Commit e419f2d6 authored by Stephen Hemminger's avatar Stephen Hemminger

Remove derived man pages

These man pages are now built from templates
parent 5e4dc84f
.TH "IP\-ADDRESS" 8 "04 March 2012" "iproute2" "Linux"
.SH "NAME"
ip-address \- protocol address management
.SH "SYNOPSIS"
.sp
.ad l
.in +8
.ti -8
.B ip
.RI "[ " OPTIONS " ]"
.B address
.RI " { " COMMAND " | "
.BR help " }"
.sp
.ti -8
.BR "ip address" " { " add " | " change " | " replace " } "
.IB IFADDR " dev " STRING
.RI "[ " LIFETIME " ] [ " CONFFLAG-LIST " ]"
.ti -8
.BR "ip address del"
.IB IFADDR " dev " STRING
.ti -8
.BR "ip address" " { " show " | " flush " } [ " dev
.IR STRING " ] [ "
.B scope
.IR SCOPE-ID " ] [ "
.B to
.IR PREFIX " ] [ " FLAG-LIST " ] [ "
.B label
.IR PATTERN " ]"
.ti -8
.IR IFADDR " := " PREFIX " | " ADDR
.B peer
.IR PREFIX " [ "
.B broadcast
.IR ADDR " ] [ "
.B anycast
.IR ADDR " ] [ "
.B label
.IR STRING " ] [ "
.B scope
.IR SCOPE-ID " ]"
.ti -8
.IR SCOPE-ID " := "
.RB "[ " host " | " link " | " global " | "
.IR NUMBER " ]"
.ti -8
.IR FLAG-LIST " := [ " FLAG-LIST " ] " FLAG
.ti -8
.IR FLAG " := "
.RB "[ " permanent " | " dynamic " | " secondary " | " primary " | "\
tentative " | " deprecated " | " dadfailed " | " temporary " | " CONFFLAG-LIST " ]"
.ti -8
.IR CONFFLAG-LIST " := [ " CONFFLAG-LIST " ] " CONFFLAG
.ti -8
.IR CONFFLAG " := "
.RB "[ " home " | " nodad " ]"
.ti -8
.IR LIFETIME " := [ "
.BI valid_lft " LFT"
.RB "| " preferred_lft
.IR LFT " ]"
.ti -8
.IR LFT " := [ "
.BR forever " |"
.IR SECONDS " ]"
.SH "DESCRIPTION"
The
.B address
is a protocol (IPv4 or IPv6) address attached
to a network device. Each device must have at least one address
to use the corresponding protocol. It is possible to have several
different addresses attached to one device. These addresses are not
discriminated, so that the term
.B alias
is not quite appropriate for them and we do not use it in this document.
.sp
The
.B ip address
command displays addresses and their properties, adds new addresses
and deletes old ones.
.SS ip address add - add new protocol address.
.TP
.BI dev " NAME"
the name of the device to add the address to.
.TP
.BI local " ADDRESS " (default)
the address of the interface. The format of the address depends
on the protocol. It is a dotted quad for IP and a sequence of
hexadecimal halfwords separated by colons for IPv6. The
.I ADDRESS
may be followed by a slash and a decimal number which encodes
the network prefix length.
.TP
.BI peer " ADDRESS"
the address of the remote endpoint for pointopoint interfaces.
Again, the
.I ADDRESS
may be followed by a slash and a decimal number, encoding the network
prefix length. If a peer address is specified, the local address
cannot have a prefix length. The network prefix is associated
with the peer rather than with the local address.
.TP
.BI broadcast " ADDRESS"
the broadcast address on the interface.
.sp
It is possible to use the special symbols
.B '+'
and
.B '-'
instead of the broadcast address. In this case, the broadcast address
is derived by setting/resetting the host bits of the interface prefix.
.TP
.BI label " NAME"
Each address may be tagged with a label string.
In order to preserve compatibility with Linux-2.0 net aliases,
this string must coincide with the name of the device or must be prefixed
with the device name followed by colon.
.TP
.BI scope " SCOPE_VALUE"
the scope of the area where this address is valid.
The available scopes are listed in file
.BR "/etc/iproute2/rt_scopes" .
Predefined scope values are:
.in +8
.B global
- the address is globally valid.
.sp
.B link
- the address is link local, i.e. it is valid only on this device.
.sp
.B host
- the address is valid only inside this host.
.in -8
.TP
.BI valid_lft " LFT"
(IPv6 only) the valid lifetime of this address; see section 5.5.4 of
RFC 4862. Defaults to
.BR "forever" .
.TP
.BI preferred_lft " LFT"
(IPv6 only) the preferred lifetime of this address; see section 5.5.4
of RFC 4862. Defaults to
.BR "forever" .
.TP
.B home
(IPv6 only) designates this address the "home address" as defined in
RFC 6275.
.TP
.B nodad
(IPv6 only) do not perform Duplicate Address Detection (RFC 4862) when
adding this address.
.SS ip address delete - delete protocol address
.B Arguments:
coincide with the arguments of
.B ip addr add.
The device name is a required argument. The rest are optional.
If no arguments are given, the first address is deleted.
.SS ip address show - look at protocol addresses
.TP
.BI dev " NAME " (default)
name of device.
.TP
.BI scope " SCOPE_VAL"
only list addresses with this scope.
.TP
.BI to " PREFIX"
only list addresses matching this prefix.
.TP
.BI label " PATTERN"
only list addresses with labels matching the
.IR "PATTERN" .
.I PATTERN
is a usual shell style pattern.
.TP
.BR dynamic " and " permanent
(IPv6 only) only list addresses installed due to stateless
address configuration or only list permanent (not dynamic)
addresses.
.TP
.B tentative
(IPv6 only) only list addresses which have not yet passed duplicate
address detection.
.TP
.B deprecated
(IPv6 only) only list deprecated addresses.
.TP
.B dadfailed
(IPv6 only) only list addresses which have failed duplicate
address detection.
.TP
.B temporary
(IPv6 only) only list temporary addresses.
.TP
.BR primary " and " secondary
only list primary (or secondary) addresses.
.SS ip address flush - flush protocol addresses
This command flushes the protocol addresses selected by some criteria.
.PP
This command has the same arguments as
.B show.
The difference is that it does not run when no arguments are given.
.PP
.B Warning:
This command and other
.B flush
commands are unforgiving. They will cruelly purge all the addresses.
.PP
With the
.B -statistics
option, the command becomes verbose. It prints out the number of deleted
addresses and the number of rounds made to flush the address list.
If this option is given twice,
.B ip address flush
also dumps all the deleted addresses in the format described in the
previous subsection.
.SH "EXAMPLES"
.PP
ip address show dev eth0
.RS 4
Shows the addresses assigned to network interface eth0
.RE
.PP
ip addr add 2001:0db8:85a3::0370:7334/64 dev eth1
.RS 4
Adds an IPv6 address to network interface eth1
.RE
.PP
ip addr flush dev eth4
.RS 4
Removes all addresses from device eth4
.RE
.SH SEE ALSO
.br
.BR ip (8)
.SH AUTHOR
Original Manpage by Michail Litvak <mci@owl.openwall.com>
.TH IP\-LINK 8 "20 Dec 2011" "iproute2" "Linux"
.SH "NAME"
ip-link \- network device configuration
.SH "SYNOPSIS"
.sp
.ad l
.in +8
.ti -8
.B ip
.RI "[ " OPTIONS " ]"
.B link
.RI " { " COMMAND " | "
.BR help " }"
.sp
.ti -8
.IR OPTIONS " := { "
\fB\-V\fR[\fIersion\fR] |
\fB\-s\fR[\fItatistics\fR] |
\fB\-r\fR[\fIesolve\fR] |
\fB\-f\fR[\fIamily\fR] {
.BR inet " | " inet6 " | " ipx " | " dnet " | " link " } | "
\fB\-o\fR[\fIneline\fR] }
.ti -8
.BI "ip link add"
.RB "[ " link
.IR DEVICE " ]"
.RB "[ " name " ]"
.I NAME
.br
.RB "[ " txqueuelen
.IR PACKETS " ]"
.br
.RB "[ " address
.IR LLADDR " ]"
.RB "[ " broadcast
.IR LLADDR " ]"
.br
.RB "[ " mtu
.IR MTU " ]"
.br
.BR type " TYPE"
.RI "[ " ARGS " ]"
.ti -8
.IR TYPE " := [ "
.BR vlan " | " veth " | " vcan " | " dummy " | " ifb " | " macvlan " | " can " | " bridge " ]"
.ti -8
.BI "ip link delete " DEVICE
.BI type " TYPE"
.RI "[ " ARGS " ]"
.ti -8
.BR "ip link set " {
.IR DEVICE " | "
.BI "group " GROUP
.RB "} { " up " | " down " | " arp " { " on " | " off " } |"
.br
.BR promisc " { " on " | " off " } |"
.br
.BR allmulticast " { " on " | " off " } |"
.br
.BR dynamic " { " on " | " off " } |"
.br
.BR multicast " { " on " | " off " } |"
.br
.B txqueuelen
.IR PACKETS " |"
.br
.B name
.IR NEWNAME " |"
.br
.B address
.IR LLADDR " |"
.B broadcast
.IR LLADDR " |"
.br
.B mtu
.IR MTU " |"
.br
.B netns
.IR PID " |"
.br
.B netns
.IR NETNSNAME " |"
.br
.B alias
.IR NAME " |"
.br
.B vf
.IR NUM " ["
.B mac
.IR LLADDR " ] ["
.B vlan
.IR VLANID " [ "
.B qos
.IR VLAN-QOS " ] ] ["
.B rate
.IR TXRATE " ] ["
.B spoofchk { on | off }
] |
.br
.B mode
.IR LINKMODE " |"
.br
.B state
.IR LINKSTATE " |"
.br
.B master
.IR DEVICE
.br
.B nomaster
.BR " }"
.ti -8
.B ip link show
.RI "[ " DEVICE " | "
.B group
.IR GROUP " ]"
.SH "DESCRIPTION"
.SS ip link add - add virtual link
.TP
.BI link " DEVICE "
specifies the physical device to act operate on.
.I NAME
specifies the name of the new virtual device.
.I TYPE
specifies the type of the new device.
.sp
Link types:
.in +8
.B vlan
- 802.1q tagged virtual LAN interface
.sp
.B veth
- Virtual ethernet interface
.sp
.B vcan
- Virtual Local CAN interface
.sp
.B dummy
- Dummy network interface
.sp
.B ifb
- Intermediate Functional Block device
.sp
.B macvlan
- virtual interface base on link layer address (MAC)
.sp
.B can
- Controller Area Network interface
.sp
.B bridge
- Ethernet Bridge device
.in -8
.SS ip link delete - delete virtual link
.I DEVICE
specifies the virtual device to act operate on.
.I TYPE
specifies the type of the device.
.TP
.BI dev " DEVICE "
specifies the physical device to act operate on.
.SS ip link set - change device attributes
.TP
.BI dev " DEVICE "
.I DEVICE
specifies network device to operate on. When configuring SR-IOV Virtual Fuction
(VF) devices, this keyword should specify the associated Physical Function (PF)
device.
.TP
.BI group " GROUP "
.I GROUP
has a dual role: If both group and dev are present, then move the device to the
specified group. If only a group is specified, then the command operates on
all devices in that group.
.TP
.BR up " and " down
change the state of the device to
.B UP
or
.BR "DOWN" .
.TP
.BR "arp on " or " arp off"
change the
.B NOARP
flag on the device.
.TP
.BR "multicast on " or " multicast off"
change the
.B MULTICAST
flag on the device.
.TP
.BR "dynamic on " or " dynamic off"
change the
.B DYNAMIC
flag on the device.
.TP
.BI name " NAME"
change the name of the device. This operation is not
recommended if the device is running or has some addresses
already configured.
.TP
.BI txqueuelen " NUMBER"
.TP
.BI txqlen " NUMBER"
change the transmit queue length of the device.
.TP
.BI mtu " NUMBER"
change the
.I MTU
of the device.
.TP
.BI address " LLADDRESS"
change the station address of the interface.
.TP
.BI broadcast " LLADDRESS"
.TP
.BI brd " LLADDRESS"
.TP
.BI peer " LLADDRESS"
change the link layer broadcast address or the peer address when
the interface is
.IR "POINTOPOINT" .
.TP
.BI netns " PID"
move the device to the network namespace associated with the process
.IR "PID".
.TP
.BI netns " NETNSNAME"
move the device to the network namespace associated with name
.IR "NETNSNAME".
.TP
.BI mode " LINKMODE"
allows setting link mode which determines which RFC2863 operational state
the device will transistion to when it is brought up. Setting
.I dormant
mode changes the behaviour so that device goes into DORMANT state instead
of UP when driver is ready.
.TP
.BI state " LINKSTATE"
allows setting the operational link state. The values (defined in RFC2863)
are: UP, DOWN, TESTING, UNKNOWN, DORMANT, NOTPRESENT, LOWERLAYERDOWN.
.TP
.BI alias " NAME"
give the device a symbolic name for easy reference.
.TP
.BI group " GROUP"
specify the group the device belongs to.
The available groups are listed in file
.BR "/etc/iproute2/group" .
.TP
.BI vf " NUM"
specify a Virtual Function device to be configured. The associated PF device
must be specified using the
.B dev
parameter.
.in +8
.BI mac " LLADDRESS"
- change the station address for the specified VF. The
.B vf
parameter must be specified.
.sp
.BI vlan " VLANID"
- change the assigned VLAN for the specified VF. When specified, all traffic
sent from the VF will be tagged with the specified VLAN ID. Incoming traffic
will be filtered for the specified VLAN ID, and will have all VLAN tags
stripped before being passed to the VF. Setting this parameter to 0 disables
VLAN tagging and filtering. The
.B vf
parameter must be specified.
.sp
.BI qos " VLAN-QOS"
- assign VLAN QOS (priority) bits for the VLAN tag. When specified, all VLAN
tags transmitted by the VF will include the specified priority bits in the
VLAN tag. If not specified, the value is assumed to be 0. Both the
.B vf
and
.B vlan
parameters must be specified. Setting both
.B vlan
and
.B qos
as 0 disables VLAN tagging and filtering for the VF.
.sp
.BI rate " TXRATE"
- change the allowed transmit bandwidth, in Mbps, for the specified VF.
Setting this parameter to 0 disables rate limiting. The
.B vf
parameter must be specified.
.sp
.BI spoofchk " on|off"
- turn packet spoof checking on or off for the specified VF.
.in -8
.TP
.BI master " DEVICE"
set master device of the device (enslave device).
.TP
.BI nomaster
unset master device of the device (release device).
.PP
.B Warning:
If multiple parameter changes are requested,
.B ip
aborts immediately after any of the changes have failed.
This is the only case when
.B ip
can move the system to an unpredictable state. The solution
is to avoid changing several parameters with one
.B ip link set
call.
.SS ip link show - display device attributes
.TP
.BI dev " NAME " (default)
.I NAME
specifies the network device to show.
If this argument is omitted all devices in the default group are listed.
.TP
.BI group " GROUP "
.I GROUP
specifies what group of devices to show.
.TP
.B up
only display running interfaces.
.SH "EXAMPLES"
.PP
ip link show
.RS 4
Shows the state of all network interfaces on the system.
.RE
.PP
ip link set dev ppp0 mtu 1400
.RS 4
Change the MTU the ppp0 device.
.RE
.PP
ip link add link eth0 name eth0.10 type vlan id 10
.RS 4
Creates a new vlan device eth0.10 on device eth0.
.RE
.PP
ip link delete dev eth0.10
.RS 4
Removes vlan device.
.RE
.SH SEE ALSO
.br
.BR ip (8)
.SH AUTHOR
Original Manpage by Michail Litvak <mci@owl.openwall.com>
.TH IP\-ROUTE 8 "20 Dec 2011" "iproute2" "Linux"
.SH "NAME"
ip-route \- routing table management
.SH "SYNOPSIS"
.sp
.ad l
.in +8
.ti -8
.B ip
.RI "[ " OPTIONS " ]"
.B route
.RI " { " COMMAND " | "
.BR help " }"
.sp
.ti -8
.ti -8
.BR "ip route" " { "
.BR list " | " flush " } "
.I SELECTOR
.ti -8
.BR "ip route save"
.I SELECTOR
.ti -8
.BR "ip route restore"
.ti -8
.B ip route get
.IR ADDRESS " [ "
.BI from " ADDRESS " iif " STRING"
.RB " ] [ " oif
.IR STRING " ] [ "
.B tos
.IR TOS " ]"
.ti -8
.BR "ip route" " { " add " | " del " | " change " | " append " | "\
replace " } "
.I ROUTE
.ti -8
.IR SELECTOR " := "
.RB "[ " root
.IR PREFIX " ] [ "
.B match
.IR PREFIX " ] [ "
.B exact
.IR PREFIX " ] [ "
.B table
.IR TABLE_ID " ] [ "
.B proto
.IR RTPROTO " ] [ "
.B type
.IR TYPE " ] [ "
.B scope
.IR SCOPE " ]"
.ti -8
.IR ROUTE " := " NODE_SPEC " [ " INFO_SPEC " ]"
.ti -8
.IR NODE_SPEC " := [ " TYPE " ] " PREFIX " ["
.B tos
.IR TOS " ] [ "
.B table
.IR TABLE_ID " ] [ "
.B proto
.IR RTPROTO " ] [ "
.B scope
.IR SCOPE " ] [ "
.B metric
.IR METRIC " ]"
.ti -8
.IR INFO_SPEC " := " "NH OPTIONS FLAGS" " ["
.B nexthop
.IR NH " ] ..."
.ti -8
.IR NH " := [ "
.B via
.IR ADDRESS " ] [ "
.B dev
.IR STRING " ] [ "
.B weight
.IR NUMBER " ] " NHFLAGS
.ti -8
.IR OPTIONS " := " FLAGS " [ "
.B mtu
.IR NUMBER " ] [ "
.B advmss
.IR NUMBER " ] [ "
.B rtt
.IR TIME " ] [ "
.B rttvar
.IR TIME " ] [ "
.B window
.IR NUMBER " ] [ "
.B cwnd
.IR NUMBER " ] [ "
.B ssthresh
.IR REALM " ] [ "
.B realms
.IR REALM " ] [ "
.B rto_min
.IR TIME " ] [ "
.B initcwnd
.IR NUMBER " ] [ "
.B initrwnd
.IR NUMBER " ]"
.ti -8
.IR TYPE " := [ "
.BR unicast " | " local " | " broadcast " | " multicast " | "\
throw " | " unreachable " | " prohibit " | " blackhole " | " nat " ]"
.ti -8
.IR TABLE_ID " := [ "
.BR local "| " main " | " default " | " all " |"
.IR NUMBER " ]"
.ti -8
.IR SCOPE " := [ "
.BR host " | " link " | " global " |"
.IR NUMBER " ]"
.ti -8
.IR NHFLAGS " := [ "
.BR onlink " | " pervasive " ]"
.ti -8
.IR RTPROTO " := [ "
.BR kernel " | " boot " | " static " |"
.IR NUMBER " ]"
.SH DESCRIPTION
.B ip route
is used to manipulate entries in the kernel routing tables.
.sp
.B Route types:
.in +8
.B unicast
- the route entry describes real paths to the destinations covered
by the route prefix.
.sp
.B unreachable
- these destinations are unreachable. Packets are discarded and the
ICMP message
.I host unreachable
is generated.
The local senders get an
.I EHOSTUNREACH
error.
.sp
.B blackhole
- these destinations are unreachable. Packets are discarded silently.
The local senders get an
.I EINVAL
error.
.sp
.B prohibit
- these destinations are unreachable. Packets are discarded and the
ICMP message
.I communication administratively prohibited
is generated. The local senders get an
.I EACCES
error.
.sp
.B local
- the destinations are assigned to this host. The packets are looped
back and delivered locally.
.sp
.B broadcast
- the destinations are broadcast addresses. The packets are sent as
link broadcasts.
.sp
.B throw
- a special control route used together with policy rules. If such a
route is selected, lookup in this table is terminated pretending that
no route was found. Without policy routing it is equivalent to the
absence of the route in the routing table. The packets are dropped
and the ICMP message
.I net unreachable
is generated. The local senders get an
.I ENETUNREACH
error.
.sp
.B nat
- a special NAT route. Destinations covered by the prefix
are considered to be dummy (or external) addresses which require translation
to real (or internal) ones before forwarding. The addresses to translate to
are selected with the attribute
.B Warning:
Route NAT is no longer supported in Linux 2.6.
.BR "via" .
.sp
.B anycast
.RI "- " "not implemented"
the destinations are
.I anycast
addresses assigned to this host. They are mainly equivalent
to
.B local
with one difference: such addresses are invalid when used
as the source address of any packet.
.sp
.B multicast
- a special type used for multicast routing. It is not present in
normal routing tables.
.in -8
.P
.B Route tables:
Linux-2.x can pack routes into several routing tables identified
by a number in the range from 1 to 2^31 or by name from the file
.B /etc/iproute2/rt_tables
By default all normal routes are inserted into the
.B main
table (ID 254) and the kernel only uses this table when calculating routes.
Values (0, 253, 254, and 255) are reserved for built-in use.
.sp
Actually, one other table always exists, which is invisible but
even more important. It is the
.B local
table (ID 255). This table
consists of routes for local and broadcast addresses. The kernel maintains
this table automatically and the administrator usually need not modify it
or even look at it.
The multiple routing tables enter the game when
.I policy routing
is used.
.SS ip route add - add new route
.SS ip route change - change route
.SS ip route replace - change or add new one
.TP
.BI to " TYPE PREFIX " (default)
the destination prefix of the route. If
.I TYPE
is omitted,
.B ip
assumes type
.BR "unicast" .
Other values of
.I TYPE
are listed above.
.I PREFIX
is an IP or IPv6 address optionally followed by a slash and the
prefix length. If the length of the prefix is missing,
.B ip
assumes a full-length host route. There is also a special
.I PREFIX
.B default
- which is equivalent to IP
.B 0/0
or to IPv6
.BR "::/0" .
.TP
.BI tos " TOS"
.TP
.BI dsfield " TOS"
the Type Of Service (TOS) key. This key has no associated mask and
the longest match is understood as: First, compare the TOS
of the route and of the packet. If they are not equal, then the packet
may still match a route with a zero TOS.
.I TOS
is either an 8 bit hexadecimal number or an identifier
from
.BR "/etc/iproute2/rt_dsfield" .
.TP
.BI metric " NUMBER"
.TP
.BI preference " NUMBER"
the preference value of the route.
.I NUMBER
is an arbitrary 32bit number.
.TP
.BI table " TABLEID"
the table to add this route to.
.I TABLEID
may be a number or a string from the file
.BR "/etc/iproute2/rt_tables" .
If this parameter is omitted,
.B ip
assumes the
.B main
table, with the exception of
.BR local " , " broadcast " and " nat
routes, which are put into the
.B local
table by default.
.TP
.BI dev " NAME"
the output device name.
.TP
.BI via " ADDRESS"
the address of the nexthop router. Actually, the sense of this field
depends on the route type. For normal
.B unicast
routes it is either the true next hop router or, if it is a direct
route installed in BSD compatibility mode, it can be a local address
of the interface. For NAT routes it is the first address of the block
of translated IP destinations.
.TP
.BI src " ADDRESS"
the source address to prefer when sending to the destinations
covered by the route prefix.
.TP
.BI realm " REALMID"
the realm to which this route is assigned.
.I REALMID
may be a number or a string from the file
.BR "/etc/iproute2/rt_realms" .
.TP
.BI mtu " MTU"
.TP
.BI "mtu lock" " MTU"
the MTU along the path to the destination. If the modifier
.B lock
is not used, the MTU may be updated by the kernel due to
Path MTU Discovery. If the modifier
.B lock
is used, no path MTU discovery will be tried, all packets
will be sent without the DF bit in IPv4 case or fragmented
to MTU for IPv6.
.TP
.BI window " NUMBER"
the maximal window for TCP to advertise to these destinations,
measured in bytes. It limits maximal data bursts that our TCP
peers are allowed to send to us.
.TP
.BI rtt " TIME"
the initial RTT ('Round Trip Time') estimate. If no suffix is
specified the units are raw values passed directly to the
routing code to maintain compatibility with previous releases.
Otherwise if a suffix of s, sec or secs is used to specify
seconds and ms, msec or msecs to specify milliseconds.
.TP
.BI rttvar " TIME " "(2.3.15+ only)"
the initial RTT variance estimate. Values are specified as with
.BI rtt
above.
.TP
.BI rto_min " TIME " "(2.6.23+ only)"
the minimum TCP Retransmission TimeOut to use when communicating with this
destination. Values are specified as with
.BI rtt
above.
.TP
.BI ssthresh " NUMBER " "(2.3.15+ only)"
an estimate for the initial slow start threshold.
.TP
.BI cwnd " NUMBER " "(2.3.15+ only)"
the clamp for congestion window. It is ignored if the
.B lock
flag is not used.
.TP
.BI initcwnd " NUMBER " "(2.5.70+ only)"
the initial congestion window size for connections to this destination.
Actual window size is this value multiplied by the MSS
(``Maximal Segment Size'') for same connection. The default is
zero, meaning to use the values specified in RFC2414.
.TP
.BI initrwnd " NUMBER " "(2.6.33+ only)"
the initial receive window size for connections to this destination.
Actual window size is this value multiplied by the MSS of the connection.
The default value is zero, meaning to use Slow Start value.
.TP
.BI advmss " NUMBER " "(2.3.15+ only)"
the MSS ('Maximal Segment Size') to advertise to these
destinations when establishing TCP connections. If it is not given,
Linux uses a default value calculated from the first hop device MTU.
(If the path to these destination is asymmetric, this guess may be wrong.)
.TP
.BI reordering " NUMBER " "(2.3.15+ only)"
Maximal reordering on the path to this destination.
If it is not given, Linux uses the value selected with
.B sysctl
variable
.BR "net/ipv4/tcp_reordering" .
.TP
.BI nexthop " NEXTHOP"
the nexthop of a multipath route.
.I NEXTHOP
is a complex value with its own syntax similar to the top level
argument lists:
.in +8
.BI via " ADDRESS"
- is the nexthop router.
.sp
.BI dev " NAME"
- is the output device.
.sp
.BI weight " NUMBER"
- is a weight for this element of a multipath
route reflecting its relative bandwidth or quality.
.in -8
.TP
.BI scope " SCOPE_VAL"
the scope of the destinations covered by the route prefix.
.I SCOPE_VAL
may be a number or a string from the file
.BR "/etc/iproute2/rt_scopes" .
If this parameter is omitted,
.B ip
assumes scope
.B global
for all gatewayed
.B unicast
routes, scope
.B link
for direct
.BR unicast " and " broadcast
routes and scope
.BR host " for " local
routes.
.TP
.BI protocol " RTPROTO"
the routing protocol identifier of this route.
.I RTPROTO
may be a number or a string from the file
.BR "/etc/iproute2/rt_protos" .
If the routing protocol ID is not given,
.B ip assumes protocol
.B boot
(i.e. it assumes the route was added by someone who doesn't
understand what they are doing). Several protocol values have
a fixed interpretation.
Namely:
.in +8
.B redirect
- the route was installed due to an ICMP redirect.
.sp
.B kernel
- the route was installed by the kernel during autoconfiguration.
.sp
.B boot
- the route was installed during the bootup sequence.
If a routing daemon starts, it will purge all of them.
.sp
.B static
- the route was installed by the administrator
to override dynamic routing. Routing daemon will respect them
and, probably, even advertise them to its peers.
.sp
.B ra
- the route was installed by Router Discovery protocol.
.in -8
.sp
The rest of the values are not reserved and the administrator is free
to assign (or not to assign) protocol tags.
.TP
.B onlink
pretend that the nexthop is directly attached to this link,
even if it does not match any interface prefix.
.SS ip route delete - delete route
.B ip route del
has the same arguments as
.BR "ip route add" ,
but their semantics are a bit different.
Key values
.RB "(" to ", " tos ", " preference " and " table ")"
select the route to delete. If optional attributes are present,
.B ip
verifies that they coincide with the attributes of the route to delete.
If no route with the given key and attributes was found,
.B ip route del
fails.
.SS ip route show - list routes
the command displays the contents of the routing tables or the route(s)
selected by some criteria.
.TP
.BI to " SELECTOR " (default)
only select routes from the given range of destinations.
.I SELECTOR
consists of an optional modifier
.RB "(" root ", " match " or " exact ")"
and a prefix.
.BI root " PREFIX"
selects routes with prefixes not shorter than
.IR PREFIX "."
F.e.
.BI root " 0/0"
selects the entire routing table.
.BI match " PREFIX"
selects routes with prefixes not longer than
.IR PREFIX "."
F.e.
.BI match " 10.0/16"
selects
.IR 10.0/16 ","
.IR 10/8 " and " 0/0 ,
but it does not select
.IR 10.1/16 " and " 10.0.0/24 .
And
.BI exact " PREFIX"
(or just
.IR PREFIX ")"
selects routes with this exact prefix. If neither of these options
are present,
.B ip
assumes
.BI root " 0/0"
i.e. it lists the entire table.
.TP
.BI tos " TOS"
.BI dsfield " TOS"
only select routes with the given TOS.
.TP
.BI table " TABLEID"
show the routes from this table(s). The default setting is to show
.BR table main "."
.I TABLEID
may either be the ID of a real table or one of the special values:
.sp
.in +8
.B all
- list all of the tables.
.sp
.B cache
- dump the routing cache.
.in -8
.TP
.B cloned
.TP
.B cached
list cloned routes i.e. routes which were dynamically forked from
other routes because some route attribute (f.e. MTU) was updated.
Actually, it is equivalent to
.BR "table cache" "."
.TP
.BI from " SELECTOR"
the same syntax as for
.BR to ","
but it binds the source address range rather than destinations.
Note that the
.B from
option only works with cloned routes.
.TP
.BI protocol " RTPROTO"
only list routes of this protocol.
.TP
.BI scope " SCOPE_VAL"
only list routes with this scope.
.TP
.BI type " TYPE"
only list routes of this type.
.TP
.BI dev " NAME"
only list routes going via this device.
.TP
.BI via " PREFIX"
only list routes going via the nexthop routers selected by
.IR PREFIX "."
.TP
.BI src " PREFIX"
only list routes with preferred source addresses selected
by
.IR PREFIX "."
.TP
.BI realm " REALMID"
.TP
.BI realms " FROMREALM/TOREALM"
only list routes with these realms.
.SS ip route flush - flush routing tables
this command flushes routes selected by some criteria.
.sp
The arguments have the same syntax and semantics as the arguments of
.BR "ip route show" ,
but routing tables are not listed but purged. The only difference is
the default action:
.B show
dumps all the IP main routing table but
.B flush
prints the helper page.
.sp
With the
.B -statistics
option, the command becomes verbose. It prints out the number of
deleted routes and the number of rounds made to flush the routing
table. If the option is given
twice,
.B ip route flush
also dumps all the deleted routes in the format described in the
previous subsection.
.SS ip route get - get a single route
this command gets a single route to a destination and prints its
contents exactly as the kernel sees it.
.TP
.BI to " ADDRESS " (default)
the destination address.
.TP
.BI from " ADDRESS"
the source address.
.TP
.BI tos " TOS"
.TP
.BI dsfield " TOS"
the Type Of Service.
.TP
.BI iif " NAME"
the device from which this packet is expected to arrive.
.TP
.BI oif " NAME"
force the output device on which this packet will be routed.
.TP
.B connected
if no source address
.RB "(option " from ")"
was given, relookup the route with the source set to the preferred
address received from the first lookup.
If policy routing is used, it may be a different route.
.P
Note that this operation is not equivalent to
.BR "ip route show" .
.B show
shows existing routes.
.B get
resolves them and creates new clones if necessary. Essentially,
.B get
is equivalent to sending a packet along this path.
If the
.B iif
argument is not given, the kernel creates a route
to output packets towards the requested destination.
This is equivalent to pinging the destination
with a subsequent
.BR "ip route ls cache" ,
however, no packets are actually sent. With the
.B iif
argument, the kernel pretends that a packet arrived from this interface
and searches for a path to forward the packet.
.SS ip route save - save routing table information to stdout
this command behaves like
.BR "ip route show"
except that the output is raw data suitable for passing to
.BR "ip route restore" .
.SS ip route restore - restore routing table information from stdin
this command expects to read a data stream as returned from
.BR "ip route save" .
It will attempt to restore the routing table information exactly as
it was at the time of the save, so any translation of information
in the stream (such as device indexes) must be done first. Any existing
routes are left unchanged. Any routes specified in the data stream that
already exist in the table will be ignored.
.SH EXAMPLES
.PP
ip ro
.RS 4
Show all route entries in the kernel.
.RE
.PP
ip route add default via 192.168.1.1 dev eth0
.RS 4
Adds a default route (for all addresses) via the local gateway 192.168.1.1 that can
be reached on device eth0.
.RE
.SH SEE ALSO
.br
.BR ip (8)
.SH AUTHOR
Original Manpage by Michail Litvak <mci@owl.openwall.com>
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment