Commit e7fa3079 authored by Adam Langley's avatar Adam Langley

bzip2: speed up decompression.

This borrows a trick from the bzip2 source and effects a decent speed
up when decompressing highly compressed sources. Rather than unshuffle
the BTW block when performing the IBTW, a linked-list is threaded
through the array, in place. This improves cache hit rates.

R=bradfitzgo, bradfitzwork, cw
CC=golang-dev
https://golang.org/cl/4247047
parent 7483c6ee
......@@ -30,11 +30,12 @@ type reader struct {
blockSize int // blockSize in bytes, i.e. 900 * 1024.
eof bool
buf []byte // stores Burrows-Wheeler transformed data.
rle []byte // stores the RLE compressed data.
c [256]uint // the `C' and `P' arrays for the inverse BWT.
p []uint
c [256]uint // the `C' array for the inverse BWT.
tt []uint32 // mirrors the `tt' array in the bzip2 source and contains the P array in the upper 24 bits.
tPos uint32 // Index of the next output byte in tt.
preRLE []byte // contains the RLE data still to be processed.
preRLE []uint32 // contains the RLE data still to be processed.
preRLEUsed int // number of entries of preRLE used.
lastByte int // the last byte value seen.
byteRepeats uint // the number of repeats of lastByte seen.
repeats uint // the number of copies of lastByte to output.
......@@ -71,9 +72,7 @@ func (bz2 *reader) setup() os.Error {
}
bz2.blockSize = 100 * 1024 * (int(level) - '0')
bz2.buf = make([]byte, bz2.blockSize)
bz2.rle = make([]byte, bz2.blockSize)
bz2.p = make([]uint, bz2.blockSize)
bz2.tt = make([]uint32, bz2.blockSize)
return nil
}
......@@ -110,7 +109,7 @@ func (bz2 *reader) read(buf []byte) (n int, err os.Error) {
// maximum expansion. Thus we process blocks all at once, except for
// the RLE which we decompress as required.
for (bz2.repeats > 0 || len(bz2.preRLE) > 0) && n < len(buf) {
for (bz2.repeats > 0 || bz2.preRLEUsed < len(bz2.preRLE)) && n < len(buf) {
// We have RLE data pending.
// The run-length encoding works like this:
......@@ -130,8 +129,10 @@ func (bz2 *reader) read(buf []byte) (n int, err os.Error) {
continue
}
b := bz2.preRLE[0]
bz2.preRLE = bz2.preRLE[1:]
bz2.tPos = bz2.preRLE[bz2.tPos]
b := byte(bz2.tPos)
bz2.tPos >>= 8
bz2.preRLEUsed++
if bz2.byteRepeats == 3 {
bz2.repeats = uint(b)
......@@ -306,6 +307,12 @@ func (bz2 *reader) readBlock() (err os.Error) {
}
repeat += repeat_power << v
repeat_power <<= 1
// This limit of 2 million comes from the bzip2 source
// code. It prevents repeat from overflowing.
if repeat > 2*1024*1024 {
return StructuralError("repeat count too large")
}
continue
}
......@@ -314,8 +321,7 @@ func (bz2 *reader) readBlock() (err os.Error) {
// replicate the last output symbol.
for i := 0; i < repeat; i++ {
b := byte(mtf.First())
bz2.buf[bufIndex] = b
bz2.p[bufIndex] = bz2.c[b]
bz2.tt[bufIndex] = uint32(b)
bz2.c[b]++
bufIndex++
}
......@@ -336,16 +342,20 @@ func (bz2 *reader) readBlock() (err os.Error) {
// doesn't need to be encoded and we have |v-1| in the next
// line.
b := byte(mtf.Decode(int(v - 1)))
bz2.buf[bufIndex] = b
bz2.p[bufIndex] = bz2.c[b]
bz2.tt[bufIndex] = uint32(b)
bz2.c[b]++
bufIndex++
}
if origPtr >= uint(bufIndex) {
return StructuralError("origPtr out of bounds")
}
// We have completed the entropy decoding. Now we can perform the
// inverse BWT and setup the RLE buffer.
inverseBWT(bz2.rle, bz2.buf[:bufIndex], origPtr, bz2.c[:], bz2.p[:bufIndex])
bz2.preRLE = bz2.rle[:bufIndex]
bz2.preRLE = bz2.tt[:bufIndex]
bz2.preRLEUsed = 0
bz2.tPos = inverseBWT(bz2.preRLE, origPtr, bz2.c[:])
bz2.lastByte = -1
bz2.byteRepeats = 0
bz2.repeats = 0
......@@ -355,19 +365,26 @@ func (bz2 *reader) readBlock() (err os.Error) {
// inverseBWT implements the inverse Burrows-Wheeler transform as described in
// http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf, section 4.2.
// In that document, origPtr is called `I' and c and p are the `C' and `P'
// arrays after the first pass over the data. They are arguments here because
// we merge the first pass with the Huffman decoding.
func inverseBWT(out, in []byte, origPtr uint, c, p []uint) {
// In that document, origPtr is called `I' and c is the `C' array after the
// first pass over the data. It's an argument here because we merge the first
// pass with the Huffman decoding.
//
// This also implements the `single array' method from the bzip2 source code
// which leaves the output, still shuffled, in the bottom 8 bits of tt with the
// index of the next byte in the top 24-bits. The index of the first byte is
// returned.
func inverseBWT(tt []uint32, origPtr uint, c []uint) uint32 {
sum := uint(0)
for i := 0; i < 256; i++ {
sum += c[i]
c[i] = sum - c[i]
}
i := origPtr
for j := len(in) - 1; j >= 0; j-- {
out[j] = in[i]
i = p[i] + c[in[i]]
for i := range tt {
b := tt[i] & 0xff
tt[c[b]] |= uint32(i) << 8
c[b]++
}
return tt[origPtr] >> 8
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment