return 0x12345;
return memhash((*a)->len, (*a)->str);
}
static uint32
......@@ -677,9 +705,7 @@ stringcopy(uint32 s, string *a, string *b)
static uint64
pointerhash(uint32 s, void **a)
{
USED(s, a);
prints("pointerhash\n");
return 0x12345;
return memhash(s, *a);
}
static uint32
......
......@@ -215,6 +215,7 @@ void throw(int8*);
uint32 rnd(uint32, uint32);
void prints(int8*);
void mcpy(byte*, byte*, uint32);
void mmov(byte*, byte*, uint32);
void* mal(uint32);
uint32 cmpstring(string, string);
void initsig(void);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment