pru_rproc.c 28.3 KB
Newer Older
1 2 3 4
// SPDX-License-Identifier: GPL-2.0-only
/*
 * PRU-ICSS remoteproc driver for various TI SoCs
 *
5
 * Copyright (C) 2014-2022 Texas Instruments Incorporated - https://www.ti.com/
6 7 8 9 10
 *
 * Author(s):
 *	Suman Anna <s-anna@ti.com>
 *	Andrew F. Davis <afd@ti.com>
 *	Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org> for Texas Instruments
11 12
 *	Puranjay Mohan <p-mohan@ti.com>
 *	Md Danish Anwar <danishanwar@ti.com>
13 14 15
 */

#include <linux/bitops.h>
16
#include <linux/debugfs.h>
17
#include <linux/irqdomain.h>
18 19
#include <linux/module.h>
#include <linux/of_device.h>
20
#include <linux/of_irq.h>
21
#include <linux/remoteproc/pruss.h>
22 23 24 25 26
#include <linux/pruss_driver.h>
#include <linux/remoteproc.h>

#include "remoteproc_internal.h"
#include "remoteproc_elf_helpers.h"
27
#include "pru_rproc.h"
28 29 30 31

/* PRU_ICSS_PRU_CTRL registers */
#define PRU_CTRL_CTRL		0x0000
#define PRU_CTRL_STS		0x0004
32 33 34 35 36 37 38
#define PRU_CTRL_WAKEUP_EN	0x0008
#define PRU_CTRL_CYCLE		0x000C
#define PRU_CTRL_STALL		0x0010
#define PRU_CTRL_CTBIR0		0x0020
#define PRU_CTRL_CTBIR1		0x0024
#define PRU_CTRL_CTPPR0		0x0028
#define PRU_CTRL_CTPPR1		0x002C
39 40 41 42 43 44 45 46 47

/* CTRL register bit-fields */
#define CTRL_CTRL_SOFT_RST_N	BIT(0)
#define CTRL_CTRL_EN		BIT(1)
#define CTRL_CTRL_SLEEPING	BIT(2)
#define CTRL_CTRL_CTR_EN	BIT(3)
#define CTRL_CTRL_SINGLE_STEP	BIT(8)
#define CTRL_CTRL_RUNSTATE	BIT(15)

48 49 50 51
/* PRU_ICSS_PRU_DEBUG registers */
#define PRU_DEBUG_GPREG(x)	(0x0000 + (x) * 4)
#define PRU_DEBUG_CT_REG(x)	(0x0080 + (x) * 4)

52
/* PRU/RTU/Tx_PRU Core IRAM address masks */
53 54 55
#define PRU_IRAM_ADDR_MASK	0x3ffff
#define PRU0_IRAM_ADDR_MASK	0x34000
#define PRU1_IRAM_ADDR_MASK	0x38000
56 57 58 59
#define RTU0_IRAM_ADDR_MASK	0x4000
#define RTU1_IRAM_ADDR_MASK	0x6000
#define TX_PRU0_IRAM_ADDR_MASK	0xa000
#define TX_PRU1_IRAM_ADDR_MASK	0xc000
60 61 62 63 64 65 66

/* PRU device addresses for various type of PRU RAMs */
#define PRU_IRAM_DA	0	/* Instruction RAM */
#define PRU_PDRAM_DA	0	/* Primary Data RAM */
#define PRU_SDRAM_DA	0x2000	/* Secondary Data RAM */
#define PRU_SHRDRAM_DA	0x10000 /* Shared Data RAM */

67 68
#define MAX_PRU_SYS_EVENTS 160

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
/**
 * enum pru_iomem - PRU core memory/register range identifiers
 *
 * @PRU_IOMEM_IRAM: PRU Instruction RAM range
 * @PRU_IOMEM_CTRL: PRU Control register range
 * @PRU_IOMEM_DEBUG: PRU Debug register range
 * @PRU_IOMEM_MAX: just keep this one at the end
 */
enum pru_iomem {
	PRU_IOMEM_IRAM = 0,
	PRU_IOMEM_CTRL,
	PRU_IOMEM_DEBUG,
	PRU_IOMEM_MAX,
};

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
/**
 * enum pru_type - PRU core type identifier
 *
 * @PRU_TYPE_PRU: Programmable Real-time Unit
 * @PRU_TYPE_RTU: Auxiliary Programmable Real-Time Unit
 * @PRU_TYPE_TX_PRU: Transmit Programmable Real-Time Unit
 * @PRU_TYPE_MAX: just keep this one at the end
 */
enum pru_type {
	PRU_TYPE_PRU = 0,
	PRU_TYPE_RTU,
	PRU_TYPE_TX_PRU,
	PRU_TYPE_MAX,
};

/**
 * struct pru_private_data - device data for a PRU core
 * @type: type of the PRU core (PRU, RTU, Tx_PRU)
 * @is_k3: flag used to identify the need for special load handling
 */
struct pru_private_data {
	enum pru_type type;
	unsigned int is_k3 : 1;
};

109 110 111 112 113 114
/**
 * struct pru_rproc - PRU remoteproc structure
 * @id: id of the PRU core within the PRUSS
 * @dev: PRU core device pointer
 * @pruss: back-reference to parent PRUSS structure
 * @rproc: remoteproc pointer for this PRU core
115
 * @data: PRU core specific data
116
 * @mem_regions: data for each of the PRU memory regions
117 118
 * @client_np: client device node
 * @lock: mutex to protect client usage
119
 * @fw_name: name of firmware image used during loading
120 121 122
 * @mapped_irq: virtual interrupt numbers of created fw specific mapping
 * @pru_interrupt_map: pointer to interrupt mapping description (firmware)
 * @pru_interrupt_map_sz: pru_interrupt_map size
123 124
 * @dbg_single_step: debug state variable to set PRU into single step mode
 * @dbg_continuous: debug state variable to restore PRU execution mode
125
 * @evt_count: number of mapped events
126 127 128 129 130 131
 */
struct pru_rproc {
	int id;
	struct device *dev;
	struct pruss *pruss;
	struct rproc *rproc;
132
	const struct pru_private_data *data;
133
	struct pruss_mem_region mem_regions[PRU_IOMEM_MAX];
134 135
	struct device_node *client_np;
	struct mutex lock;
136
	const char *fw_name;
137 138 139
	unsigned int *mapped_irq;
	struct pru_irq_rsc *pru_interrupt_map;
	size_t pru_interrupt_map_sz;
140 141
	u32 dbg_single_step;
	u32 dbg_continuous;
142
	u8 evt_count;
143 144 145 146 147 148 149 150 151 152 153 154 155
};

static inline u32 pru_control_read_reg(struct pru_rproc *pru, unsigned int reg)
{
	return readl_relaxed(pru->mem_regions[PRU_IOMEM_CTRL].va + reg);
}

static inline
void pru_control_write_reg(struct pru_rproc *pru, unsigned int reg, u32 val)
{
	writel_relaxed(val, pru->mem_regions[PRU_IOMEM_CTRL].va + reg);
}

156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
static struct rproc *__pru_rproc_get(struct device_node *np, int index)
{
	struct rproc *rproc;
	phandle rproc_phandle;
	int ret;

	ret = of_property_read_u32_index(np, "ti,prus", index, &rproc_phandle);
	if (ret)
		return ERR_PTR(ret);

	rproc = rproc_get_by_phandle(rproc_phandle);
	if (!rproc) {
		ret = -EPROBE_DEFER;
		return ERR_PTR(ret);
	}

	/* make sure it is PRU rproc */
	if (!is_pru_rproc(rproc->dev.parent)) {
		rproc_put(rproc);
		return ERR_PTR(-ENODEV);
	}

	return rproc;
}

/**
 * pru_rproc_get() - get the PRU rproc instance from a device node
 * @np: the user/client device node
 * @index: index to use for the ti,prus property
 * @pru_id: optional pointer to return the PRU remoteproc processor id
 *
 * This function looks through a client device node's "ti,prus" property at
 * index @index and returns the rproc handle for a valid PRU remote processor if
 * found. The function allows only one user to own the PRU rproc resource at a
 * time. Caller must call pru_rproc_put() when done with using the rproc, not
 * required if the function returns a failure.
 *
 * When optional @pru_id pointer is passed the PRU remoteproc processor id is
 * returned.
 *
 * Return: rproc handle on success, and an ERR_PTR on failure using one
 * of the following error values
 *    -ENODEV if device is not found
 *    -EBUSY if PRU is already acquired by anyone
 *    -EPROBE_DEFER is PRU device is not probed yet
 */
struct rproc *pru_rproc_get(struct device_node *np, int index,
			    enum pruss_pru_id *pru_id)
{
	struct rproc *rproc;
	struct pru_rproc *pru;
	struct device *dev;
	int ret;

	rproc = __pru_rproc_get(np, index);
	if (IS_ERR(rproc))
		return rproc;

	pru = rproc->priv;
	dev = &rproc->dev;

	mutex_lock(&pru->lock);

	if (pru->client_np) {
		mutex_unlock(&pru->lock);
		ret = -EBUSY;
		goto err_no_rproc_handle;
	}

	pru->client_np = np;
226
	rproc->sysfs_read_only = true;
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264

	mutex_unlock(&pru->lock);

	if (pru_id)
		*pru_id = pru->id;

	return rproc;

err_no_rproc_handle:
	rproc_put(rproc);
	return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(pru_rproc_get);

/**
 * pru_rproc_put() - release the PRU rproc resource
 * @rproc: the rproc resource to release
 *
 * Releases the PRU rproc resource and makes it available to other
 * users.
 */
void pru_rproc_put(struct rproc *rproc)
{
	struct pru_rproc *pru;

	if (IS_ERR_OR_NULL(rproc) || !is_pru_rproc(rproc->dev.parent))
		return;

	pru = rproc->priv;

	mutex_lock(&pru->lock);

	if (!pru->client_np) {
		mutex_unlock(&pru->lock);
		return;
	}

	pru->client_np = NULL;
265
	rproc->sysfs_read_only = false;
266 267 268 269 270 271
	mutex_unlock(&pru->lock);

	rproc_put(rproc);
}
EXPORT_SYMBOL_GPL(pru_rproc_put);

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
static inline u32 pru_debug_read_reg(struct pru_rproc *pru, unsigned int reg)
{
	return readl_relaxed(pru->mem_regions[PRU_IOMEM_DEBUG].va + reg);
}

static int regs_show(struct seq_file *s, void *data)
{
	struct rproc *rproc = s->private;
	struct pru_rproc *pru = rproc->priv;
	int i, nregs = 32;
	u32 pru_sts;
	int pru_is_running;

	seq_puts(s, "============== Control Registers ==============\n");
	seq_printf(s, "CTRL      := 0x%08x\n",
		   pru_control_read_reg(pru, PRU_CTRL_CTRL));
	pru_sts = pru_control_read_reg(pru, PRU_CTRL_STS);
	seq_printf(s, "STS (PC)  := 0x%08x (0x%08x)\n", pru_sts, pru_sts << 2);
	seq_printf(s, "WAKEUP_EN := 0x%08x\n",
		   pru_control_read_reg(pru, PRU_CTRL_WAKEUP_EN));
	seq_printf(s, "CYCLE     := 0x%08x\n",
		   pru_control_read_reg(pru, PRU_CTRL_CYCLE));
	seq_printf(s, "STALL     := 0x%08x\n",
		   pru_control_read_reg(pru, PRU_CTRL_STALL));
	seq_printf(s, "CTBIR0    := 0x%08x\n",
		   pru_control_read_reg(pru, PRU_CTRL_CTBIR0));
	seq_printf(s, "CTBIR1    := 0x%08x\n",
		   pru_control_read_reg(pru, PRU_CTRL_CTBIR1));
	seq_printf(s, "CTPPR0    := 0x%08x\n",
		   pru_control_read_reg(pru, PRU_CTRL_CTPPR0));
	seq_printf(s, "CTPPR1    := 0x%08x\n",
		   pru_control_read_reg(pru, PRU_CTRL_CTPPR1));

	seq_puts(s, "=============== Debug Registers ===============\n");
	pru_is_running = pru_control_read_reg(pru, PRU_CTRL_CTRL) &
				CTRL_CTRL_RUNSTATE;
	if (pru_is_running) {
		seq_puts(s, "PRU is executing, cannot print/access debug registers.\n");
		return 0;
	}

	for (i = 0; i < nregs; i++) {
		seq_printf(s, "GPREG%-2d := 0x%08x\tCT_REG%-2d := 0x%08x\n",
			   i, pru_debug_read_reg(pru, PRU_DEBUG_GPREG(i)),
			   i, pru_debug_read_reg(pru, PRU_DEBUG_CT_REG(i)));
	}

	return 0;
}
DEFINE_SHOW_ATTRIBUTE(regs);

/*
 * Control PRU single-step mode
 *
 * This is a debug helper function used for controlling the single-step
 * mode of the PRU. The PRU Debug registers are not accessible when the
 * PRU is in RUNNING state.
 *
 * Writing a non-zero value sets the PRU into single-step mode irrespective
 * of its previous state. The PRU mode is saved only on the first set into
 * a single-step mode. Writing a zero value will restore the PRU into its
 * original mode.
 */
static int pru_rproc_debug_ss_set(void *data, u64 val)
{
	struct rproc *rproc = data;
	struct pru_rproc *pru = rproc->priv;
	u32 reg_val;

	val = val ? 1 : 0;
	if (!val && !pru->dbg_single_step)
		return 0;

	reg_val = pru_control_read_reg(pru, PRU_CTRL_CTRL);

	if (val && !pru->dbg_single_step)
		pru->dbg_continuous = reg_val;

	if (val)
		reg_val |= CTRL_CTRL_SINGLE_STEP | CTRL_CTRL_EN;
	else
		reg_val = pru->dbg_continuous;

	pru->dbg_single_step = val;
	pru_control_write_reg(pru, PRU_CTRL_CTRL, reg_val);

	return 0;
}

static int pru_rproc_debug_ss_get(void *data, u64 *val)
{
	struct rproc *rproc = data;
	struct pru_rproc *pru = rproc->priv;

	*val = pru->dbg_single_step;

	return 0;
}
370 371
DEFINE_DEBUGFS_ATTRIBUTE(pru_rproc_debug_ss_fops, pru_rproc_debug_ss_get,
			 pru_rproc_debug_ss_set, "%llu\n");
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389

/*
 * Create PRU-specific debugfs entries
 *
 * The entries are created only if the parent remoteproc debugfs directory
 * exists, and will be cleaned up by the remoteproc core.
 */
static void pru_rproc_create_debug_entries(struct rproc *rproc)
{
	if (!rproc->dbg_dir)
		return;

	debugfs_create_file("regs", 0400, rproc->dbg_dir,
			    rproc, &regs_fops);
	debugfs_create_file("single_step", 0600, rproc->dbg_dir,
			    rproc, &pru_rproc_debug_ss_fops);
}

390 391
static void pru_dispose_irq_mapping(struct pru_rproc *pru)
{
392 393 394 395 396
	if (!pru->mapped_irq)
		return;

	while (pru->evt_count) {
		pru->evt_count--;
397 398 399 400 401
		if (pru->mapped_irq[pru->evt_count] > 0)
			irq_dispose_mapping(pru->mapped_irq[pru->evt_count]);
	}

	kfree(pru->mapped_irq);
402
	pru->mapped_irq = NULL;
403 404 405 406 407 408 409 410 411 412 413 414
}

/*
 * Parse the custom PRU interrupt map resource and configure the INTC
 * appropriately.
 */
static int pru_handle_intrmap(struct rproc *rproc)
{
	struct device *dev = rproc->dev.parent;
	struct pru_rproc *pru = rproc->priv;
	struct pru_irq_rsc *rsc = pru->pru_interrupt_map;
	struct irq_fwspec fwspec;
415
	struct device_node *parent, *irq_parent;
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
	int i, ret = 0;

	/* not having pru_interrupt_map is not an error */
	if (!rsc)
		return 0;

	/* currently supporting only type 0 */
	if (rsc->type != 0) {
		dev_err(dev, "unsupported rsc type: %d\n", rsc->type);
		return -EINVAL;
	}

	if (rsc->num_evts > MAX_PRU_SYS_EVENTS)
		return -EINVAL;

	if (sizeof(*rsc) + rsc->num_evts * sizeof(struct pruss_int_map) !=
	    pru->pru_interrupt_map_sz)
		return -EINVAL;

	pru->evt_count = rsc->num_evts;
	pru->mapped_irq = kcalloc(pru->evt_count, sizeof(unsigned int),
				  GFP_KERNEL);
438 439
	if (!pru->mapped_irq) {
		pru->evt_count = 0;
440
		return -ENOMEM;
441
	}
442 443 444

	/*
	 * parse and fill in system event to interrupt channel and
445 446 447
	 * channel-to-host mapping. The interrupt controller to be used
	 * for these mappings for a given PRU remoteproc is always its
	 * corresponding sibling PRUSS INTC node.
448
	 */
449
	parent = of_get_parent(dev_of_node(pru->dev));
450 451 452 453
	if (!parent) {
		kfree(pru->mapped_irq);
		pru->mapped_irq = NULL;
		pru->evt_count = 0;
454
		return -ENODEV;
455
	}
456 457 458

	irq_parent = of_get_child_by_name(parent, "interrupt-controller");
	of_node_put(parent);
459 460
	if (!irq_parent) {
		kfree(pru->mapped_irq);
461 462
		pru->mapped_irq = NULL;
		pru->evt_count = 0;
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
		return -ENODEV;
	}

	fwspec.fwnode = of_node_to_fwnode(irq_parent);
	fwspec.param_count = 3;
	for (i = 0; i < pru->evt_count; i++) {
		fwspec.param[0] = rsc->pru_intc_map[i].event;
		fwspec.param[1] = rsc->pru_intc_map[i].chnl;
		fwspec.param[2] = rsc->pru_intc_map[i].host;

		dev_dbg(dev, "mapping%d: event %d, chnl %d, host %d\n",
			i, fwspec.param[0], fwspec.param[1], fwspec.param[2]);

		pru->mapped_irq[i] = irq_create_fwspec_mapping(&fwspec);
		if (!pru->mapped_irq[i]) {
478 479 480 481
			dev_err(dev, "failed to get virq for fw mapping %d: event %d chnl %d host %d\n",
				i, fwspec.param[0], fwspec.param[1],
				fwspec.param[2]);
			ret = -EINVAL;
482 483 484
			goto map_fail;
		}
	}
485
	of_node_put(irq_parent);
486 487 488 489 490

	return ret;

map_fail:
	pru_dispose_irq_mapping(pru);
491
	of_node_put(irq_parent);
492 493 494 495

	return ret;
}

496 497 498 499
static int pru_rproc_start(struct rproc *rproc)
{
	struct device *dev = &rproc->dev;
	struct pru_rproc *pru = rproc->priv;
500
	const char *names[PRU_TYPE_MAX] = { "PRU", "RTU", "Tx_PRU" };
501
	u32 val;
502
	int ret;
503

504 505
	dev_dbg(dev, "starting %s%d: entry-point = 0x%llx\n",
		names[pru->data->type], pru->id, (rproc->bootaddr >> 2));
506

507 508 509 510 511 512 513 514 515 516
	ret = pru_handle_intrmap(rproc);
	/*
	 * reset references to pru interrupt map - they will stop being valid
	 * after rproc_start returns
	 */
	pru->pru_interrupt_map = NULL;
	pru->pru_interrupt_map_sz = 0;
	if (ret)
		return ret;

517 518 519 520 521 522 523 524 525 526
	val = CTRL_CTRL_EN | ((rproc->bootaddr >> 2) << 16);
	pru_control_write_reg(pru, PRU_CTRL_CTRL, val);

	return 0;
}

static int pru_rproc_stop(struct rproc *rproc)
{
	struct device *dev = &rproc->dev;
	struct pru_rproc *pru = rproc->priv;
527
	const char *names[PRU_TYPE_MAX] = { "PRU", "RTU", "Tx_PRU" };
528 529
	u32 val;

530
	dev_dbg(dev, "stopping %s%d\n", names[pru->data->type], pru->id);
531 532 533 534 535

	val = pru_control_read_reg(pru, PRU_CTRL_CTRL);
	val &= ~CTRL_CTRL_EN;
	pru_control_write_reg(pru, PRU_CTRL_CTRL, val);

536
	/* dispose irq mapping - new firmware can provide new mapping */
537
	pru_dispose_irq_mapping(pru);
538

539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
	return 0;
}

/*
 * Convert PRU device address (data spaces only) to kernel virtual address.
 *
 * Each PRU has access to all data memories within the PRUSS, accessible at
 * different ranges. So, look through both its primary and secondary Data
 * RAMs as well as any shared Data RAM to convert a PRU device address to
 * kernel virtual address. Data RAM0 is primary Data RAM for PRU0 and Data
 * RAM1 is primary Data RAM for PRU1.
 */
static void *pru_d_da_to_va(struct pru_rproc *pru, u32 da, size_t len)
{
	struct pruss_mem_region dram0, dram1, shrd_ram;
	struct pruss *pruss = pru->pruss;
	u32 offset;
	void *va = NULL;

	if (len == 0)
		return NULL;

	dram0 = pruss->mem_regions[PRUSS_MEM_DRAM0];
	dram1 = pruss->mem_regions[PRUSS_MEM_DRAM1];
	/* PRU1 has its local RAM addresses reversed */
564
	if (pru->id == PRUSS_PRU1)
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
		swap(dram0, dram1);
	shrd_ram = pruss->mem_regions[PRUSS_MEM_SHRD_RAM2];

	if (da >= PRU_PDRAM_DA && da + len <= PRU_PDRAM_DA + dram0.size) {
		offset = da - PRU_PDRAM_DA;
		va = (__force void *)(dram0.va + offset);
	} else if (da >= PRU_SDRAM_DA &&
		   da + len <= PRU_SDRAM_DA + dram1.size) {
		offset = da - PRU_SDRAM_DA;
		va = (__force void *)(dram1.va + offset);
	} else if (da >= PRU_SHRDRAM_DA &&
		   da + len <= PRU_SHRDRAM_DA + shrd_ram.size) {
		offset = da - PRU_SHRDRAM_DA;
		va = (__force void *)(shrd_ram.va + offset);
	}

	return va;
}

/*
 * Convert PRU device address (instruction space) to kernel virtual address.
 *
 * A PRU does not have an unified address space. Each PRU has its very own
 * private Instruction RAM, and its device address is identical to that of
 * its primary Data RAM device address.
 */
static void *pru_i_da_to_va(struct pru_rproc *pru, u32 da, size_t len)
{
	u32 offset;
	void *va = NULL;

	if (len == 0)
		return NULL;

599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
	/*
	 * GNU binutils do not support multiple address spaces. The GNU
	 * linker's default linker script places IRAM at an arbitrary high
	 * offset, in order to differentiate it from DRAM. Hence we need to
	 * strip the artificial offset in the IRAM addresses coming from the
	 * ELF file.
	 *
	 * The TI proprietary linker would never set those higher IRAM address
	 * bits anyway. PRU architecture limits the program counter to 16-bit
	 * word-address range. This in turn corresponds to 18-bit IRAM
	 * byte-address range for ELF.
	 *
	 * Two more bits are added just in case to make the final 20-bit mask.
	 * Idea is to have a safeguard in case TI decides to add banking
	 * in future SoCs.
	 */
	da &= 0xfffff;

617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
	if (da >= PRU_IRAM_DA &&
	    da + len <= PRU_IRAM_DA + pru->mem_regions[PRU_IOMEM_IRAM].size) {
		offset = da - PRU_IRAM_DA;
		va = (__force void *)(pru->mem_regions[PRU_IOMEM_IRAM].va +
				      offset);
	}

	return va;
}

/*
 * Provide address translations for only PRU Data RAMs through the remoteproc
 * core for any PRU client drivers. The PRU Instruction RAM access is restricted
 * only to the PRU loader code.
 */
632
static void *pru_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
{
	struct pru_rproc *pru = rproc->priv;

	return pru_d_da_to_va(pru, da, len);
}

/* PRU-specific address translator used by PRU loader. */
static void *pru_da_to_va(struct rproc *rproc, u64 da, size_t len, bool is_iram)
{
	struct pru_rproc *pru = rproc->priv;
	void *va;

	if (is_iram)
		va = pru_i_da_to_va(pru, da, len);
	else
		va = pru_d_da_to_va(pru, da, len);

	return va;
}

static struct rproc_ops pru_rproc_ops = {
	.start		= pru_rproc_start,
	.stop		= pru_rproc_stop,
	.da_to_va	= pru_rproc_da_to_va,
};

659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
/*
 * Custom memory copy implementation for ICSSG PRU/RTU/Tx_PRU Cores
 *
 * The ICSSG PRU/RTU/Tx_PRU cores have a memory copying issue with IRAM
 * memories, that is not seen on previous generation SoCs. The data is reflected
 * properly in the IRAM memories only for integer (4-byte) copies. Any unaligned
 * copies result in all the other pre-existing bytes zeroed out within that
 * 4-byte boundary, thereby resulting in wrong text/code in the IRAMs. Also, the
 * IRAM memory port interface does not allow any 8-byte copies (as commonly used
 * by ARM64 memcpy implementation) and throws an exception. The DRAM memory
 * ports do not show this behavior.
 */
static int pru_rproc_memcpy(void *dest, const void *src, size_t count)
{
	const u32 *s = src;
	u32 *d = dest;
	size_t size = count / 4;
	u32 *tmp_src = NULL;

	/*
	 * TODO: relax limitation of 4-byte aligned dest addresses and copy
	 * sizes
	 */
	if ((long)dest % 4 || count % 4)
		return -EINVAL;

	/* src offsets in ELF firmware image can be non-aligned */
	if ((long)src % 4) {
		tmp_src = kmemdup(src, count, GFP_KERNEL);
		if (!tmp_src)
			return -ENOMEM;
		s = tmp_src;
	}

	while (size--)
		*d++ = *s++;

	kfree(tmp_src);

	return 0;
}

701 702 703
static int
pru_rproc_load_elf_segments(struct rproc *rproc, const struct firmware *fw)
{
704
	struct pru_rproc *pru = rproc->priv;
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
	struct device *dev = &rproc->dev;
	struct elf32_hdr *ehdr;
	struct elf32_phdr *phdr;
	int i, ret = 0;
	const u8 *elf_data = fw->data;

	ehdr = (struct elf32_hdr *)elf_data;
	phdr = (struct elf32_phdr *)(elf_data + ehdr->e_phoff);

	/* go through the available ELF segments */
	for (i = 0; i < ehdr->e_phnum; i++, phdr++) {
		u32 da = phdr->p_paddr;
		u32 memsz = phdr->p_memsz;
		u32 filesz = phdr->p_filesz;
		u32 offset = phdr->p_offset;
		bool is_iram;
		void *ptr;

		if (phdr->p_type != PT_LOAD || !filesz)
			continue;

		dev_dbg(dev, "phdr: type %d da 0x%x memsz 0x%x filesz 0x%x\n",
			phdr->p_type, da, memsz, filesz);

		if (filesz > memsz) {
			dev_err(dev, "bad phdr filesz 0x%x memsz 0x%x\n",
				filesz, memsz);
			ret = -EINVAL;
			break;
		}

		if (offset + filesz > fw->size) {
			dev_err(dev, "truncated fw: need 0x%x avail 0x%zx\n",
				offset + filesz, fw->size);
			ret = -EINVAL;
			break;
		}

		/* grab the kernel address for this device address */
		is_iram = phdr->p_flags & PF_X;
		ptr = pru_da_to_va(rproc, da, memsz, is_iram);
		if (!ptr) {
			dev_err(dev, "bad phdr da 0x%x mem 0x%x\n", da, memsz);
			ret = -EINVAL;
			break;
		}

752
		if (pru->data->is_k3) {
753 754 755 756 757 758 759 760 761 762
			ret = pru_rproc_memcpy(ptr, elf_data + phdr->p_offset,
					       filesz);
			if (ret) {
				dev_err(dev, "PRU memory copy failed for da 0x%x memsz 0x%x\n",
					da, memsz);
				break;
			}
		} else {
			memcpy(ptr, elf_data + phdr->p_offset, filesz);
		}
763 764 765 766 767 768 769

		/* skip the memzero logic performed by remoteproc ELF loader */
	}

	return ret;
}

770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
static const void *
pru_rproc_find_interrupt_map(struct device *dev, const struct firmware *fw)
{
	struct elf32_shdr *shdr, *name_table_shdr;
	const char *name_table;
	const u8 *elf_data = fw->data;
	struct elf32_hdr *ehdr = (struct elf32_hdr *)elf_data;
	u16 shnum = ehdr->e_shnum;
	u16 shstrndx = ehdr->e_shstrndx;
	int i;

	/* first, get the section header */
	shdr = (struct elf32_shdr *)(elf_data + ehdr->e_shoff);
	/* compute name table section header entry in shdr array */
	name_table_shdr = shdr + shstrndx;
	/* finally, compute the name table section address in elf */
	name_table = elf_data + name_table_shdr->sh_offset;

	for (i = 0; i < shnum; i++, shdr++) {
		u32 size = shdr->sh_size;
		u32 offset = shdr->sh_offset;
		u32 name = shdr->sh_name;

		if (strcmp(name_table + name, ".pru_irq_map"))
			continue;

		/* make sure we have the entire irq map */
		if (offset + size > fw->size || offset + size < size) {
			dev_err(dev, ".pru_irq_map section truncated\n");
			return ERR_PTR(-EINVAL);
		}

		/* make sure irq map has at least the header */
		if (sizeof(struct pru_irq_rsc) > size) {
			dev_err(dev, "header-less .pru_irq_map section\n");
			return ERR_PTR(-EINVAL);
		}

		return shdr;
	}

	dev_dbg(dev, "no .pru_irq_map section found for this fw\n");

	return NULL;
}

816 817 818
/*
 * Use a custom parse_fw callback function for dealing with PRU firmware
 * specific sections.
819 820 821 822 823 824
 *
 * The firmware blob can contain optional ELF sections: .resource_table section
 * and .pru_irq_map one. The second one contains the PRUSS interrupt mapping
 * description, which needs to be setup before powering on the PRU core. To
 * avoid RAM wastage this ELF section is not mapped to any ELF segment (by the
 * firmware linker) and therefore is not loaded to PRU memory.
825 826 827
 */
static int pru_rproc_parse_fw(struct rproc *rproc, const struct firmware *fw)
{
828 829 830 831 832 833
	struct device *dev = &rproc->dev;
	struct pru_rproc *pru = rproc->priv;
	const u8 *elf_data = fw->data;
	const void *shdr;
	u8 class = fw_elf_get_class(fw);
	u64 sh_offset;
834 835 836 837 838 839 840 841 842
	int ret;

	/* load optional rsc table */
	ret = rproc_elf_load_rsc_table(rproc, fw);
	if (ret == -EINVAL)
		dev_dbg(&rproc->dev, "no resource table found for this fw\n");
	else if (ret)
		return ret;

843 844 845 846 847 848 849 850 851 852 853 854 855
	/* find .pru_interrupt_map section, not having it is not an error */
	shdr = pru_rproc_find_interrupt_map(dev, fw);
	if (IS_ERR(shdr))
		return PTR_ERR(shdr);

	if (!shdr)
		return 0;

	/* preserve pointer to PRU interrupt map together with it size */
	sh_offset = elf_shdr_get_sh_offset(class, shdr);
	pru->pru_interrupt_map = (struct pru_irq_rsc *)(elf_data + sh_offset);
	pru->pru_interrupt_map_sz = elf_shdr_get_sh_size(class, shdr);

856 857 858 859 860 861 862 863 864 865 866 867
	return 0;
}

/*
 * Compute PRU id based on the IRAM addresses. The PRU IRAMs are
 * always at a particular offset within the PRUSS address space.
 */
static int pru_rproc_set_id(struct pru_rproc *pru)
{
	int ret = 0;

	switch (pru->mem_regions[PRU_IOMEM_IRAM].pa & PRU_IRAM_ADDR_MASK) {
868 869 870 871
	case TX_PRU0_IRAM_ADDR_MASK:
		fallthrough;
	case RTU0_IRAM_ADDR_MASK:
		fallthrough;
872
	case PRU0_IRAM_ADDR_MASK:
873
		pru->id = PRUSS_PRU0;
874
		break;
875 876 877 878
	case TX_PRU1_IRAM_ADDR_MASK:
		fallthrough;
	case RTU1_IRAM_ADDR_MASK:
		fallthrough;
879
	case PRU1_IRAM_ADDR_MASK:
880
		pru->id = PRUSS_PRU1;
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
		break;
	default:
		ret = -EINVAL;
	}

	return ret;
}

static int pru_rproc_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct device_node *np = dev->of_node;
	struct platform_device *ppdev = to_platform_device(dev->parent);
	struct pru_rproc *pru;
	const char *fw_name;
	struct rproc *rproc = NULL;
	struct resource *res;
	int i, ret;
899
	const struct pru_private_data *data;
900 901
	const char *mem_names[PRU_IOMEM_MAX] = { "iram", "control", "debug" };

902 903 904 905
	data = of_device_get_match_data(&pdev->dev);
	if (!data)
		return -ENODEV;

906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
	ret = of_property_read_string(np, "firmware-name", &fw_name);
	if (ret) {
		dev_err(dev, "unable to retrieve firmware-name %d\n", ret);
		return ret;
	}

	rproc = devm_rproc_alloc(dev, pdev->name, &pru_rproc_ops, fw_name,
				 sizeof(*pru));
	if (!rproc) {
		dev_err(dev, "rproc_alloc failed\n");
		return -ENOMEM;
	}
	/* use a custom load function to deal with PRU-specific quirks */
	rproc->ops->load = pru_rproc_load_elf_segments;

	/* use a custom parse function to deal with PRU-specific resources */
	rproc->ops->parse_fw = pru_rproc_parse_fw;

	/* error recovery is not supported for PRUs */
	rproc->recovery_disabled = true;

	/*
	 * rproc_add will auto-boot the processor normally, but this is not
	 * desired with PRU client driven boot-flow methodology. A PRU
	 * application/client driver will boot the corresponding PRU
	 * remote-processor as part of its state machine either through the
	 * remoteproc sysfs interface or through the equivalent kernel API.
	 */
	rproc->auto_boot = false;

	pru = rproc->priv;
	pru->dev = dev;
938
	pru->data = data;
939 940 941
	pru->pruss = platform_get_drvdata(ppdev);
	pru->rproc = rproc;
	pru->fw_name = fw_name;
942 943
	pru->client_np = NULL;
	mutex_init(&pru->lock);
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974

	for (i = 0; i < ARRAY_SIZE(mem_names); i++) {
		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
						   mem_names[i]);
		pru->mem_regions[i].va = devm_ioremap_resource(dev, res);
		if (IS_ERR(pru->mem_regions[i].va)) {
			dev_err(dev, "failed to parse and map memory resource %d %s\n",
				i, mem_names[i]);
			ret = PTR_ERR(pru->mem_regions[i].va);
			return ret;
		}
		pru->mem_regions[i].pa = res->start;
		pru->mem_regions[i].size = resource_size(res);

		dev_dbg(dev, "memory %8s: pa %pa size 0x%zx va %pK\n",
			mem_names[i], &pru->mem_regions[i].pa,
			pru->mem_regions[i].size, pru->mem_regions[i].va);
	}

	ret = pru_rproc_set_id(pru);
	if (ret < 0)
		return ret;

	platform_set_drvdata(pdev, rproc);

	ret = devm_rproc_add(dev, pru->rproc);
	if (ret) {
		dev_err(dev, "rproc_add failed: %d\n", ret);
		return ret;
	}

975 976
	pru_rproc_create_debug_entries(rproc);

977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
	dev_dbg(dev, "PRU rproc node %pOF probed successfully\n", np);

	return 0;
}

static int pru_rproc_remove(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct rproc *rproc = platform_get_drvdata(pdev);

	dev_dbg(dev, "%s: removing rproc %s\n", __func__, rproc->name);

	return 0;
}

992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
static const struct pru_private_data pru_data = {
	.type = PRU_TYPE_PRU,
};

static const struct pru_private_data k3_pru_data = {
	.type = PRU_TYPE_PRU,
	.is_k3 = 1,
};

static const struct pru_private_data k3_rtu_data = {
	.type = PRU_TYPE_RTU,
	.is_k3 = 1,
};

static const struct pru_private_data k3_tx_pru_data = {
	.type = PRU_TYPE_TX_PRU,
	.is_k3 = 1,
};

1011
static const struct of_device_id pru_rproc_match[] = {
1012 1013 1014
	{ .compatible = "ti,am3356-pru",	.data = &pru_data },
	{ .compatible = "ti,am4376-pru",	.data = &pru_data },
	{ .compatible = "ti,am5728-pru",	.data = &pru_data },
1015 1016 1017
	{ .compatible = "ti,am642-pru",		.data = &k3_pru_data },
	{ .compatible = "ti,am642-rtu",		.data = &k3_rtu_data },
	{ .compatible = "ti,am642-tx-pru",	.data = &k3_tx_pru_data },
1018 1019 1020 1021
	{ .compatible = "ti,k2g-pru",		.data = &pru_data },
	{ .compatible = "ti,am654-pru",		.data = &k3_pru_data },
	{ .compatible = "ti,am654-rtu",		.data = &k3_rtu_data },
	{ .compatible = "ti,am654-tx-pru",	.data = &k3_tx_pru_data },
1022 1023 1024
	{ .compatible = "ti,j721e-pru",		.data = &k3_pru_data },
	{ .compatible = "ti,j721e-rtu",		.data = &k3_rtu_data },
	{ .compatible = "ti,j721e-tx-pru",	.data = &k3_tx_pru_data },
1025
	{ .compatible = "ti,am625-pru",		.data = &k3_pru_data },
1026 1027 1028 1029 1030 1031
	{},
};
MODULE_DEVICE_TABLE(of, pru_rproc_match);

static struct platform_driver pru_rproc_driver = {
	.driver = {
1032
		.name   = PRU_RPROC_DRVNAME,
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
		.of_match_table = pru_rproc_match,
		.suppress_bind_attrs = true,
	},
	.probe  = pru_rproc_probe,
	.remove = pru_rproc_remove,
};
module_platform_driver(pru_rproc_driver);

MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");
MODULE_AUTHOR("Andrew F. Davis <afd@ti.com>");
MODULE_AUTHOR("Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org>");
1044 1045
MODULE_AUTHOR("Puranjay Mohan <p-mohan@ti.com>");
MODULE_AUTHOR("Md Danish Anwar <danishanwar@ti.com>");
1046 1047
MODULE_DESCRIPTION("PRU-ICSS Remote Processor Driver");
MODULE_LICENSE("GPL v2");