Commit bf36219c authored by Keith Randall's avatar Keith Randall Committed by Keith Randall

bytes/hash: add hashing package for bytes and strings

Fixes #28322

R=go1.14

RELNOTE=yes

Change-Id: Ic29f8b587c8c77472260836a5c3e13edaded13fa
Reviewed-on: https://go-review.googlesource.com/c/go/+/186877Reviewed-by: default avatarAlan Donovan <adonovan@google.com>
parent fbfb41e6
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package bytes/hash provides hash functions on byte sequences. These
// hash functions are intended to be used to implement hash tables or
// other data structures that need to map arbitrary strings or byte
// sequences to a uniform distribution of integers. The hash functions
// are collision-resistant but are not cryptographically secure (use
// one of the hash functions in crypto/* if you need that).
//
// The produced hashes depend only on the sequence of bytes provided
// to the Hash object, not on the way in which they are provided. For
// example, the calls
// h.AddString("foo")
// h.AddBytes([]byte{'f','o','o'})
// h.AddByte('f'); h.AddByte('o'); h.AddByte('o')
// will all have the same effect.
//
// Two Hash instances in the same process using the same seed
// behave identically.
//
// Two Hash instances with the same seed in different processes are
// not guaranteed to behave identically, even if the processes share
// the same binary.
//
// Hashes are intended to be collision-resistant, even for situations
// where an adversary controls the byte sequences being hashed.
// All bits of the Hash result are close to uniformly and
// independently distributed, so can be safely restricted to a range
// using bit masking, shifting, or modular arithmetic.
package hash
import (
"unsafe"
)
// A Seed controls the behavior of a Hash. Two Hash objects with the
// same seed in the same process will behave identically. Two Hash
// objects with different seeds will very likely behave differently.
type Seed struct {
s uint64
}
// A Hash object is used to compute the hash of a byte sequence.
type Hash struct {
seed Seed // initial seed used for this hash
state Seed // current hash of all flushed bytes
buf [64]byte // unflushed byte buffer
n int // number of unflushed bytes
}
// AddByte adds b to the sequence of bytes hashed by h.
func (h *Hash) AddByte(b byte) {
if h.n == len(h.buf) {
h.flush()
}
h.buf[h.n] = b
h.n++
}
// AddBytes adds b to the sequence of bytes hashed by h.
func (h *Hash) AddBytes(b []byte) {
for h.n+len(b) > len(h.buf) {
k := copy(h.buf[h.n:], b)
h.n = len(h.buf)
b = b[k:]
h.flush()
}
h.n += copy(h.buf[h.n:], b)
}
// AddString adds the bytes of s to the sequence of bytes hashed by h.
func (h *Hash) AddString(s string) {
for h.n+len(s) > len(h.buf) {
k := copy(h.buf[h.n:], s)
h.n = len(h.buf)
s = s[k:]
h.flush()
}
h.n += copy(h.buf[h.n:], s)
}
// Seed returns the seed value specified in the most recent call to
// SetSeed, or the initial seed if SetSeed was never called.
func (h *Hash) Seed() Seed {
return h.seed
}
// SetSeed sets the seed used by h. Two Hash objects with the same
// seed in the same process will behave identically. Two Hash objects
// with different seeds will very likely behave differently. Any
// bytes added to h previous to this call will be discarded.
func (h *Hash) SetSeed(seed Seed) {
h.seed = seed
h.state = seed
h.n = 0
}
// Reset discards all bytes added to h.
// (The seed remains the same.)
func (h *Hash) Reset() {
h.state = h.seed
h.n = 0
}
// precondition: buffer is full.
func (h *Hash) flush() {
if h.n != len(h.buf) {
panic("flush of partially full buffer")
}
h.state.s = rthash(h.buf[:], h.state.s)
h.n = 0
}
// Hash returns a value which depends on h's seed and the sequence of
// bytes added to h (since the last call to Reset or SetSeed).
func (h *Hash) Hash() uint64 {
return rthash(h.buf[:h.n], h.state.s)
}
// MakeSeed returns a Seed initialized using the bits in s.
// Two seeds generated with the same s are guaranteed to be equal.
// Two seeds generated with different s are very likely to be different.
// TODO: disallow this? See Alan's comment in the issue.
func MakeSeed(s uint64) Seed {
return Seed{s: s}
}
// New returns a new Hash object. Different hash objects allocated by
// this function will very likely have different seeds.
func New() *Hash {
seed := Seed{s: uint64(runtime_fastrand())}
return &Hash{
seed: seed,
state: seed,
}
}
//go:linkname runtime_fastrand runtime.fastrand
func runtime_fastrand() uint32
func rthash(b []byte, seed uint64) uint64 {
if len(b) == 0 {
return seed
}
// The runtime hasher only works on uintptr. For 64-bit
// architectures, we use the hasher directly. Otherwise,
// we use two parallel hashers on the lower and upper 32 bits.
if unsafe.Sizeof(uintptr(0)) == 8 {
return uint64(runtime_memhash(unsafe.Pointer(&b[0]), uintptr(seed), uintptr(len(b))))
}
lo := runtime_memhash(unsafe.Pointer(&b[0]), uintptr(seed), uintptr(len(b)))
hi := runtime_memhash(unsafe.Pointer(&b[0]), uintptr(seed>>32), uintptr(len(b)))
// TODO: mix lo/hi? Get 64 bits some other way?
return uint64(hi)<<32 | uint64(lo)
}
//go:linkname runtime_memhash runtime.memhash
func runtime_memhash(p unsafe.Pointer, seed, s uintptr) uintptr
// Wrapper functions so that a bytes/hash.Hash implements
// the hash.Hash and hash.Hash64 interfaces.
func (h *Hash) Write(b []byte) (int, error) {
h.AddBytes(b)
return len(b), nil
}
func (h *Hash) Sum(b []byte) []byte {
x := h.Hash()
return append(b,
byte(x>>0),
byte(x>>8),
byte(x>>16),
byte(x>>24),
byte(x>>32),
byte(x>>40),
byte(x>>48),
byte(x>>56))
}
func (h *Hash) Sum64() uint64 {
return h.Hash()
}
func (h *Hash) Size() int { return 8 }
func (h *Hash) BlockSize() int { return len(h.buf) }
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package hash_test
import (
"bytes/hash"
basehash "hash"
"testing"
)
func TestUnseededHash(t *testing.T) {
m := map[uint64]struct{}{}
for i := 0; i < 1000; i++ {
h := hash.New()
m[h.Hash()] = struct{}{}
}
if len(m) < 900 {
t.Errorf("empty hash not sufficiently random: got %d, want 1000", len(m))
}
}
func TestSeededHash(t *testing.T) {
s := hash.MakeSeed(1234)
m := map[uint64]struct{}{}
for i := 0; i < 1000; i++ {
h := hash.New()
h.SetSeed(s)
m[h.Hash()] = struct{}{}
}
if len(m) != 1 {
t.Errorf("seeded hash is random: got %d, want 1", len(m))
}
}
func TestHashGrouping(t *testing.T) {
b := []byte("foo")
h1 := hash.New()
h2 := hash.New()
h2.SetSeed(h1.Seed())
h1.AddBytes(b)
for _, x := range b {
h2.AddByte(x)
}
if h1.Hash() != h2.Hash() {
t.Errorf("hash of \"foo\" and \"f\",\"o\",\"o\" not identical")
}
}
func TestHashBytesVsString(t *testing.T) {
s := "foo"
b := []byte(s)
h1 := hash.New()
h2 := hash.New()
h2.SetSeed(h1.Seed())
h1.AddString(s)
h2.AddBytes(b)
if h1.Hash() != h2.Hash() {
t.Errorf("hash of string and byts not identical")
}
}
// Make sure a Hash implements the hash.Hash and hash.Hash64 interfaces.
var _ basehash.Hash = &hash.Hash{}
var _ basehash.Hash64 = &hash.Hash{}
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package hash_test
import (
"bytes/hash"
"fmt"
"math"
"math/rand"
"runtime"
"strings"
"testing"
)
// Smhasher is a torture test for hash functions.
// https://code.google.com/p/smhasher/
// This code is a port of some of the Smhasher tests to Go.
// Sanity checks.
// hash should not depend on values outside key.
// hash should not depend on alignment.
func TestSmhasherSanity(t *testing.T) {
r := rand.New(rand.NewSource(1234))
const REP = 10
const KEYMAX = 128
const PAD = 16
const OFFMAX = 16
for k := 0; k < REP; k++ {
for n := 0; n < KEYMAX; n++ {
for i := 0; i < OFFMAX; i++ {
var b [KEYMAX + OFFMAX + 2*PAD]byte
var c [KEYMAX + OFFMAX + 2*PAD]byte
randBytes(r, b[:])
randBytes(r, c[:])
copy(c[PAD+i:PAD+i+n], b[PAD:PAD+n])
if bytesHash(b[PAD:PAD+n], 0) != bytesHash(c[PAD+i:PAD+i+n], 0) {
t.Errorf("hash depends on bytes outside key")
}
}
}
}
}
func bytesHash(b []byte, seed uint64) uint64 {
h := hash.New()
h.SetSeed(hash.MakeSeed(seed))
h.AddBytes(b)
return h.Hash()
}
func stringHash(s string, seed uint64) uint64 {
h := hash.New()
h.SetSeed(hash.MakeSeed(seed))
h.AddString(s)
return h.Hash()
}
const hashSize = 64
func randBytes(r *rand.Rand, b []byte) {
r.Read(b) // can't fail
}
// A hashSet measures the frequency of hash collisions.
type hashSet struct {
m map[uint64]struct{} // set of hashes added
n int // number of hashes added
}
func newHashSet() *hashSet {
return &hashSet{make(map[uint64]struct{}), 0}
}
func (s *hashSet) add(h uint64) {
s.m[h] = struct{}{}
s.n++
}
func (s *hashSet) addS(x string) {
s.add(stringHash(x, 0))
}
func (s *hashSet) addB(x []byte) {
s.add(bytesHash(x, 0))
}
func (s *hashSet) addS_seed(x string, seed uint64) {
s.add(stringHash(x, seed))
}
func (s *hashSet) check(t *testing.T) {
const SLOP = 10.0
collisions := s.n - len(s.m)
pairs := int64(s.n) * int64(s.n-1) / 2
expected := float64(pairs) / math.Pow(2.0, float64(hashSize))
stddev := math.Sqrt(expected)
if float64(collisions) > expected+SLOP*(3*stddev+1) {
t.Errorf("unexpected number of collisions: got=%d mean=%f stddev=%f", collisions, expected, stddev)
}
}
// a string plus adding zeros must make distinct hashes
func TestSmhasherAppendedZeros(t *testing.T) {
s := "hello" + strings.Repeat("\x00", 256)
h := newHashSet()
for i := 0; i <= len(s); i++ {
h.addS(s[:i])
}
h.check(t)
}
// All 0-3 byte strings have distinct hashes.
func TestSmhasherSmallKeys(t *testing.T) {
h := newHashSet()
var b [3]byte
for i := 0; i < 256; i++ {
b[0] = byte(i)
h.addB(b[:1])
for j := 0; j < 256; j++ {
b[1] = byte(j)
h.addB(b[:2])
if !testing.Short() {
for k := 0; k < 256; k++ {
b[2] = byte(k)
h.addB(b[:3])
}
}
}
}
h.check(t)
}
// Different length strings of all zeros have distinct hashes.
func TestSmhasherZeros(t *testing.T) {
N := 256 * 1024
if testing.Short() {
N = 1024
}
h := newHashSet()
b := make([]byte, N)
for i := 0; i <= N; i++ {
h.addB(b[:i])
}
h.check(t)
}
// Strings with up to two nonzero bytes all have distinct hashes.
func TestSmhasherTwoNonzero(t *testing.T) {
if runtime.GOARCH == "wasm" {
t.Skip("Too slow on wasm")
}
if testing.Short() {
t.Skip("Skipping in short mode")
}
h := newHashSet()
for n := 2; n <= 16; n++ {
twoNonZero(h, n)
}
h.check(t)
}
func twoNonZero(h *hashSet, n int) {
b := make([]byte, n)
// all zero
h.addB(b)
// one non-zero byte
for i := 0; i < n; i++ {
for x := 1; x < 256; x++ {
b[i] = byte(x)
h.addB(b)
b[i] = 0
}
}
// two non-zero bytes
for i := 0; i < n; i++ {
for x := 1; x < 256; x++ {
b[i] = byte(x)
for j := i + 1; j < n; j++ {
for y := 1; y < 256; y++ {
b[j] = byte(y)
h.addB(b)
b[j] = 0
}
}
b[i] = 0
}
}
}
// Test strings with repeats, like "abcdabcdabcdabcd..."
func TestSmhasherCyclic(t *testing.T) {
if testing.Short() {
t.Skip("Skipping in short mode")
}
r := rand.New(rand.NewSource(1234))
const REPEAT = 8
const N = 1000000
for n := 4; n <= 12; n++ {
h := newHashSet()
b := make([]byte, REPEAT*n)
for i := 0; i < N; i++ {
b[0] = byte(i * 79 % 97)
b[1] = byte(i * 43 % 137)
b[2] = byte(i * 151 % 197)
b[3] = byte(i * 199 % 251)
randBytes(r, b[4:n])
for j := n; j < n*REPEAT; j++ {
b[j] = b[j-n]
}
h.addB(b)
}
h.check(t)
}
}
// Test strings with only a few bits set
func TestSmhasherSparse(t *testing.T) {
if runtime.GOARCH == "wasm" {
t.Skip("Too slow on wasm")
}
if testing.Short() {
t.Skip("Skipping in short mode")
}
sparse(t, 32, 6)
sparse(t, 40, 6)
sparse(t, 48, 5)
sparse(t, 56, 5)
sparse(t, 64, 5)
sparse(t, 96, 4)
sparse(t, 256, 3)
sparse(t, 2048, 2)
}
func sparse(t *testing.T, n int, k int) {
b := make([]byte, n/8)
h := newHashSet()
setbits(h, b, 0, k)
h.check(t)
}
// set up to k bits at index i and greater
func setbits(h *hashSet, b []byte, i int, k int) {
h.addB(b)
if k == 0 {
return
}
for j := i; j < len(b)*8; j++ {
b[j/8] |= byte(1 << uint(j&7))
setbits(h, b, j+1, k-1)
b[j/8] &= byte(^(1 << uint(j&7)))
}
}
// Test all possible combinations of n blocks from the set s.
// "permutation" is a bad name here, but it is what Smhasher uses.
func TestSmhasherPermutation(t *testing.T) {
if runtime.GOARCH == "wasm" {
t.Skip("Too slow on wasm")
}
if testing.Short() {
t.Skip("Skipping in short mode")
}
permutation(t, []uint32{0, 1, 2, 3, 4, 5, 6, 7}, 8)
permutation(t, []uint32{0, 1 << 29, 2 << 29, 3 << 29, 4 << 29, 5 << 29, 6 << 29, 7 << 29}, 8)
permutation(t, []uint32{0, 1}, 20)
permutation(t, []uint32{0, 1 << 31}, 20)
permutation(t, []uint32{0, 1, 2, 3, 4, 5, 6, 7, 1 << 29, 2 << 29, 3 << 29, 4 << 29, 5 << 29, 6 << 29, 7 << 29}, 6)
}
func permutation(t *testing.T, s []uint32, n int) {
b := make([]byte, n*4)
h := newHashSet()
genPerm(h, b, s, 0)
h.check(t)
}
func genPerm(h *hashSet, b []byte, s []uint32, n int) {
h.addB(b[:n])
if n == len(b) {
return
}
for _, v := range s {
b[n] = byte(v)
b[n+1] = byte(v >> 8)
b[n+2] = byte(v >> 16)
b[n+3] = byte(v >> 24)
genPerm(h, b, s, n+4)
}
}
type key interface {
clear() // set bits all to 0
random(r *rand.Rand) // set key to something random
bits() int // how many bits key has
flipBit(i int) // flip bit i of the key
hash() uint64 // hash the key
name() string // for error reporting
}
type bytesKey struct {
b []byte
}
func (k *bytesKey) clear() {
for i := range k.b {
k.b[i] = 0
}
}
func (k *bytesKey) random(r *rand.Rand) {
randBytes(r, k.b)
}
func (k *bytesKey) bits() int {
return len(k.b) * 8
}
func (k *bytesKey) flipBit(i int) {
k.b[i>>3] ^= byte(1 << uint(i&7))
}
func (k *bytesKey) hash() uint64 {
return bytesHash(k.b, 0)
}
func (k *bytesKey) name() string {
return fmt.Sprintf("bytes%d", len(k.b))
}
// Flipping a single bit of a key should flip each output bit with 50% probability.
func TestSmhasherAvalanche(t *testing.T) {
if runtime.GOARCH == "wasm" {
t.Skip("Too slow on wasm")
}
if testing.Short() {
t.Skip("Skipping in short mode")
}
avalancheTest1(t, &bytesKey{make([]byte, 2)})
avalancheTest1(t, &bytesKey{make([]byte, 4)})
avalancheTest1(t, &bytesKey{make([]byte, 8)})
avalancheTest1(t, &bytesKey{make([]byte, 16)})
avalancheTest1(t, &bytesKey{make([]byte, 32)})
avalancheTest1(t, &bytesKey{make([]byte, 200)})
}
func avalancheTest1(t *testing.T, k key) {
const REP = 100000
r := rand.New(rand.NewSource(1234))
n := k.bits()
// grid[i][j] is a count of whether flipping
// input bit i affects output bit j.
grid := make([][hashSize]int, n)
for z := 0; z < REP; z++ {
// pick a random key, hash it
k.random(r)
h := k.hash()
// flip each bit, hash & compare the results
for i := 0; i < n; i++ {
k.flipBit(i)
d := h ^ k.hash()
k.flipBit(i)
// record the effects of that bit flip
g := &grid[i]
for j := 0; j < hashSize; j++ {
g[j] += int(d & 1)
d >>= 1
}
}
}
// Each entry in the grid should be about REP/2.
// More precisely, we did N = k.bits() * hashSize experiments where
// each is the sum of REP coin flips. We want to find bounds on the
// sum of coin flips such that a truly random experiment would have
// all sums inside those bounds with 99% probability.
N := n * hashSize
var c float64
// find c such that Prob(mean-c*stddev < x < mean+c*stddev)^N > .9999
for c = 0.0; math.Pow(math.Erf(c/math.Sqrt(2)), float64(N)) < .9999; c += .1 {
}
c *= 4.0 // allowed slack - we don't need to be perfectly random
mean := .5 * REP
stddev := .5 * math.Sqrt(REP)
low := int(mean - c*stddev)
high := int(mean + c*stddev)
for i := 0; i < n; i++ {
for j := 0; j < hashSize; j++ {
x := grid[i][j]
if x < low || x > high {
t.Errorf("bad bias for %s bit %d -> bit %d: %d/%d\n", k.name(), i, j, x, REP)
}
}
}
}
// All bit rotations of a set of distinct keys
func TestSmhasherWindowed(t *testing.T) {
windowed(t, &bytesKey{make([]byte, 128)})
}
func windowed(t *testing.T, k key) {
if runtime.GOARCH == "wasm" {
t.Skip("Too slow on wasm")
}
if testing.Short() {
t.Skip("Skipping in short mode")
}
const BITS = 16
for r := 0; r < k.bits(); r++ {
h := newHashSet()
for i := 0; i < 1<<BITS; i++ {
k.clear()
for j := 0; j < BITS; j++ {
if i>>uint(j)&1 != 0 {
k.flipBit((j + r) % k.bits())
}
}
h.add(k.hash())
}
h.check(t)
}
}
// All keys of the form prefix + [A-Za-z0-9]*N + suffix.
func TestSmhasherText(t *testing.T) {
if testing.Short() {
t.Skip("Skipping in short mode")
}
text(t, "Foo", "Bar")
text(t, "FooBar", "")
text(t, "", "FooBar")
}
func text(t *testing.T, prefix, suffix string) {
const N = 4
const S = "ABCDEFGHIJKLMNOPQRSTabcdefghijklmnopqrst0123456789"
const L = len(S)
b := make([]byte, len(prefix)+N+len(suffix))
copy(b, prefix)
copy(b[len(prefix)+N:], suffix)
h := newHashSet()
c := b[len(prefix):]
for i := 0; i < L; i++ {
c[0] = S[i]
for j := 0; j < L; j++ {
c[1] = S[j]
for k := 0; k < L; k++ {
c[2] = S[k]
for x := 0; x < L; x++ {
c[3] = S[x]
h.addB(b)
}
}
}
}
h.check(t)
}
// Make sure different seed values generate different hashes.
func TestSmhasherSeed(t *testing.T) {
h := newHashSet()
const N = 100000
s := "hello"
for i := 0; i < N; i++ {
h.addS_seed(s, uint64(i))
h.addS_seed(s, uint64(i)<<32) // make sure high bits are used
}
h.check(t)
}
...@@ -86,6 +86,7 @@ var pkgDeps = map[string][]string{ ...@@ -86,6 +86,7 @@ var pkgDeps = map[string][]string{
// L2 adds Unicode and strings processing. // L2 adds Unicode and strings processing.
"bufio": {"L0", "unicode/utf8", "bytes"}, "bufio": {"L0", "unicode/utf8", "bytes"},
"bytes": {"L0", "unicode", "unicode/utf8"}, "bytes": {"L0", "unicode", "unicode/utf8"},
"bytes/hash": {"L0"},
"path": {"L0", "unicode/utf8", "strings"}, "path": {"L0", "unicode/utf8", "strings"},
"strings": {"L0", "unicode", "unicode/utf8"}, "strings": {"L0", "unicode", "unicode/utf8"},
"unicode": {}, "unicode": {},
...@@ -94,6 +95,7 @@ var pkgDeps = map[string][]string{ ...@@ -94,6 +95,7 @@ var pkgDeps = map[string][]string{
"L1", "L1",
"bufio", "bufio",
"bytes", "bytes",
"bytes/hash",
"path", "path",
"strings", "strings",
"unicode", "unicode",
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment