Commit e46acb09 authored by Russ Cox's avatar Russ Cox

reflect: add PtrTo, add Value.Addr (old Addr is now UnsafeAddr)

This change makes it possible to take the address of a
struct field or slice element in order to call a method that
requires a pointer receiver.

Existing code that uses the Value.Addr method will have
to change (as gob does in this CL) to call UnsafeAddr instead.

R=r, rog
CC=golang-dev
https://golang.org/cl/4239052
parent 44fd7573
......@@ -518,7 +518,7 @@ func (dec *Decoder) decodeArray(atyp *reflect.ArrayType, state *decodeState, p u
func decodeIntoValue(state *decodeState, op decOp, indir int, v reflect.Value, ovfl os.ErrorString) reflect.Value {
instr := &decInstr{op, 0, indir, 0, ovfl}
up := unsafe.Pointer(v.Addr())
up := unsafe.Pointer(v.UnsafeAddr())
if indir > 1 {
up = decIndirect(up, indir)
}
......@@ -1052,9 +1052,9 @@ func (dec *Decoder) decodeValue(wireId typeId, val reflect.Value) (err os.Error)
name := base.Name()
return os.ErrorString("gob: type mismatch: no fields matched compiling decoder for " + name)
}
return dec.decodeStruct(engine, ut, uintptr(val.Addr()), indir)
return dec.decodeStruct(engine, ut, uintptr(val.UnsafeAddr()), indir)
}
return dec.decodeSingle(engine, ut, uintptr(val.Addr()))
return dec.decodeSingle(engine, ut, uintptr(val.UnsafeAddr()))
}
func (dec *Decoder) decodeIgnoredValue(wireId typeId) os.Error {
......
......@@ -356,7 +356,7 @@ func encodeReflectValue(state *encoderState, v reflect.Value, op encOp, indir in
if v == nil {
errorf("gob: encodeReflectValue: nil element")
}
op(nil, state, unsafe.Pointer(v.Addr()))
op(nil, state, unsafe.Pointer(v.UnsafeAddr()))
}
func (enc *Encoder) encodeMap(b *bytes.Buffer, mv *reflect.MapValue, keyOp, elemOp encOp, keyIndir, elemIndir int) {
......@@ -575,9 +575,9 @@ func (enc *Encoder) encode(b *bytes.Buffer, value reflect.Value, ut *userTypeInf
}
engine := enc.lockAndGetEncEngine(ut.base)
if value.Type().Kind() == reflect.Struct {
enc.encodeStruct(b, engine, value.Addr())
enc.encodeStruct(b, engine, value.UnsafeAddr())
} else {
enc.encodeSingle(b, engine, value.Addr())
enc.encodeSingle(b, engine, value.UnsafeAddr())
}
return nil
}
......@@ -1093,6 +1093,18 @@ func TestMethod(t *testing.T) {
t.Errorf("Value Method returned %d; want 250", i)
}
// Curried method of pointer.
i = NewValue(&p).Method(0).Call([]Value{NewValue(10)})[0].(*IntValue).Get()
if i != 250 {
t.Errorf("Value Method returned %d; want 250", i)
}
// Curried method of pointer to value.
i = NewValue(p).Addr().Method(0).Call([]Value{NewValue(10)})[0].(*IntValue).Get()
if i != 250 {
t.Errorf("Value Method returned %d; want 250", i)
}
// Curried method of interface value.
// Have to wrap interface value in a struct to get at it.
// Passing it to NewValue directly would
......@@ -1390,3 +1402,66 @@ func TestEmbeddedMethods(t *testing.T) {
t.Errorf("f(o) = %d, want 2", v)
}
}
func TestPtrTo(t *testing.T) {
var i int
typ := Typeof(i)
for i = 0; i < 100; i++ {
typ = PtrTo(typ)
}
for i = 0; i < 100; i++ {
typ = typ.(*PtrType).Elem()
}
if typ != Typeof(i) {
t.Errorf("after 100 PtrTo and Elem, have %s, want %s", typ, Typeof(i))
}
}
func TestAddr(t *testing.T) {
var p struct {
X, Y int
}
v := NewValue(&p)
v = v.(*PtrValue).Elem()
v = v.Addr()
v = v.(*PtrValue).Elem()
v = v.(*StructValue).Field(0)
v.(*IntValue).Set(2)
if p.X != 2 {
t.Errorf("Addr.Elem.Set failed to set value")
}
// Again but take address of the NewValue value.
// Exercises generation of PtrTypes not present in the binary.
v = NewValue(&p)
v = v.Addr()
v = v.(*PtrValue).Elem()
v = v.(*PtrValue).Elem()
v = v.Addr()
v = v.(*PtrValue).Elem()
v = v.(*StructValue).Field(0)
v.(*IntValue).Set(3)
if p.X != 3 {
t.Errorf("Addr.Elem.Set failed to set value")
}
// Starting without pointer we should get changed value
// in interface.
v = NewValue(p)
v0 := v
v = v.Addr()
v = v.(*PtrValue).Elem()
v = v.(*StructValue).Field(0)
v.(*IntValue).Set(4)
if p.X != 3 { // should be unchanged from last time
t.Errorf("somehow value Set changed original p")
}
p = v0.Interface().(struct {
X, Y int
})
if p.X != 4 {
t.Errorf("Addr.Elem.Set valued to set value in top value")
}
}
......@@ -31,8 +31,8 @@ func deepValueEqual(v1, v2 Value, visited map[uintptr]*visit, depth int) bool {
// if depth > 10 { panic("deepValueEqual") } // for debugging
addr1 := v1.Addr()
addr2 := v2.Addr()
addr1 := v1.UnsafeAddr()
addr2 := v2.UnsafeAddr()
if addr1 > addr2 {
// Canonicalize order to reduce number of entries in visited.
addr1, addr2 = addr2, addr1
......
......@@ -18,6 +18,7 @@ package reflect
import (
"runtime"
"strconv"
"sync"
"unsafe"
)
......@@ -251,6 +252,8 @@ type Type interface {
// NumMethods returns the number of methods in the type's method set.
NumMethod() int
common() *commonType
uncommon() *uncommonType
}
......@@ -361,6 +364,8 @@ func (t *commonType) FieldAlign() int { return int(t.fieldAlign) }
func (t *commonType) Kind() Kind { return Kind(t.kind & kindMask) }
func (t *commonType) common() *commonType { return t }
func (t *uncommonType) Method(i int) (m Method) {
if t == nil || i < 0 || i >= len(t.methods) {
return
......@@ -374,7 +379,7 @@ func (t *uncommonType) Method(i int) (m Method) {
}
m.Type = toType(*p.typ).(*FuncType)
fn := p.tfn
m.Func = &FuncValue{value: value{m.Type, addr(&fn), true}}
m.Func = &FuncValue{value: value{m.Type, addr(&fn), canSet}}
return
}
......@@ -689,3 +694,84 @@ type ArrayOrSliceType interface {
// Typeof returns the reflection Type of the value in the interface{}.
func Typeof(i interface{}) Type { return toType(unsafe.Typeof(i)) }
// ptrMap is the cache for PtrTo.
var ptrMap struct {
sync.RWMutex
m map[Type]*PtrType
}
// runtimePtrType is the runtime layout for a *PtrType.
// The memory immediately before the *PtrType is always
// the canonical runtime.Type to be used for a *runtime.Type
// describing this PtrType.
type runtimePtrType struct {
runtime.Type
runtime.PtrType
}
// PtrTo returns the pointer type with element t.
// For example, if t represents type Foo, PtrTo(t) represents *Foo.
func PtrTo(t Type) *PtrType {
// If t records its pointer-to type, use it.
ct := t.common()
if p := ct.ptrToThis; p != nil {
return toType(*p).(*PtrType)
}
// Otherwise, synthesize one.
// This only happens for pointers with no methods.
// We keep the mapping in a map on the side, because
// this operation is rare and a separate map lets us keep
// the type structures in read-only memory.
ptrMap.RLock()
if m := ptrMap.m; m != nil {
if p := m[t]; p != nil {
ptrMap.RUnlock()
return p
}
}
ptrMap.RUnlock()
ptrMap.Lock()
if ptrMap.m == nil {
ptrMap.m = make(map[Type]*PtrType)
}
p := ptrMap.m[t]
if p != nil {
// some other goroutine won the race and created it
ptrMap.Unlock()
return p
}
// runtime.Type value is always right before type structure.
// 2*ptrSize is size of interface header
rt := (*runtime.Type)(unsafe.Pointer(uintptr(unsafe.Pointer(ct)) - uintptr(unsafe.Sizeof(runtime.Type(nil)))))
rp := new(runtimePtrType)
rp.Type = &rp.PtrType
// initialize rp.PtrType using *byte's PtrType as a prototype.
// have to do assignment as PtrType, not runtime.PtrType,
// in order to write to unexported fields.
p = (*PtrType)(unsafe.Pointer(&rp.PtrType))
bp := (*PtrType)(unsafe.Pointer(unsafe.Typeof((*byte)(nil)).(*runtime.PtrType)))
*p = *bp
s := "*" + *ct.string
p.string = &s
// For the type structures linked into the binary, the
// compiler provides a good hash of the string.
// Create a good hash for the new string by using
// the FNV-1 hash's mixing function to combine the
// old hash and the new "*".
p.hash = ct.hash*16777619 ^ '*'
p.uncommonType = nil
p.ptrToThis = nil
p.elem = rt
ptrMap.m[t] = (*PtrType)(unsafe.Pointer(&rp.PtrType))
ptrMap.Unlock()
return p
}
......@@ -11,7 +11,7 @@ import (
)
const ptrSize = uintptr(unsafe.Sizeof((*byte)(nil)))
const cannotSet = "cannot set value obtained via unexported struct field"
const cannotSet = "cannot set value obtained from unexported struct field"
type addr unsafe.Pointer
......@@ -51,20 +51,32 @@ type Value interface {
// Interface returns the value as an interface{}.
Interface() interface{}
// CanSet returns whether the value can be changed.
// CanSet returns true if the value can be changed.
// Values obtained by the use of non-exported struct fields
// can be used in Get but not Set.
// If CanSet() returns false, calling the type-specific Set
// will cause a crash.
// If CanSet returns false, calling the type-specific Set will panic.
CanSet() bool
// SetValue assigns v to the value; v must have the same type as the value.
SetValue(v Value)
// Addr returns a pointer to the underlying data.
// It is for advanced clients that also
// import the "unsafe" package.
Addr() uintptr
// CanAddr returns true if the value's address can be obtained with Addr.
// Such values are called addressable. A value is addressable if it is
// an element of a slice, an element of an addressable array,
// a field of an addressable struct, the result of dereferencing a pointer,
// or the result of a call to NewValue, MakeChan, MakeMap, or MakeZero.
// If CanAddr returns false, calling Addr will panic.
CanAddr() bool
// Addr returns the address of the value.
// If the value is not addressable, Addr panics.
// Addr is typically used to obtain a pointer to a struct field or slice element
// in order to call a method that requires a pointer receiver.
Addr() *PtrValue
// UnsafeAddr returns a pointer to the underlying data.
// It is for advanced clients that also import the "unsafe" package.
UnsafeAddr() uintptr
// Method returns a FuncValue corresponding to the value's i'th method.
// The arguments to a Call on the returned FuncValue
......@@ -75,6 +87,13 @@ type Value interface {
getAddr() addr
}
// flags for value
const (
canSet uint32 = 1 << iota // can set value (write to *v.addr)
canAddr // can take address of value
canStore // can store through value (write to **v.addr)
)
// value is the common implementation of most values.
// It is embedded in other, public struct types, but always
// with a unique tag like "uint" or "float" so that the client cannot
......@@ -82,12 +101,28 @@ type Value interface {
type value struct {
typ Type
addr addr
canSet bool
flag uint32
}
func (v *value) Type() Type { return v.typ }
func (v *value) Addr() uintptr { return uintptr(v.addr) }
func (v *value) Addr() *PtrValue {
if !v.CanAddr() {
panic("reflect: cannot take address of value")
}
a := v.addr
flag := canSet
if v.CanSet() {
flag |= canStore
}
// We could safely set canAddr here too -
// the caller would get the address of a -
// but it doesn't match the Go model.
// The language doesn't let you say &&v.
return newValue(PtrTo(v.typ), addr(&a), flag).(*PtrValue)
}
func (v *value) UnsafeAddr() uintptr { return uintptr(v.addr) }
func (v *value) getAddr() addr { return v.addr }
......@@ -109,7 +144,10 @@ func (v *value) Interface() interface{} {
return unsafe.Unreflect(v.typ, unsafe.Pointer(v.addr))
}
func (v *value) CanSet() bool { return v.canSet }
func (v *value) CanSet() bool { return v.flag&canSet != 0 }
func (v *value) CanAddr() bool { return v.flag&canAddr != 0 }
/*
* basic types
......@@ -125,7 +163,7 @@ func (v *BoolValue) Get() bool { return *(*bool)(v.addr) }
// Set sets v to the value x.
func (v *BoolValue) Set(x bool) {
if !v.canSet {
if !v.CanSet() {
panic(cannotSet)
}
*(*bool)(v.addr) = x
......@@ -152,7 +190,7 @@ func (v *FloatValue) Get() float64 {
// Set sets v to the value x.
func (v *FloatValue) Set(x float64) {
if !v.canSet {
if !v.CanSet() {
panic(cannotSet)
}
switch v.typ.Kind() {
......@@ -197,7 +235,7 @@ func (v *ComplexValue) Get() complex128 {
// Set sets v to the value x.
func (v *ComplexValue) Set(x complex128) {
if !v.canSet {
if !v.CanSet() {
panic(cannotSet)
}
switch v.typ.Kind() {
......@@ -237,7 +275,7 @@ func (v *IntValue) Get() int64 {
// Set sets v to the value x.
func (v *IntValue) Set(x int64) {
if !v.canSet {
if !v.CanSet() {
panic(cannotSet)
}
switch v.typ.Kind() {
......@@ -282,7 +320,7 @@ func (v *StringValue) Get() string { return *(*string)(v.addr) }
// Set sets v to the value x.
func (v *StringValue) Set(x string) {
if !v.canSet {
if !v.CanSet() {
panic(cannotSet)
}
*(*string)(v.addr) = x
......@@ -317,7 +355,7 @@ func (v *UintValue) Get() uint64 {
// Set sets v to the value x.
func (v *UintValue) Set(x uint64) {
if !v.canSet {
if !v.CanSet() {
panic(cannotSet)
}
switch v.typ.Kind() {
......@@ -361,7 +399,7 @@ func (v *UnsafePointerValue) Get() uintptr { return uintptr(*(*unsafe.Pointer)(v
// Set sets v to the value x.
func (v *UnsafePointerValue) Set(x unsafe.Pointer) {
if !v.canSet {
if !v.CanSet() {
panic(cannotSet)
}
*(*unsafe.Pointer)(v.addr) = x
......@@ -473,7 +511,7 @@ func (v *ArrayValue) addr() addr { return v.value.addr }
// Set assigns x to v.
// The new value x must have the same type as v.
func (v *ArrayValue) Set(x *ArrayValue) {
if !v.canSet {
if !v.CanSet() {
panic(cannotSet)
}
typesMustMatch(v.typ, x.typ)
......@@ -491,7 +529,7 @@ func (v *ArrayValue) Elem(i int) Value {
panic("array index out of bounds")
}
p := addr(uintptr(v.addr()) + uintptr(i)*typ.Size())
return newValue(typ, p, v.canSet)
return newValue(typ, p, v.flag)
}
/*
......@@ -537,7 +575,7 @@ func (v *SliceValue) SetLen(n int) {
// Set assigns x to v.
// The new value x must have the same type as v.
func (v *SliceValue) Set(x *SliceValue) {
if !v.canSet {
if !v.CanSet() {
panic(cannotSet)
}
typesMustMatch(v.typ, x.typ)
......@@ -566,7 +604,14 @@ func (v *SliceValue) Slice(beg, end int) *SliceValue {
s.Data = uintptr(v.addr()) + uintptr(beg)*typ.Elem().Size()
s.Len = end - beg
s.Cap = cap - beg
return newValue(typ, addr(s), v.canSet).(*SliceValue)
// Like the result of Addr, we treat Slice as an
// unaddressable temporary, so don't set canAddr.
flag := canSet
if v.flag&canStore != 0 {
flag |= canStore
}
return newValue(typ, addr(s), flag).(*SliceValue)
}
// Elem returns the i'th element of v.
......@@ -577,7 +622,11 @@ func (v *SliceValue) Elem(i int) Value {
panic("reflect: slice index out of range")
}
p := addr(uintptr(v.addr()) + uintptr(i)*typ.Size())
return newValue(typ, p, v.canSet)
flag := canAddr
if v.flag&canStore != 0 {
flag |= canSet | canStore
}
return newValue(typ, p, flag)
}
// MakeSlice creates a new zero-initialized slice value
......@@ -588,7 +637,7 @@ func MakeSlice(typ *SliceType, len, cap int) *SliceValue {
Len: len,
Cap: cap,
}
return newValue(typ, addr(s), true).(*SliceValue)
return newValue(typ, addr(s), canAddr|canSet|canStore).(*SliceValue)
}
/*
......@@ -606,7 +655,7 @@ func (v *ChanValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 }
// Set assigns x to v.
// The new value x must have the same type as v.
func (v *ChanValue) Set(x *ChanValue) {
if !v.canSet {
if !v.CanSet() {
panic(cannotSet)
}
typesMustMatch(v.typ, x.typ)
......@@ -733,7 +782,7 @@ func (v *FuncValue) Get() uintptr { return *(*uintptr)(v.addr) }
// Set assigns x to v.
// The new value x must have the same type as v.
func (v *FuncValue) Set(x *FuncValue) {
if !v.canSet {
if !v.CanSet() {
panic(cannotSet)
}
typesMustMatch(v.typ, x.typ)
......@@ -754,7 +803,7 @@ func (v *value) Method(i int) *FuncValue {
}
p := &t.methods[i]
fn := p.tfn
fv := &FuncValue{value: value{toType(*p.typ), addr(&fn), true}, first: v, isInterface: false}
fv := &FuncValue{value: value{toType(*p.typ), addr(&fn), 0}, first: v, isInterface: false}
return fv
}
......@@ -765,6 +814,17 @@ type tiny struct {
b byte
}
// Interface returns the fv as an interface value.
// If fv is a method obtained by invoking Value.Method
// (as opposed to Type.Method), Interface cannot return an
// interface value, so it panics.
func (fv *FuncValue) Interface() interface{} {
if fv.first != nil {
panic("FuncValue: cannot create interface value for method with bound receiver")
}
return fv.value.Interface()
}
// Call calls the function fv with input parameters in.
// It returns the function's output parameters as Values.
func (fv *FuncValue) Call(in []Value) []Value {
......@@ -902,7 +962,7 @@ func (v *InterfaceValue) Set(x Value) {
if x != nil {
i = x.Interface()
}
if !v.canSet {
if !v.CanSet() {
panic(cannotSet)
}
// Two different representations; see comment in Get.
......@@ -933,11 +993,11 @@ func (v *InterfaceValue) Method(i int) *FuncValue {
// Interface is two words: itable, data.
tab := *(**runtime.Itable)(v.addr)
data := &value{Typeof((*byte)(nil)), addr(uintptr(v.addr) + ptrSize), true}
data := &value{Typeof((*byte)(nil)), addr(uintptr(v.addr) + ptrSize), 0}
// Function pointer is at p.perm in the table.
fn := tab.Fn[i]
fv := &FuncValue{value: value{toType(*p.typ), addr(&fn), true}, first: data, isInterface: true}
fv := &FuncValue{value: value{toType(*p.typ), addr(&fn), 0}, first: data, isInterface: true}
return fv
}
......@@ -956,7 +1016,7 @@ func (v *MapValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 }
// Set assigns x to v.
// The new value x must have the same type as v.
func (v *MapValue) Set(x *MapValue) {
if !v.canSet {
if !v.CanSet() {
panic(cannotSet)
}
if x == nil {
......@@ -1075,15 +1135,18 @@ func (v *PtrValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 }
func (v *PtrValue) Get() uintptr { return *(*uintptr)(v.addr) }
// Set assigns x to v.
// The new value x must have the same type as v.
// The new value x must have the same type as v, and x.Elem().CanSet() must be true.
func (v *PtrValue) Set(x *PtrValue) {
if x == nil {
*(**uintptr)(v.addr) = nil
return
}
if !v.canSet {
if !v.CanSet() {
panic(cannotSet)
}
if x.flag&canStore == 0 {
panic("cannot copy pointer obtained from unexported struct field")
}
typesMustMatch(v.typ, x.typ)
// TODO: This will have to move into the runtime
// once the new gc goes in
......@@ -1112,7 +1175,7 @@ func (v *PtrValue) PointTo(x Value) {
typesMustMatch(v.typ.(*PtrType).Elem(), x.Type())
// TODO: This will have to move into the runtime
// once the new gc goes in.
*(*uintptr)(v.addr) = x.Addr()
*(*uintptr)(v.addr) = x.UnsafeAddr()
}
// Elem returns the value that v points to.
......@@ -1121,7 +1184,11 @@ func (v *PtrValue) Elem() Value {
if v.IsNil() {
return nil
}
return newValue(v.typ.(*PtrType).Elem(), *(*addr)(v.addr), v.canSet)
flag := canAddr
if v.flag&canStore != 0 {
flag |= canSet | canStore
}
return newValue(v.typ.(*PtrType).Elem(), *(*addr)(v.addr), flag)
}
// Indirect returns the value that v points to.
......@@ -1148,7 +1215,7 @@ type StructValue struct {
func (v *StructValue) Set(x *StructValue) {
// TODO: This will have to move into the runtime
// once the gc goes in.
if !v.canSet {
if !v.CanSet() {
panic(cannotSet)
}
typesMustMatch(v.typ, x.typ)
......@@ -1165,7 +1232,12 @@ func (v *StructValue) Field(i int) Value {
return nil
}
f := t.Field(i)
return newValue(f.Type, addr(uintptr(v.addr)+f.Offset), v.canSet && f.PkgPath == "")
flag := v.flag
if f.PkgPath != "" {
// unexported field
flag &^= canSet | canStore
}
return newValue(f.Type, addr(uintptr(v.addr)+f.Offset), flag)
}
// FieldByIndex returns the nested field corresponding to index.
......@@ -1221,11 +1293,11 @@ func NewValue(i interface{}) Value {
return nil
}
t, a := unsafe.Reflect(i)
return newValue(toType(t), addr(a), true)
return newValue(toType(t), addr(a), canSet|canAddr|canStore)
}
func newValue(typ Type, addr addr, canSet bool) Value {
v := value{typ, addr, canSet}
func newValue(typ Type, addr addr, flag uint32) Value {
v := value{typ, addr, flag}
switch typ.(type) {
case *ArrayType:
return &ArrayValue{v}
......@@ -1266,5 +1338,5 @@ func MakeZero(typ Type) Value {
if typ == nil {
return nil
}
return newValue(typ, addr(unsafe.New(typ)), true)
return newValue(typ, addr(unsafe.New(typ)), canSet|canAddr|canStore)
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment