// Copyright 2015 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // +build ignore package main // Generic opcodes typically specify a width. The inputs and outputs // of that op are the given number of bits wide. There is no notion of // "sign", so Add32 can be used both for signed and unsigned 32-bit // addition. // Signed/unsigned is explicit with the extension ops // (SignExt*/ZeroExt*) and implicit as the arg to some opcodes // (e.g. the second argument to shifts is unsigned). If not mentioned, // all args take signed inputs, or don't care whether their inputs // are signed or unsigned. // Unused portions of AuxInt are filled by sign-extending the used portion. // Users of AuxInt which interpret AuxInt as unsigned (e.g. shifts) must be careful. var genericOps = []opData{ // 2-input arithmetic // Types must be consistent with Go typing. Add, for example, must take two values // of the same type and produces that same type. {name: "Add8", argLength: 2, commutative: true}, // arg0 + arg1 {name: "Add16", argLength: 2, commutative: true}, {name: "Add32", argLength: 2, commutative: true}, {name: "Add64", argLength: 2, commutative: true}, {name: "AddPtr", argLength: 2}, // For address calculations. arg0 is a pointer and arg1 is an int. {name: "Add32F", argLength: 2}, {name: "Add64F", argLength: 2}, {name: "Sub8", argLength: 2}, // arg0 - arg1 {name: "Sub16", argLength: 2}, {name: "Sub32", argLength: 2}, {name: "Sub64", argLength: 2}, {name: "SubPtr", argLength: 2}, {name: "Sub32F", argLength: 2}, {name: "Sub64F", argLength: 2}, {name: "Mul8", argLength: 2, commutative: true}, // arg0 * arg1 {name: "Mul16", argLength: 2, commutative: true}, {name: "Mul32", argLength: 2, commutative: true}, {name: "Mul64", argLength: 2, commutative: true}, {name: "Mul32F", argLength: 2}, {name: "Mul64F", argLength: 2}, {name: "Div32F", argLength: 2}, // arg0 / arg1 {name: "Div64F", argLength: 2}, {name: "Hmul8", argLength: 2}, // (arg0 * arg1) >> width, signed {name: "Hmul8u", argLength: 2}, // (arg0 * arg1) >> width, unsigned {name: "Hmul16", argLength: 2}, {name: "Hmul16u", argLength: 2}, {name: "Hmul32", argLength: 2}, {name: "Hmul32u", argLength: 2}, {name: "Hmul64", argLength: 2}, {name: "Hmul64u", argLength: 2}, // Weird special instruction for strength reduction of divides. {name: "Avg64u", argLength: 2}, // (uint64(arg0) + uint64(arg1)) / 2, correct to all 64 bits. {name: "Div8", argLength: 2}, // arg0 / arg1, signed {name: "Div8u", argLength: 2}, // arg0 / arg1, unsigned {name: "Div16", argLength: 2}, {name: "Div16u", argLength: 2}, {name: "Div32", argLength: 2}, {name: "Div32u", argLength: 2}, {name: "Div64", argLength: 2}, {name: "Div64u", argLength: 2}, {name: "Mod8", argLength: 2}, // arg0 % arg1, signed {name: "Mod8u", argLength: 2}, // arg0 % arg1, unsigned {name: "Mod16", argLength: 2}, {name: "Mod16u", argLength: 2}, {name: "Mod32", argLength: 2}, {name: "Mod32u", argLength: 2}, {name: "Mod64", argLength: 2}, {name: "Mod64u", argLength: 2}, {name: "And8", argLength: 2, commutative: true}, // arg0 & arg1 {name: "And16", argLength: 2, commutative: true}, {name: "And32", argLength: 2, commutative: true}, {name: "And64", argLength: 2, commutative: true}, {name: "Or8", argLength: 2, commutative: true}, // arg0 | arg1 {name: "Or16", argLength: 2, commutative: true}, {name: "Or32", argLength: 2, commutative: true}, {name: "Or64", argLength: 2, commutative: true}, {name: "Xor8", argLength: 2, commutative: true}, // arg0 ^ arg1 {name: "Xor16", argLength: 2, commutative: true}, {name: "Xor32", argLength: 2, commutative: true}, {name: "Xor64", argLength: 2, commutative: true}, // For shifts, AxB means the shifted value has A bits and the shift amount has B bits. // Shift amounts are considered unsigned. {name: "Lsh8x8", argLength: 2}, // arg0 << arg1 {name: "Lsh8x16", argLength: 2}, {name: "Lsh8x32", argLength: 2}, {name: "Lsh8x64", argLength: 2}, {name: "Lsh16x8", argLength: 2}, {name: "Lsh16x16", argLength: 2}, {name: "Lsh16x32", argLength: 2}, {name: "Lsh16x64", argLength: 2}, {name: "Lsh32x8", argLength: 2}, {name: "Lsh32x16", argLength: 2}, {name: "Lsh32x32", argLength: 2}, {name: "Lsh32x64", argLength: 2}, {name: "Lsh64x8", argLength: 2}, {name: "Lsh64x16", argLength: 2}, {name: "Lsh64x32", argLength: 2}, {name: "Lsh64x64", argLength: 2}, {name: "Rsh8x8", argLength: 2}, // arg0 >> arg1, signed {name: "Rsh8x16", argLength: 2}, {name: "Rsh8x32", argLength: 2}, {name: "Rsh8x64", argLength: 2}, {name: "Rsh16x8", argLength: 2}, {name: "Rsh16x16", argLength: 2}, {name: "Rsh16x32", argLength: 2}, {name: "Rsh16x64", argLength: 2}, {name: "Rsh32x8", argLength: 2}, {name: "Rsh32x16", argLength: 2}, {name: "Rsh32x32", argLength: 2}, {name: "Rsh32x64", argLength: 2}, {name: "Rsh64x8", argLength: 2}, {name: "Rsh64x16", argLength: 2}, {name: "Rsh64x32", argLength: 2}, {name: "Rsh64x64", argLength: 2}, {name: "Rsh8Ux8", argLength: 2}, // arg0 >> arg1, unsigned {name: "Rsh8Ux16", argLength: 2}, {name: "Rsh8Ux32", argLength: 2}, {name: "Rsh8Ux64", argLength: 2}, {name: "Rsh16Ux8", argLength: 2}, {name: "Rsh16Ux16", argLength: 2}, {name: "Rsh16Ux32", argLength: 2}, {name: "Rsh16Ux64", argLength: 2}, {name: "Rsh32Ux8", argLength: 2}, {name: "Rsh32Ux16", argLength: 2}, {name: "Rsh32Ux32", argLength: 2}, {name: "Rsh32Ux64", argLength: 2}, {name: "Rsh64Ux8", argLength: 2}, {name: "Rsh64Ux16", argLength: 2}, {name: "Rsh64Ux32", argLength: 2}, {name: "Rsh64Ux64", argLength: 2}, // (Left) rotates replace pattern matches in the front end // of (arg0 << arg1) ^ (arg0 >> (A-arg1)) // where A is the bit width of arg0 and result. // Note that because rotates are pattern-matched from // shifts, that a rotate of arg1=A+k (k > 0) bits originated from // (arg0 << A+k) ^ (arg0 >> -k) = // 0 ^ arg0>>huge_unsigned = // 0 ^ 0 = 0 // which is not the same as a rotation by A+k // // However, in the specific case of k = 0, the result of // the shift idiom is the same as the result for the // rotate idiom, i.e., result=arg0. // This is different from shifts, where // arg0 << A is defined to be zero. // // Because of this, and also because the primary use case // for rotates is hashing and crypto code with constant // distance, rotate instructions are only substituted // when arg1 is a constant between 1 and A-1, inclusive. {name: "Lrot8", argLength: 1, aux: "Int64"}, {name: "Lrot16", argLength: 1, aux: "Int64"}, {name: "Lrot32", argLength: 1, aux: "Int64"}, {name: "Lrot64", argLength: 1, aux: "Int64"}, // 2-input comparisons {name: "Eq8", argLength: 2, commutative: true, typ: "Bool"}, // arg0 == arg1 {name: "Eq16", argLength: 2, commutative: true, typ: "Bool"}, {name: "Eq32", argLength: 2, commutative: true, typ: "Bool"}, {name: "Eq64", argLength: 2, commutative: true, typ: "Bool"}, {name: "EqPtr", argLength: 2, commutative: true, typ: "Bool"}, {name: "EqInter", argLength: 2, typ: "Bool"}, // arg0 or arg1 is nil; other cases handled by frontend {name: "EqSlice", argLength: 2, typ: "Bool"}, // arg0 or arg1 is nil; other cases handled by frontend {name: "Eq32F", argLength: 2, typ: "Bool"}, {name: "Eq64F", argLength: 2, typ: "Bool"}, {name: "Neq8", argLength: 2, commutative: true, typ: "Bool"}, // arg0 != arg1 {name: "Neq16", argLength: 2, commutative: true, typ: "Bool"}, {name: "Neq32", argLength: 2, commutative: true, typ: "Bool"}, {name: "Neq64", argLength: 2, commutative: true, typ: "Bool"}, {name: "NeqPtr", argLength: 2, commutative: true, typ: "Bool"}, {name: "NeqInter", argLength: 2, typ: "Bool"}, // arg0 or arg1 is nil; other cases handled by frontend {name: "NeqSlice", argLength: 2, typ: "Bool"}, // arg0 or arg1 is nil; other cases handled by frontend {name: "Neq32F", argLength: 2, typ: "Bool"}, {name: "Neq64F", argLength: 2}, {name: "Less8", argLength: 2, typ: "Bool"}, // arg0 < arg1, signed {name: "Less8U", argLength: 2, typ: "Bool"}, // arg0 < arg1, unsigned {name: "Less16", argLength: 2, typ: "Bool"}, {name: "Less16U", argLength: 2, typ: "Bool"}, {name: "Less32", argLength: 2, typ: "Bool"}, {name: "Less32U", argLength: 2, typ: "Bool"}, {name: "Less64", argLength: 2, typ: "Bool"}, {name: "Less64U", argLength: 2, typ: "Bool"}, {name: "Less32F", argLength: 2, typ: "Bool"}, {name: "Less64F", argLength: 2, typ: "Bool"}, {name: "Leq8", argLength: 2, typ: "Bool"}, // arg0 <= arg1, signed {name: "Leq8U", argLength: 2, typ: "Bool"}, // arg0 <= arg1, unsigned {name: "Leq16", argLength: 2, typ: "Bool"}, {name: "Leq16U", argLength: 2, typ: "Bool"}, {name: "Leq32", argLength: 2, typ: "Bool"}, {name: "Leq32U", argLength: 2, typ: "Bool"}, {name: "Leq64", argLength: 2, typ: "Bool"}, {name: "Leq64U", argLength: 2, typ: "Bool"}, {name: "Leq32F", argLength: 2, typ: "Bool"}, {name: "Leq64F", argLength: 2, typ: "Bool"}, {name: "Greater8", argLength: 2, typ: "Bool"}, // arg0 > arg1, signed {name: "Greater8U", argLength: 2, typ: "Bool"}, // arg0 > arg1, unsigned {name: "Greater16", argLength: 2, typ: "Bool"}, {name: "Greater16U", argLength: 2, typ: "Bool"}, {name: "Greater32", argLength: 2, typ: "Bool"}, {name: "Greater32U", argLength: 2, typ: "Bool"}, {name: "Greater64", argLength: 2, typ: "Bool"}, {name: "Greater64U", argLength: 2, typ: "Bool"}, {name: "Greater32F", argLength: 2, typ: "Bool"}, {name: "Greater64F", argLength: 2, typ: "Bool"}, {name: "Geq8", argLength: 2, typ: "Bool"}, // arg0 <= arg1, signed {name: "Geq8U", argLength: 2, typ: "Bool"}, // arg0 <= arg1, unsigned {name: "Geq16", argLength: 2, typ: "Bool"}, {name: "Geq16U", argLength: 2, typ: "Bool"}, {name: "Geq32", argLength: 2, typ: "Bool"}, {name: "Geq32U", argLength: 2, typ: "Bool"}, {name: "Geq64", argLength: 2, typ: "Bool"}, {name: "Geq64U", argLength: 2, typ: "Bool"}, {name: "Geq32F", argLength: 2, typ: "Bool"}, {name: "Geq64F", argLength: 2, typ: "Bool"}, // boolean ops {name: "AndB", argLength: 2, typ: "Bool"}, // arg0 && arg1 (not shortcircuited) {name: "OrB", argLength: 2, typ: "Bool"}, // arg0 || arg1 (not shortcircuited) {name: "EqB", argLength: 2, typ: "Bool"}, // arg0 == arg1 {name: "NeqB", argLength: 2, typ: "Bool"}, // arg0 != arg1 {name: "Not", argLength: 1, typ: "Bool"}, // !arg0, boolean // 1-input ops {name: "Neg8", argLength: 1}, // -arg0 {name: "Neg16", argLength: 1}, {name: "Neg32", argLength: 1}, {name: "Neg64", argLength: 1}, {name: "Neg32F", argLength: 1}, {name: "Neg64F", argLength: 1}, {name: "Com8", argLength: 1}, // ^arg0 {name: "Com16", argLength: 1}, {name: "Com32", argLength: 1}, {name: "Com64", argLength: 1}, {name: "Ctz16", argLength: 1}, // Count trailing (low order) zeroes (returns 0-16) {name: "Ctz32", argLength: 1}, // Count trailing zeroes (returns 0-32) {name: "Ctz64", argLength: 1}, // Count trailing zeroes (returns 0-64) {name: "Clz16", argLength: 1}, // Count leading (high order) zeroes (returns 0-16) {name: "Clz32", argLength: 1}, // Count leading zeroes (returns 0-32) {name: "Clz64", argLength: 1}, // Count leading zeroes (returns 0-64) {name: "Bswap32", argLength: 1}, // Swap bytes {name: "Bswap64", argLength: 1}, // Swap bytes {name: "Sqrt", argLength: 1}, // sqrt(arg0), float64 only // Data movement, max argument length for Phi is indefinite so just pick // a really large number {name: "Phi", argLength: -1}, // select an argument based on which predecessor block we came from {name: "Copy", argLength: 1}, // output = arg0 // Convert converts between pointers and integers. // We have a special op for this so as to not confuse GC // (particularly stack maps). It takes a memory arg so it // gets correctly ordered with respect to GC safepoints. // arg0=ptr/int arg1=mem, output=int/ptr {name: "Convert", argLength: 2}, // constants. Constant values are stored in the aux or // auxint fields. {name: "ConstBool", aux: "Bool"}, // auxint is 0 for false and 1 for true {name: "ConstString", aux: "String"}, // value is aux.(string) {name: "ConstNil", typ: "BytePtr"}, // nil pointer {name: "Const8", aux: "Int8"}, // auxint is sign-extended 8 bits {name: "Const16", aux: "Int16"}, // auxint is sign-extended 16 bits {name: "Const32", aux: "Int32"}, // auxint is sign-extended 32 bits {name: "Const64", aux: "Int64"}, // value is auxint {name: "Const32F", aux: "Float32"}, // value is math.Float64frombits(uint64(auxint)) and is exactly prepresentable as float 32 {name: "Const64F", aux: "Float64"}, // value is math.Float64frombits(uint64(auxint)) {name: "ConstInterface"}, // nil interface {name: "ConstSlice"}, // nil slice // Constant-like things {name: "InitMem"}, // memory input to the function. {name: "Arg", aux: "SymOff"}, // argument to the function. aux=GCNode of arg, off = offset in that arg. // The address of a variable. arg0 is the base pointer (SB or SP, depending // on whether it is a global or stack variable). The Aux field identifies the // variable. It will be either an *ExternSymbol (with arg0=SB), *ArgSymbol (arg0=SP), // or *AutoSymbol (arg0=SP). {name: "Addr", argLength: 1, aux: "Sym"}, // Address of a variable. Arg0=SP or SB. Aux identifies the variable. {name: "SP"}, // stack pointer {name: "SB", typ: "Uintptr"}, // static base pointer (a.k.a. globals pointer) {name: "Func", aux: "Sym"}, // entry address of a function // Memory operations {name: "Load", argLength: 2}, // Load from arg0. arg1=memory {name: "Store", argLength: 3, typ: "Mem", aux: "Int64"}, // Store arg1 to arg0. arg2=memory, auxint=size. Returns memory. {name: "Move", argLength: 3, aux: "Int64"}, // arg0=destptr, arg1=srcptr, arg2=mem, auxint=size. Returns memory. {name: "Zero", argLength: 2, aux: "Int64"}, // arg0=destptr, arg1=mem, auxint=size. Returns memory. // Function calls. Arguments to the call have already been written to the stack. // Return values appear on the stack. The method receiver, if any, is treated // as a phantom first argument. {name: "ClosureCall", argLength: 3, aux: "Int64"}, // arg0=code pointer, arg1=context ptr, arg2=memory. auxint=arg size. Returns memory. {name: "StaticCall", argLength: 1, aux: "SymOff"}, // call function aux.(*gc.Sym), arg0=memory. auxint=arg size. Returns memory. {name: "DeferCall", argLength: 1, aux: "Int64"}, // defer call. arg0=memory, auxint=arg size. Returns memory. {name: "GoCall", argLength: 1, aux: "Int64"}, // go call. arg0=memory, auxint=arg size. Returns memory. {name: "InterCall", argLength: 2, aux: "Int64"}, // interface call. arg0=code pointer, arg1=memory, auxint=arg size. Returns memory. // Conversions: signed extensions, zero (unsigned) extensions, truncations {name: "SignExt8to16", argLength: 1, typ: "Int16"}, {name: "SignExt8to32", argLength: 1, typ: "Int32"}, {name: "SignExt8to64", argLength: 1, typ: "Int64"}, {name: "SignExt16to32", argLength: 1, typ: "Int32"}, {name: "SignExt16to64", argLength: 1, typ: "Int64"}, {name: "SignExt32to64", argLength: 1, typ: "Int64"}, {name: "ZeroExt8to16", argLength: 1, typ: "UInt16"}, {name: "ZeroExt8to32", argLength: 1, typ: "UInt32"}, {name: "ZeroExt8to64", argLength: 1, typ: "UInt64"}, {name: "ZeroExt16to32", argLength: 1, typ: "UInt32"}, {name: "ZeroExt16to64", argLength: 1, typ: "UInt64"}, {name: "ZeroExt32to64", argLength: 1, typ: "UInt64"}, {name: "Trunc16to8", argLength: 1}, {name: "Trunc32to8", argLength: 1}, {name: "Trunc32to16", argLength: 1}, {name: "Trunc64to8", argLength: 1}, {name: "Trunc64to16", argLength: 1}, {name: "Trunc64to32", argLength: 1}, {name: "Cvt32to32F", argLength: 1}, {name: "Cvt32to64F", argLength: 1}, {name: "Cvt64to32F", argLength: 1}, {name: "Cvt64to64F", argLength: 1}, {name: "Cvt32Fto32", argLength: 1}, {name: "Cvt32Fto64", argLength: 1}, {name: "Cvt64Fto32", argLength: 1}, {name: "Cvt64Fto64", argLength: 1}, {name: "Cvt32Fto64F", argLength: 1}, {name: "Cvt64Fto32F", argLength: 1}, // Automatically inserted safety checks {name: "IsNonNil", argLength: 1, typ: "Bool"}, // arg0 != nil {name: "IsInBounds", argLength: 2, typ: "Bool"}, // 0 <= arg0 < arg1. arg1 is guaranteed >= 0. {name: "IsSliceInBounds", argLength: 2, typ: "Bool"}, // 0 <= arg0 <= arg1. arg1 is guaranteed >= 0. {name: "NilCheck", argLength: 2, typ: "Void"}, // arg0=ptr, arg1=mem. Panics if arg0 is nil, returns void. // Pseudo-ops {name: "GetG", argLength: 1}, // runtime.getg() (read g pointer). arg0=mem {name: "GetClosurePtr"}, // get closure pointer from dedicated register // Indexing operations {name: "ArrayIndex", aux: "Int64", argLength: 1}, // arg0=array, auxint=index. Returns a[i] {name: "PtrIndex", argLength: 2}, // arg0=ptr, arg1=index. Computes ptr+sizeof(*v.type)*index, where index is extended to ptrwidth type {name: "OffPtr", argLength: 1, aux: "Int64"}, // arg0 + auxint (arg0 and result are pointers) // Slices {name: "SliceMake", argLength: 3}, // arg0=ptr, arg1=len, arg2=cap {name: "SlicePtr", argLength: 1, typ: "BytePtr"}, // ptr(arg0) {name: "SliceLen", argLength: 1}, // len(arg0) {name: "SliceCap", argLength: 1}, // cap(arg0) // Complex (part/whole) {name: "ComplexMake", argLength: 2}, // arg0=real, arg1=imag {name: "ComplexReal", argLength: 1}, // real(arg0) {name: "ComplexImag", argLength: 1}, // imag(arg0) // Strings {name: "StringMake", argLength: 2}, // arg0=ptr, arg1=len {name: "StringPtr", argLength: 1, typ: "BytePtr"}, // ptr(arg0) {name: "StringLen", argLength: 1, typ: "Int"}, // len(arg0) // Interfaces {name: "IMake", argLength: 2}, // arg0=itab, arg1=data {name: "ITab", argLength: 1, typ: "BytePtr"}, // arg0=interface, returns itable field {name: "IData", argLength: 1}, // arg0=interface, returns data field // Structs {name: "StructMake0"}, // Returns struct with 0 fields. {name: "StructMake1", argLength: 1}, // arg0=field0. Returns struct. {name: "StructMake2", argLength: 2}, // arg0,arg1=field0,field1. Returns struct. {name: "StructMake3", argLength: 3}, // arg0..2=field0..2. Returns struct. {name: "StructMake4", argLength: 4}, // arg0..3=field0..3. Returns struct. {name: "StructSelect", argLength: 1, aux: "Int64"}, // arg0=struct, auxint=field index. Returns the auxint'th field. // Spill&restore ops for the register allocator. These are // semantically identical to OpCopy; they do not take/return // stores like regular memory ops do. We can get away without memory // args because we know there is no aliasing of spill slots on the stack. {name: "StoreReg", argLength: 1}, {name: "LoadReg", argLength: 1}, // Used during ssa construction. Like Copy, but the arg has not been specified yet. {name: "FwdRef", aux: "Sym"}, // Unknown value. Used for Values whose values don't matter because they are dead code. {name: "Unknown"}, {name: "VarDef", argLength: 1, aux: "Sym", typ: "Mem"}, // aux is a *gc.Node of a variable that is about to be initialized. arg0=mem, returns mem {name: "VarKill", argLength: 1, aux: "Sym"}, // aux is a *gc.Node of a variable that is known to be dead. arg0=mem, returns mem {name: "VarLive", argLength: 1, aux: "Sym"}, // aux is a *gc.Node of a variable that must be kept live. arg0=mem, returns mem {name: "KeepAlive", argLength: 2, typ: "Mem"}, // arg[0] is a value that must be kept alive until this mark. arg[1]=mem, returns mem // Ops for breaking 64-bit operations on 32-bit architectures {name: "Int64Make", argLength: 2, typ: "UInt64"}, // arg0=hi, arg1=lo {name: "Int64Hi", argLength: 1, typ: "UInt32"}, // high 32-bit of arg0 {name: "Int64Lo", argLength: 1, typ: "UInt32"}, // low 32-bit of arg0 {name: "Add32carry", argLength: 2, commutative: true, typ: "(Flags,UInt32)"}, // arg0 + arg1, returns (carry, value) {name: "Add32withcarry", argLength: 3, commutative: true}, // arg0 + arg1 + arg2, arg2=carry (0 or 1) {name: "Sub32carry", argLength: 2, typ: "(Flags,UInt32)"}, // arg0 - arg1, returns (carry, value) {name: "Sub32withcarry", argLength: 3}, // arg0 - arg1 - arg2, arg2=carry (0 or 1) {name: "Mul32uhilo", argLength: 2, typ: "(UInt32,UInt32)"}, // arg0 * arg1, returns (hi, lo) {name: "Signmask", argLength: 1, typ: "Int32"}, // 0 if arg0 >= 0, -1 if arg0 < 0 {name: "Zeromask", argLength: 1, typ: "UInt32"}, // 0 if arg0 == 0, 0xffffffff if arg0 != 0 {name: "Cvt32Uto32F", argLength: 1}, // uint32 -> float32, only used on 32-bit arch {name: "Cvt32Uto64F", argLength: 1}, // uint32 -> float64, only used on 32-bit arch {name: "Cvt32Fto32U", argLength: 1}, // float32 -> uint32, only used on 32-bit arch {name: "Cvt64Fto32U", argLength: 1}, // float64 -> uint32, only used on 32-bit arch // pseudo-ops for breaking Tuple {name: "Select0", argLength: 1}, // the first component of a tuple {name: "Select1", argLength: 1}, // the second component of a tuple } // kind control successors implicit exit // ---------------------------------------------------------- // Exit return mem [] yes // Ret return mem [] yes // RetJmp return mem [] yes // Plain nil [next] // If a boolean Value [then, else] // Call mem [next] yes (control opcode should be OpCall or OpStaticCall) // Check void [next] yes (control opcode should be Op{Lowered}NilCheck) // First nil [always,never] var genericBlocks = []blockData{ {name: "Plain"}, // a single successor {name: "If"}, // 2 successors, if control goto Succs[0] else goto Succs[1] {name: "Call"}, // 1 successor, control is call op (of memory type) {name: "Defer"}, // 2 successors, Succs[0]=defer queued, Succs[1]=defer recovered. control is call op (of memory type) {name: "Check"}, // 1 successor, control is nilcheck op (of void type) {name: "Ret"}, // no successors, control value is memory result {name: "RetJmp"}, // no successors, jumps to b.Aux.(*gc.Sym) {name: "Exit"}, // no successors, control value generates a panic // transient block state used for dead code removal {name: "First"}, // 2 successors, always takes the first one (second is dead) } func init() { archs = append(archs, arch{ name: "generic", ops: genericOps, blocks: genericBlocks, generic: true, }) }