Commit d426b638 authored by Austin Clements's avatar Austin Clements

Implement assignment. Move convertTo.

R=rsc
APPROVED=rsc
DELTA=591  (497 added, 76 deleted, 18 changed)
OCL=31933
CL=31955
parent 3d42e691
......@@ -79,6 +79,7 @@ func (a *exprCompiler) genBinOpXor(l *exprCompiler, r *exprCompiler)
func (a *exprCompiler) genBinOpAndNot(l *exprCompiler, r *exprCompiler)
func (a *exprCompiler) genBinOpShl(l *exprCompiler, r *exprCompiler)
func (a *exprCompiler) genBinOpShr(l *exprCompiler, r *exprCompiler)
func genAssign(lt Type, r *exprCompiler) (func(lv Value, f *Frame))
func (a *exprCompiler) copy() *exprCompiler {
ec := newExprCompiler(a.exprContext, a.pos);
......@@ -104,6 +105,11 @@ func (a *exprCompiler) diagOpTypes(op token.Token, lt Type, rt Type) {
a.diag("illegal operand types for '%v' operator\n\t%v\n\t%v", op, lt, rt);
}
/*
* "As" functions. These retrieve evaluator functions from an
* exprCompiler, panicking if the requested evaluator is nil.
*/
func (a *exprCompiler) asBool() (func(f *Frame) bool) {
if a.evalBool == nil {
log.Crashf("tried to get %v node as boolType", a.t);
......@@ -167,8 +173,149 @@ func (a *exprCompiler) asPtr() (func(f *Frame) Value) {
return a.evalPtr;
}
// TODO(austin) Move convertTo somewhere more reasonable
func (a *exprCompiler) convertTo(t Type) *exprCompiler
/*
* Common expression manipulations
*/
// a.convertTo(t) converts the value of the analyzed expression a,
// which must be a constant, ideal number, to a new analyzed
// expression with a constant value of type t.
func (a *exprCompiler) convertTo(t Type) *exprCompiler {
if !a.t.isIdeal() {
log.Crashf("attempted to convert from %v, expected ideal", a.t);
}
var rat *bignum.Rational;
// XXX(Spec) The spec says "It is erroneous".
//
// It is an error to assign a value with a non-zero fractional
// part to an integer, or if the assignment would overflow or
// underflow, or in general if the value cannot be represented
// by the type of the variable.
switch a.t {
case IdealFloatType:
rat = a.asIdealFloat()();
if t.isInteger() && !rat.IsInt() {
a.diag("constant %v truncated to integer", ratToString(rat));
return nil;
}
case IdealIntType:
i := a.asIdealInt()();
rat = bignum.MakeRat(i, bignum.Nat(1));
default:
log.Crashf("unexpected ideal type %v", a.t);
}
// Check bounds
if t, ok := t.(BoundedType); ok {
if rat.Cmp(t.minVal()) < 0 {
a.diag("constant %v underflows %v", ratToString(rat), t);
return nil;
}
if rat.Cmp(t.maxVal()) > 0 {
a.diag("constant %v overflows %v", ratToString(rat), t);
return nil;
}
}
// Convert rat to type t.
res := a.copy();
res.t = t;
switch t := t.(type) {
case *uintType:
n, d := rat.Value();
f := n.Quo(bignum.MakeInt(false, d));
v := f.Abs().Value();
res.evalUint = func(*Frame) uint64 { return v };
case *intType:
n, d := rat.Value();
f := n.Quo(bignum.MakeInt(false, d));
v := f.Value();
res.evalInt = func(*Frame) int64 { return v };
case *idealIntType:
n, d := rat.Value();
f := n.Quo(bignum.MakeInt(false, d));
res.evalIdealInt = func() *bignum.Integer { return f };
case *floatType:
n, d := rat.Value();
v := float64(n.Value())/float64(d.Value());
res.evalFloat = func(*Frame) float64 { return v };
case *idealFloatType:
res.evalIdealFloat = func() *bignum.Rational { return rat };
default:
log.Crashf("cannot convert to type %T", t);
}
return res;
}
// mkAssign takes an optional expected l-value type, lt, and an
// r-value expression compiler, r, and returns the expected l-value
// type and a function that evaluates the r-value and assigns it to
// the l-value lv.
//
// If lt is non-nil, the returned l-value type will always be lt. If
// lt is nil, mkAssign will infer and return the appropriate l-value
// type, or produce an error.
//
// errOp specifies the operation name to use for error messages, such
// as "assignment", or "function call". errPos, if non-zero,
// specifies the position of this assignment (for tuple assignments or
// function arguments). errPosName specifies the name to use for
// positions.
//
// If the assignment fails to typecheck, this generates an error
// message and returns nil, nil.
func mkAssign(lt Type, r *exprCompiler, errOp string, errPos int, errPosName string) (Type, func(lv Value, f *Frame)) {
// However, when [an ideal is] (used in an expression)
// assigned to a variable or typed constant, the destination
// must be able to represent the assigned value.
if r.t.isIdeal() && (lt == nil || lt.isInteger() || lt.isFloat()) {
// If the type is absent and the corresponding
// expression is a constant expression of ideal
// integer or ideal float type, the type of the
// declared variable is int or float respectively.
if lt == nil {
switch {
case r.t.isInteger():
lt = IntType;
case r.t.isFloat():
lt = FloatType;
default:
log.Crashf("unexpected ideal type %v", r.t);
}
}
r = r.convertTo(lt);
if r == nil {
return nil, nil;
}
}
// TOOD(austin) Deal with assignment special cases
if lt == nil {
lt = r.t;
} else {
// Values of any type may always be assigned to
// variables of compatible static type.
if !lt.compatible(r.t) {
if errPos == 0 {
r.diag("illegal operand types for %s\n\t%v\n\t%v", errOp, lt, r.t);
} else {
r.diag("illegal operand types in %s %d of %s\n\t%v\n\t%v", errPosName, errPos, errOp, lt, r.t);
}
return nil, nil;
}
}
// Compile
return lt, genAssign(lt, r);
}
/*
* Expression visitors
*/
func (a *exprCompiler) DoBadExpr(x *ast.BadExpr) {
// Do nothing. Already reported by parser.
......@@ -506,85 +653,9 @@ func (a *exprCompiler) DoUnaryExpr(x *ast.UnaryExpr) {
}
}
// a.convertTo(t) converts the value of the analyzed expression a,
// which must be a constant, ideal number, to a new analyzed
// expression with a constant value of type t.
func (a *exprCompiler) convertTo(t Type) *exprCompiler {
if !a.t.isIdeal() {
log.Crashf("attempted to convert from %v, expected ideal", a.t);
}
var rat *bignum.Rational;
// It is erroneous to assign a value with a non-zero
// fractional part to an integer, or if the assignment would
// overflow or underflow, or in general if the value cannot be
// represented by the type of the variable.
switch a.t {
case IdealFloatType:
rat = a.asIdealFloat()();
if t.isInteger() && !rat.IsInt() {
a.diag("constant %v truncated to integer", ratToString(rat));
return nil;
}
case IdealIntType:
i := a.asIdealInt()();
rat = bignum.MakeRat(i, bignum.Nat(1));
default:
log.Crashf("unexpected ideal type %v", a.t);
}
// Check bounds
if t, ok := t.(BoundedType); ok {
if rat.Cmp(t.minVal()) < 0 {
a.diag("constant %v underflows %v", ratToString(rat), t);
return nil;
}
if rat.Cmp(t.maxVal()) > 0 {
a.diag("constant %v overflows %v", ratToString(rat), t);
return nil;
}
}
// Convert rat to type t.
res := a.copy();
res.t = t;
switch t := t.(type) {
case *uintType:
n, d := rat.Value();
f := n.Quo(bignum.MakeInt(false, d));
v := f.Abs().Value();
res.evalUint = func(*Frame) uint64 { return v };
case *intType:
n, d := rat.Value();
f := n.Quo(bignum.MakeInt(false, d));
v := f.Value();
res.evalInt = func(*Frame) int64 { return v };
case *idealIntType:
n, d := rat.Value();
f := n.Quo(bignum.MakeInt(false, d));
res.evalIdealInt = func() *bignum.Integer { return f };
case *floatType:
n, d := rat.Value();
v := float64(n.Value())/float64(d.Value());
res.evalFloat = func(*Frame) float64 { return v };
case *idealFloatType:
res.evalIdealFloat = func() *bignum.Rational { return rat };
default:
log.Crashf("cannot convert to type %T", t);
}
return res;
}
var binOpDescs = make(map[token.Token] string)
func (a *exprCompiler) DoBinaryExpr(x *ast.BinaryExpr) {
l, r := a.copyVisit(x.X), a.copyVisit(x.Y);
if l.t == nil || r.t == nil {
return;
}
func (a *exprCompiler) doBinaryExpr(op token.Token, l, r *exprCompiler) {
// Save the original types of l.t and r.t for error messages.
origlt := l.t;
origrt := r.t;
......@@ -602,7 +673,7 @@ func (a *exprCompiler) DoBinaryExpr(x *ast.BinaryExpr) {
// relevant only for / and %? If I add an ideal int and an
// ideal float, I get an ideal float.
if x.Op != token.SHL && x.Op != token.SHR {
if op != token.SHL && op != token.SHR {
// Except in shift expressions, if one operand has
// numeric type and the other operand is an ideal
// number, the ideal number is converted to match the
......@@ -653,24 +724,24 @@ func (a *exprCompiler) DoBinaryExpr(x *ast.BinaryExpr) {
};
// Type check
switch x.Op {
switch op {
case token.ADD:
if !compat() || (!integers() && !floats() && !strings()) {
a.diagOpTypes(x.Op, origlt, origrt);
a.diagOpTypes(op, origlt, origrt);
return;
}
a.t = l.t;
case token.SUB, token.MUL, token.QUO:
if !compat() || (!integers() && !floats()) {
a.diagOpTypes(x.Op, origlt, origrt);
a.diagOpTypes(op, origlt, origrt);
return;
}
a.t = l.t;
case token.REM, token.AND, token.OR, token.XOR, token.AND_NOT:
if !compat() || !integers() {
a.diagOpTypes(x.Op, origlt, origrt);
a.diagOpTypes(op, origlt, origrt);
return;
}
a.t = l.t;
......@@ -684,7 +755,7 @@ func (a *exprCompiler) DoBinaryExpr(x *ast.BinaryExpr) {
// (§Arithmetic operators)" suggests so and 6g agrees.
if !l.t.isInteger() || !(r.t.isInteger() || r.t.isIdeal()) {
a.diagOpTypes(x.Op, origlt, origrt);
a.diagOpTypes(op, origlt, origrt);
return;
}
......@@ -759,7 +830,7 @@ func (a *exprCompiler) DoBinaryExpr(x *ast.BinaryExpr) {
// ... booleans may be compared only for equality or
// inequality.
if l.t.literal() == BoolType || r.t.literal() == BoolType {
a.diagOpTypes(x.Op, origlt, origrt);
a.diagOpTypes(op, origlt, origrt);
return;
}
......@@ -783,23 +854,23 @@ func (a *exprCompiler) DoBinaryExpr(x *ast.BinaryExpr) {
// "except bools" is really weird here, since this is
// actually explained in the Comparison compatibility
// section.
log.Crashf("Binary op %v not implemented", x.Op);
log.Crashf("Binary op %v not implemented", op);
// TODO(austin) Unnamed bool? Named bool?
a.t = BoolType;
default:
log.Crashf("unknown binary operator %v", x.Op);
log.Crashf("unknown binary operator %v", op);
}
var ok bool;
a.desc, ok = binOpDescs[x.Op];
a.desc, ok = binOpDescs[op];
if !ok {
a.desc = x.Op.String() + " expression";
binOpDescs[x.Op] = a.desc;
a.desc = op.String() + " expression";
binOpDescs[op] = a.desc;
}
// Compile
switch x.Op {
switch op {
case token.ADD:
a.genBinOpAdd(l, r);
......@@ -860,8 +931,17 @@ func (a *exprCompiler) DoBinaryExpr(x *ast.BinaryExpr) {
}
default:
log.Crashf("Compilation of binary op %v not implemented", x.Op);
log.Crashf("Compilation of binary op %v not implemented", op);
}
}
func (a *exprCompiler) DoBinaryExpr(x *ast.BinaryExpr) {
l, r := a.copyVisit(x.X), a.copyVisit(x.Y);
if l.t == nil || r.t == nil {
return;
}
a.doBinaryExpr(x.Op, l, r);
}
func (a *exprCompiler) DoKeyValueExpr(x *ast.KeyValueExpr) {
......@@ -1320,3 +1400,32 @@ func (a *exprCompiler) genBinOpShr(l *exprCompiler, r *exprCompiler) {
log.Crashf("unexpected result type %v at %v", l.t.literal(), a.pos);
}
}
func genAssign(lt Type, r *exprCompiler) (func(lv Value, f *Frame)) {
switch _ := lt.literal().(type) {
case *boolType:
rf := r.asBool();
return func(lv Value, f *Frame) { lv.(BoolValue).Set(rf(f)) };
case *uintType:
rf := r.asUint();
return func(lv Value, f *Frame) { lv.(UintValue).Set(rf(f)) };
case *intType:
rf := r.asInt();
return func(lv Value, f *Frame) { lv.(IntValue).Set(rf(f)) };
case *floatType:
rf := r.asFloat();
return func(lv Value, f *Frame) { lv.(FloatValue).Set(rf(f)) };
case *stringType:
rf := r.asString();
return func(lv Value, f *Frame) { lv.(StringValue).Set(rf(f)) };
case *ArrayType:
rf := r.asArray();
return func(lv Value, f *Frame) { lv.Assign(rf(f)) };
case *PtrType:
rf := r.asPtr();
return func(lv Value, f *Frame) { lv.(PtrValue).Set(rf(f)) };
default:
log.Crashf("unexpected left operand type %v at %v", lt.literal(), r.pos);
}
panic();
}
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package eval
import (
"eval";
"fmt";
"log";
"os";
"go/ast";
"go/scanner";
"go/token";
)
type stmtCompiler struct {
scope *Scope;
errors scanner.ErrorHandler;
pos token.Position;
f func (f *Frame);
}
func (a *stmtCompiler) diagAt(pos token.Position, format string, args ...) {
a.errors.Error(pos, fmt.Sprintf(format, args));
}
func (a *stmtCompiler) diag(format string, args ...) {
a.diagAt(a.pos, format, args);
}
/*
* Statement visitors
*/
func (a *stmtCompiler) DoBadStmt(s *ast.BadStmt) {
// Do nothing. Already reported by parser.
}
func (a *stmtCompiler) DoDeclStmt(s *ast.DeclStmt) {
log.Crash("Not implemented");
}
func (a *stmtCompiler) DoEmptyStmt(s *ast.EmptyStmt) {
log.Crash("Not implemented");
}
func (a *stmtCompiler) DoLabeledStmt(s *ast.LabeledStmt) {
log.Crash("Not implemented");
}
func (a *stmtCompiler) DoExprStmt(s *ast.ExprStmt) {
log.Crash("Not implemented");
}
func (a *stmtCompiler) DoIncDecStmt(s *ast.IncDecStmt) {
log.Crash("Not implemented");
}
func (a *stmtCompiler) doAssign(s *ast.AssignStmt) {
if len(s.Lhs) != len(s.Rhs) {
log.Crashf("Unbalanced assignment not implemented %v %v %v", len(s.Lhs), s.Tok, len(s.Rhs));
}
bad := false;
// Compile right side first so we have the types when
// compiling the left side and so we don't see definitions
// made on the left side.
rs := make([]*exprCompiler, len(s.Rhs));
for i, re := range s.Rhs {
rs[i] = compileExpr(re, a.scope, a.errors);
if rs[i] == nil {
bad = true;
}
}
// Compile left side and generate assigners
ls := make([]*exprCompiler, len(s.Lhs));
as := make([]func(lv Value, f *Frame), len(s.Lhs));
nDefs := 0;
for i, le := range s.Lhs {
errPos := i + 1;
if len(s.Lhs) == 1 {
errPos = 0;
}
if s.Tok == token.DEFINE {
// Check that it's an identifier
ident, ok := le.(*ast.Ident);
if !ok {
a.diagAt(le.Pos(), "left side of := must be a name");
bad = true;
continue;
}
// Is this simply an assignment?
if _, ok := a.scope.defs[ident.Value]; ok {
goto assignment;
}
if rs[i] == nil {
// TODO(austin) Define a placeholder.
continue;
}
// Generate assigner and get type
var lt Type;
lt, as[i] = mkAssign(nil, rs[i], "assignment", errPos, "position");
if lt == nil {
bad = true;
continue;
}
// Define identifier
v := a.scope.DefineVar(ident.Value, lt);
nDefs++;
if v == nil {
log.Crashf("Failed to define %s", ident.Value);
}
}
assignment:
ls[i] = compileExpr(le, a.scope, a.errors);
if ls[i] == nil {
bad = true;
continue;
}
if ls[i].evalAddr == nil {
ls[i].diag("cannot assign to %s", ls[i].desc);
bad = true;
continue;
}
// Generate assigner
if as[i] == nil {
var lt Type;
lt, as[i] = mkAssign(ls[i].t, rs[i], "assignment", errPos, "position");
if lt == nil {
bad = true;
continue;
}
}
}
if bad {
return;
}
// A short variable declaration may redeclare variables
// provided they were originally declared in the same block
// with the same type, and at least one of the variables is
// new.
if s.Tok == token.DEFINE && nDefs == 0 {
a.diag("at least one new variable must be declared");
return;
}
n := len(s.Lhs);
if n == 1 {
lf := ls[0].evalAddr;
assign := as[0];
a.f = func(f *Frame) { assign(lf(f), f) };
} else {
a.f = func(f *Frame) {
temps := make([]Value, n);
// Assign to temporaries
for i := 0; i < n; i++ {
// TODO(austin) Don't capture ls
temps[i] = ls[i].t.Zero();
as[i](temps[i], f);
}
// Copy to destination
for i := 0; i < n; i++ {
ls[i].evalAddr(f).Assign(temps[i]);
}
}
}
}
var assignOpToOp = map[token.Token] token.Token {
token.ADD_ASSIGN : token.ADD,
token.SUB_ASSIGN : token.SUB,
token.MUL_ASSIGN : token.MUL,
token.QUO_ASSIGN : token.QUO,
token.REM_ASSIGN : token.REM,
token.AND_ASSIGN : token.AND,
token.OR_ASSIGN : token.OR,
token.XOR_ASSIGN : token.XOR,
token.SHL_ASSIGN : token.SHL,
token.SHR_ASSIGN : token.SHR,
token.AND_NOT_ASSIGN : token.AND_NOT,
}
func (a *stmtCompiler) doAssignOp(s *ast.AssignStmt) {
if len(s.Lhs) != 1 || len(s.Rhs) != 1 {
a.diag("tuple assignment cannot be combined with an arithmetic operation");
return;
}
l := compileExpr(s.Lhs[0], a.scope, a.errors);
r := compileExpr(s.Rhs[0], a.scope, a.errors);
if l == nil || r == nil {
return;
}
if l.evalAddr == nil {
l.diag("cannot assign to %s", l.desc);
return;
}
ec := r.copy();
ec.pos = s.TokPos;
ec.doBinaryExpr(assignOpToOp[s.Tok], l, r);
if ec.t == nil {
return;
}
lf := l.evalAddr;
_, assign := mkAssign(l.t, r, "assignment", 0, "");
if assign == nil {
return;
}
a.f = func(f *Frame) { assign(lf(f), f) };
}
func (a *stmtCompiler) DoAssignStmt(s *ast.AssignStmt) {
switch s.Tok {
case token.ASSIGN, token.DEFINE:
a.doAssign(s);
default:
a.doAssignOp(s);
}
}
func (a *stmtCompiler) DoGoStmt(s *ast.GoStmt) {
log.Crash("Not implemented");
}
func (a *stmtCompiler) DoDeferStmt(s *ast.DeferStmt) {
log.Crash("Not implemented");
}
func (a *stmtCompiler) DoReturnStmt(s *ast.ReturnStmt) {
log.Crash("Not implemented");
}
func (a *stmtCompiler) DoBranchStmt(s *ast.BranchStmt) {
log.Crash("Not implemented");
}
func (a *stmtCompiler) DoBlockStmt(s *ast.BlockStmt) {
log.Crash("Not implemented");
}
func (a *stmtCompiler) DoIfStmt(s *ast.IfStmt) {
log.Crash("Not implemented");
}
func (a *stmtCompiler) DoCaseClause(s *ast.CaseClause) {
log.Crash("Not implemented");
}
func (a *stmtCompiler) DoSwitchStmt(s *ast.SwitchStmt) {
log.Crash("Not implemented");
}
func (a *stmtCompiler) DoTypeCaseClause(s *ast.TypeCaseClause) {
log.Crash("Not implemented");
}
func (a *stmtCompiler) DoTypeSwitchStmt(s *ast.TypeSwitchStmt) {
log.Crash("Not implemented");
}
func (a *stmtCompiler) DoCommClause(s *ast.CommClause) {
log.Crash("Not implemented");
}
func (a *stmtCompiler) DoSelectStmt(s *ast.SelectStmt) {
log.Crash("Not implemented");
}
func (a *stmtCompiler) DoForStmt(s *ast.ForStmt) {
log.Crash("Not implemented");
}
func (a *stmtCompiler) DoRangeStmt(s *ast.RangeStmt) {
log.Crash("Not implemented");
}
/*
* Public interface
*/
type Stmt struct {
f func (f *Frame);
}
func (s *Stmt) Exec(f *Frame) {
s.f(f);
}
func CompileStmt(stmt ast.Stmt, scope *Scope) (*Stmt, os.Error) {
errors := scanner.NewErrorVector();
sc := &stmtCompiler{scope, errors, stmt.Pos(), nil};
stmt.Visit(sc);
if sc.f == nil {
return nil, errors.GetError(scanner.Sorted);
}
return &Stmt{sc.f}, nil;
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment