// Use of this source file is governed by a BSD-style // license that can be found in the LICENSE file.` #include "runtime.h" #include "defs_GOOS_GOARCH.h" #include "os_GOOS.h" #include "stack.h" extern SigTab runtime·sigtab[]; extern int32 runtime·sys_umtx_op(uint32*, int32, uint32, void*, void*); // From FreeBSD's <sys/sysctl.h> #define CTL_HW 6 #define HW_NCPU 3 static Sigset sigset_none; static Sigset sigset_all = { ~(uint32)0, ~(uint32)0, ~(uint32)0, ~(uint32)0, }; static int32 getncpu(void) { uint32 mib[2]; uint32 out; int32 ret; uintptr nout; // Fetch hw.ncpu via sysctl. mib[0] = CTL_HW; mib[1] = HW_NCPU; nout = sizeof out; out = 0; ret = runtime·sysctl(mib, 2, (byte*)&out, &nout, nil, 0); if(ret >= 0) return out; else return 1; } // FreeBSD's umtx_op syscall is effectively the same as Linux's futex, and // thus the code is largely similar. See linux/thread.c and lock_futex.c for comments. void runtime·futexsleep(uint32 *addr, uint32 val, int64 ns) { int32 ret; Timespec ts, *tsp; if(ns < 0) tsp = nil; else { ts.tv_sec = ns / 1000000000LL; ts.tv_nsec = ns % 1000000000LL; tsp = &ts; } ret = runtime·sys_umtx_op(addr, UMTX_OP_WAIT, val, nil, tsp); if(ret >= 0 || ret == -EINTR) return; runtime·printf("umtx_wait addr=%p val=%d ret=%d\n", addr, val, ret); *(int32*)0x1005 = 0x1005; } void runtime·futexwakeup(uint32 *addr, uint32 cnt) { int32 ret; ret = runtime·sys_umtx_op(addr, UMTX_OP_WAKE, cnt, nil, nil); if(ret >= 0) return; runtime·printf("umtx_wake addr=%p ret=%d\n", addr, ret); *(int32*)0x1006 = 0x1006; } void runtime·thr_start(void*); void runtime·newosproc(M *mp, G *gp, void *stk, void (*fn)(void)) { ThrParam param; Sigset oset; // thr_start assumes gp == mp->g0 if(gp != mp->g0) runtime·throw("invalid newosproc gp"); if(0){ runtime·printf("newosproc stk=%p m=%p g=%p fn=%p id=%d/%d ostk=%p\n", stk, mp, gp, fn, mp->id, (int32)mp->tls[0], &mp); } runtime·sigprocmask(&sigset_all, &oset); runtime·memclr((byte*)¶m, sizeof param); param.start_func = runtime·thr_start; param.arg = (byte*)mp; param.stack_base = (void*)gp->stackbase; param.stack_size = (byte*)stk - (byte*)gp->stackbase; param.child_tid = (intptr*)&mp->procid; param.parent_tid = nil; param.tls_base = (void*)&mp->tls[0]; param.tls_size = sizeof mp->tls; mp->tls[0] = mp->id; // so 386 asm can find it mp->mstartfn = fn; runtime·thr_new(¶m, sizeof param); runtime·sigprocmask(&oset, nil); } void runtime·osinit(void) { runtime·ncpu = getncpu(); } void runtime·goenvs(void) { runtime·goenvs_unix(); } // Called to initialize a new m (including the bootstrap m). // Called on the parent thread (main thread in case of bootstrap), can allocate memory. void runtime·mpreinit(M *mp) { mp->gsignal = runtime·malg(32*1024); } // Called to initialize a new m (including the bootstrap m). // Called on the new thread, can not allocate memory. void runtime·minit(void) { // Initialize signal handling runtime·signalstack((byte*)m->gsignal->stackguard - StackGuard, 32*1024); runtime·sigprocmask(&sigset_none, nil); } // Called from dropm to undo the effect of an minit. void runtime·unminit(void) { runtime·signalstack(nil, 0); } void runtime·sigpanic(void) { switch(g->sig) { case SIGBUS: if(g->sigcode0 == BUS_ADRERR && g->sigcode1 < 0x1000) { if(g->sigpc == 0) runtime·panicstring("call of nil func value"); runtime·panicstring("invalid memory address or nil pointer dereference"); } runtime·printf("unexpected fault address %p\n", g->sigcode1); runtime·throw("fault"); case SIGSEGV: if((g->sigcode0 == 0 || g->sigcode0 == SEGV_MAPERR || g->sigcode0 == SEGV_ACCERR) && g->sigcode1 < 0x1000) { if(g->sigpc == 0) runtime·panicstring("call of nil func value"); runtime·panicstring("invalid memory address or nil pointer dereference"); } runtime·printf("unexpected fault address %p\n", g->sigcode1); runtime·throw("fault"); case SIGFPE: switch(g->sigcode0) { case FPE_INTDIV: runtime·panicstring("integer divide by zero"); case FPE_INTOVF: runtime·panicstring("integer overflow"); } runtime·panicstring("floating point error"); } runtime·panicstring(runtime·sigtab[g->sig].name); } uintptr runtime·memlimit(void) { Rlimit rl; extern byte text[], end[]; uintptr used; if(runtime·getrlimit(RLIMIT_AS, &rl) != 0) return 0; if(rl.rlim_cur >= 0x7fffffff) return 0; // Estimate our VM footprint excluding the heap. // Not an exact science: use size of binary plus // some room for thread stacks. used = end - text + (64<<20); if(used >= rl.rlim_cur) return 0; // If there's not at least 16 MB left, we're probably // not going to be able to do much. Treat as no limit. rl.rlim_cur -= used; if(rl.rlim_cur < (16<<20)) return 0; return rl.rlim_cur - used; } void runtime·setprof(bool on) { USED(on); } static int8 badcallback[] = "runtime: cgo callback on thread not created by Go.\n"; // This runs on a foreign stack, without an m or a g. No stack split. #pragma textflag 7 void runtime·badcallback(void) { runtime·write(2, badcallback, sizeof badcallback - 1); } static int8 badsignal[] = "runtime: signal received on thread not created by Go: "; // This runs on a foreign stack, without an m or a g. No stack split. #pragma textflag 7 void runtime·badsignal(int32 sig) { if (sig == SIGPROF) { return; // Ignore SIGPROFs intended for a non-Go thread. } runtime·write(2, badsignal, sizeof badsignal - 1); if (0 <= sig && sig < NSIG) { // Call runtime·findnull dynamically to circumvent static stack size check. static int32 (*findnull)(byte*) = runtime·findnull; runtime·write(2, runtime·sigtab[sig].name, findnull((byte*)runtime·sigtab[sig].name)); } runtime·write(2, "\n", 1); runtime·exit(1); }