Commit 056cdce0 authored by Linus Torvalds's avatar Linus Torvalds

Merge branch 'akpm' (fixes from Andrew Morton)

Merge misc fixes from Andrew Morton.

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (21 commits)
  mm: revert mremap pud_free anti-fix
  mm: fix BUG in __split_huge_page_pmd
  swap: fix set_blocksize race during swapon/swapoff
  procfs: call default get_unmapped_area on MMU-present architectures
  procfs: fix unintended truncation of returned mapped address
  writeback: fix negative bdi max pause
  percpu_refcount: export symbols
  fs: buffer: move allocation failure loop into the allocator
  mm: memcg: handle non-error OOM situations more gracefully
  tools/testing/selftests: fix uninitialized variable
  block/partitions/efi.c: treat size mismatch as a warning, not an error
  mm: hugetlb: initialize PG_reserved for tail pages of gigantic compound pages
  mm/zswap: bugfix: memory leak when re-swapon
  mm: /proc/pid/pagemap: inspect _PAGE_SOFT_DIRTY only on present pages
  mm: migration: do not lose soft dirty bit if page is in migration state
  gcov: MAINTAINERS: Add an entry for gcov
  mm/hugetlb.c: correct missing private flag clearing
  mm/vmscan.c: don't forget to free shrinker->nr_deferred
  ipc/sem.c: synchronize semop and semctl with IPC_RMID
  ipc: update locking scheme comments
  ...
parents 0056019d 57a8f0cd
...@@ -3624,6 +3624,12 @@ L: linux-scsi@vger.kernel.org ...@@ -3624,6 +3624,12 @@ L: linux-scsi@vger.kernel.org
S: Odd Fixes (e.g., new signatures) S: Odd Fixes (e.g., new signatures)
F: drivers/scsi/fdomain.* F: drivers/scsi/fdomain.*
GCOV BASED KERNEL PROFILING
M: Peter Oberparleiter <oberpar@linux.vnet.ibm.com>
S: Maintained
F: kernel/gcov/
F: Documentation/gcov.txt
GDT SCSI DISK ARRAY CONTROLLER DRIVER GDT SCSI DISK ARRAY CONTROLLER DRIVER
M: Achim Leubner <achim_leubner@adaptec.com> M: Achim Leubner <achim_leubner@adaptec.com>
L: linux-scsi@vger.kernel.org L: linux-scsi@vger.kernel.org
......
...@@ -222,11 +222,16 @@ static int is_pmbr_valid(legacy_mbr *mbr, sector_t total_sectors) ...@@ -222,11 +222,16 @@ static int is_pmbr_valid(legacy_mbr *mbr, sector_t total_sectors)
* the disk size. * the disk size.
* *
* Hybrid MBRs do not necessarily comply with this. * Hybrid MBRs do not necessarily comply with this.
*
* Consider a bad value here to be a warning to support dd'ing
* an image from a smaller disk to a larger disk.
*/ */
if (ret == GPT_MBR_PROTECTIVE) { if (ret == GPT_MBR_PROTECTIVE) {
sz = le32_to_cpu(mbr->partition_record[part].size_in_lba); sz = le32_to_cpu(mbr->partition_record[part].size_in_lba);
if (sz != (uint32_t) total_sectors - 1 && sz != 0xFFFFFFFF) if (sz != (uint32_t) total_sectors - 1 && sz != 0xFFFFFFFF)
ret = 0; pr_debug("GPT: mbr size in lba (%u) different than whole disk (%u).\n",
sz, min_t(uint32_t,
total_sectors - 1, 0xFFFFFFFF));
} }
done: done:
return ret; return ret;
......
...@@ -1005,9 +1005,19 @@ grow_dev_page(struct block_device *bdev, sector_t block, ...@@ -1005,9 +1005,19 @@ grow_dev_page(struct block_device *bdev, sector_t block,
struct buffer_head *bh; struct buffer_head *bh;
sector_t end_block; sector_t end_block;
int ret = 0; /* Will call free_more_memory() */ int ret = 0; /* Will call free_more_memory() */
gfp_t gfp_mask;
page = find_or_create_page(inode->i_mapping, index, gfp_mask = mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS;
(mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE); gfp_mask |= __GFP_MOVABLE;
/*
* XXX: __getblk_slow() can not really deal with failure and
* will endlessly loop on improvised global reclaim. Prefer
* looping in the allocator rather than here, at least that
* code knows what it's doing.
*/
gfp_mask |= __GFP_NOFAIL;
page = find_or_create_page(inode->i_mapping, index, gfp_mask);
if (!page) if (!page)
return ret; return ret;
......
...@@ -288,10 +288,14 @@ static int proc_reg_mmap(struct file *file, struct vm_area_struct *vma) ...@@ -288,10 +288,14 @@ static int proc_reg_mmap(struct file *file, struct vm_area_struct *vma)
static unsigned long proc_reg_get_unmapped_area(struct file *file, unsigned long orig_addr, unsigned long len, unsigned long pgoff, unsigned long flags) static unsigned long proc_reg_get_unmapped_area(struct file *file, unsigned long orig_addr, unsigned long len, unsigned long pgoff, unsigned long flags)
{ {
struct proc_dir_entry *pde = PDE(file_inode(file)); struct proc_dir_entry *pde = PDE(file_inode(file));
int rv = -EIO; unsigned long rv = -EIO;
unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long) = NULL;
if (use_pde(pde)) { if (use_pde(pde)) {
get_unmapped_area = pde->proc_fops->get_unmapped_area; #ifdef CONFIG_MMU
get_unmapped_area = current->mm->get_unmapped_area;
#endif
if (pde->proc_fops->get_unmapped_area)
get_unmapped_area = pde->proc_fops->get_unmapped_area;
if (get_unmapped_area) if (get_unmapped_area)
rv = get_unmapped_area(file, orig_addr, len, pgoff, flags); rv = get_unmapped_area(file, orig_addr, len, pgoff, flags);
unuse_pde(pde); unuse_pde(pde);
......
...@@ -941,6 +941,8 @@ static void pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm, ...@@ -941,6 +941,8 @@ static void pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
frame = pte_pfn(pte); frame = pte_pfn(pte);
flags = PM_PRESENT; flags = PM_PRESENT;
page = vm_normal_page(vma, addr, pte); page = vm_normal_page(vma, addr, pte);
if (pte_soft_dirty(pte))
flags2 |= __PM_SOFT_DIRTY;
} else if (is_swap_pte(pte)) { } else if (is_swap_pte(pte)) {
swp_entry_t entry; swp_entry_t entry;
if (pte_swp_soft_dirty(pte)) if (pte_swp_soft_dirty(pte))
...@@ -960,7 +962,7 @@ static void pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm, ...@@ -960,7 +962,7 @@ static void pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
if (page && !PageAnon(page)) if (page && !PageAnon(page))
flags |= PM_FILE; flags |= PM_FILE;
if ((vma->vm_flags & VM_SOFTDIRTY) || pte_soft_dirty(pte)) if ((vma->vm_flags & VM_SOFTDIRTY))
flags2 |= __PM_SOFT_DIRTY; flags2 |= __PM_SOFT_DIRTY;
*pme = make_pme(PM_PFRAME(frame) | PM_STATUS2(pm->v2, flags2) | flags); *pme = make_pme(PM_PFRAME(frame) | PM_STATUS2(pm->v2, flags2) | flags);
......
...@@ -137,47 +137,24 @@ extern void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, ...@@ -137,47 +137,24 @@ extern void mem_cgroup_print_oom_info(struct mem_cgroup *memcg,
extern void mem_cgroup_replace_page_cache(struct page *oldpage, extern void mem_cgroup_replace_page_cache(struct page *oldpage,
struct page *newpage); struct page *newpage);
/** static inline void mem_cgroup_oom_enable(void)
* mem_cgroup_toggle_oom - toggle the memcg OOM killer for the current task
* @new: true to enable, false to disable
*
* Toggle whether a failed memcg charge should invoke the OOM killer
* or just return -ENOMEM. Returns the previous toggle state.
*
* NOTE: Any path that enables the OOM killer before charging must
* call mem_cgroup_oom_synchronize() afterward to finalize the
* OOM handling and clean up.
*/
static inline bool mem_cgroup_toggle_oom(bool new)
{ {
bool old; WARN_ON(current->memcg_oom.may_oom);
current->memcg_oom.may_oom = 1;
old = current->memcg_oom.may_oom;
current->memcg_oom.may_oom = new;
return old;
} }
static inline void mem_cgroup_enable_oom(void) static inline void mem_cgroup_oom_disable(void)
{ {
bool old = mem_cgroup_toggle_oom(true); WARN_ON(!current->memcg_oom.may_oom);
current->memcg_oom.may_oom = 0;
WARN_ON(old == true);
}
static inline void mem_cgroup_disable_oom(void)
{
bool old = mem_cgroup_toggle_oom(false);
WARN_ON(old == false);
} }
static inline bool task_in_memcg_oom(struct task_struct *p) static inline bool task_in_memcg_oom(struct task_struct *p)
{ {
return p->memcg_oom.in_memcg_oom; return p->memcg_oom.memcg;
} }
bool mem_cgroup_oom_synchronize(void); bool mem_cgroup_oom_synchronize(bool wait);
#ifdef CONFIG_MEMCG_SWAP #ifdef CONFIG_MEMCG_SWAP
extern int do_swap_account; extern int do_swap_account;
...@@ -402,16 +379,11 @@ static inline void mem_cgroup_end_update_page_stat(struct page *page, ...@@ -402,16 +379,11 @@ static inline void mem_cgroup_end_update_page_stat(struct page *page,
{ {
} }
static inline bool mem_cgroup_toggle_oom(bool new) static inline void mem_cgroup_oom_enable(void)
{
return false;
}
static inline void mem_cgroup_enable_oom(void)
{ {
} }
static inline void mem_cgroup_disable_oom(void) static inline void mem_cgroup_oom_disable(void)
{ {
} }
...@@ -420,7 +392,7 @@ static inline bool task_in_memcg_oom(struct task_struct *p) ...@@ -420,7 +392,7 @@ static inline bool task_in_memcg_oom(struct task_struct *p)
return false; return false;
} }
static inline bool mem_cgroup_oom_synchronize(void) static inline bool mem_cgroup_oom_synchronize(bool wait)
{ {
return false; return false;
} }
......
...@@ -1394,11 +1394,10 @@ struct task_struct { ...@@ -1394,11 +1394,10 @@ struct task_struct {
} memcg_batch; } memcg_batch;
unsigned int memcg_kmem_skip_account; unsigned int memcg_kmem_skip_account;
struct memcg_oom_info { struct memcg_oom_info {
struct mem_cgroup *memcg;
gfp_t gfp_mask;
int order;
unsigned int may_oom:1; unsigned int may_oom:1;
unsigned int in_memcg_oom:1;
unsigned int oom_locked:1;
int wakeups;
struct mem_cgroup *wait_on_memcg;
} memcg_oom; } memcg_oom;
#endif #endif
#ifdef CONFIG_UPROBES #ifdef CONFIG_UPROBES
......
...@@ -1282,6 +1282,12 @@ static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum, ...@@ -1282,6 +1282,12 @@ static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
sem_lock(sma, NULL, -1); sem_lock(sma, NULL, -1);
if (sma->sem_perm.deleted) {
sem_unlock(sma, -1);
rcu_read_unlock();
return -EIDRM;
}
curr = &sma->sem_base[semnum]; curr = &sma->sem_base[semnum];
ipc_assert_locked_object(&sma->sem_perm); ipc_assert_locked_object(&sma->sem_perm);
...@@ -1336,12 +1342,14 @@ static int semctl_main(struct ipc_namespace *ns, int semid, int semnum, ...@@ -1336,12 +1342,14 @@ static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
int i; int i;
sem_lock(sma, NULL, -1); sem_lock(sma, NULL, -1);
if (sma->sem_perm.deleted) {
err = -EIDRM;
goto out_unlock;
}
if(nsems > SEMMSL_FAST) { if(nsems > SEMMSL_FAST) {
if (!ipc_rcu_getref(sma)) { if (!ipc_rcu_getref(sma)) {
sem_unlock(sma, -1);
rcu_read_unlock();
err = -EIDRM; err = -EIDRM;
goto out_free; goto out_unlock;
} }
sem_unlock(sma, -1); sem_unlock(sma, -1);
rcu_read_unlock(); rcu_read_unlock();
...@@ -1354,10 +1362,8 @@ static int semctl_main(struct ipc_namespace *ns, int semid, int semnum, ...@@ -1354,10 +1362,8 @@ static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
rcu_read_lock(); rcu_read_lock();
sem_lock_and_putref(sma); sem_lock_and_putref(sma);
if (sma->sem_perm.deleted) { if (sma->sem_perm.deleted) {
sem_unlock(sma, -1);
rcu_read_unlock();
err = -EIDRM; err = -EIDRM;
goto out_free; goto out_unlock;
} }
} }
for (i = 0; i < sma->sem_nsems; i++) for (i = 0; i < sma->sem_nsems; i++)
...@@ -1375,8 +1381,8 @@ static int semctl_main(struct ipc_namespace *ns, int semid, int semnum, ...@@ -1375,8 +1381,8 @@ static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
struct sem_undo *un; struct sem_undo *un;
if (!ipc_rcu_getref(sma)) { if (!ipc_rcu_getref(sma)) {
rcu_read_unlock(); err = -EIDRM;
return -EIDRM; goto out_rcu_wakeup;
} }
rcu_read_unlock(); rcu_read_unlock();
...@@ -1404,10 +1410,8 @@ static int semctl_main(struct ipc_namespace *ns, int semid, int semnum, ...@@ -1404,10 +1410,8 @@ static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
rcu_read_lock(); rcu_read_lock();
sem_lock_and_putref(sma); sem_lock_and_putref(sma);
if (sma->sem_perm.deleted) { if (sma->sem_perm.deleted) {
sem_unlock(sma, -1);
rcu_read_unlock();
err = -EIDRM; err = -EIDRM;
goto out_free; goto out_unlock;
} }
for (i = 0; i < nsems; i++) for (i = 0; i < nsems; i++)
...@@ -1431,6 +1435,10 @@ static int semctl_main(struct ipc_namespace *ns, int semid, int semnum, ...@@ -1431,6 +1435,10 @@ static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
goto out_rcu_wakeup; goto out_rcu_wakeup;
sem_lock(sma, NULL, -1); sem_lock(sma, NULL, -1);
if (sma->sem_perm.deleted) {
err = -EIDRM;
goto out_unlock;
}
curr = &sma->sem_base[semnum]; curr = &sma->sem_base[semnum];
switch (cmd) { switch (cmd) {
...@@ -1836,6 +1844,10 @@ SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops, ...@@ -1836,6 +1844,10 @@ SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
if (error) if (error)
goto out_rcu_wakeup; goto out_rcu_wakeup;
error = -EIDRM;
locknum = sem_lock(sma, sops, nsops);
if (sma->sem_perm.deleted)
goto out_unlock_free;
/* /*
* semid identifiers are not unique - find_alloc_undo may have * semid identifiers are not unique - find_alloc_undo may have
* allocated an undo structure, it was invalidated by an RMID * allocated an undo structure, it was invalidated by an RMID
...@@ -1843,8 +1855,6 @@ SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops, ...@@ -1843,8 +1855,6 @@ SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
* This case can be detected checking un->semid. The existence of * This case can be detected checking un->semid. The existence of
* "un" itself is guaranteed by rcu. * "un" itself is guaranteed by rcu.
*/ */
error = -EIDRM;
locknum = sem_lock(sma, sops, nsops);
if (un && un->semid == -1) if (un && un->semid == -1)
goto out_unlock_free; goto out_unlock_free;
...@@ -2057,6 +2067,12 @@ void exit_sem(struct task_struct *tsk) ...@@ -2057,6 +2067,12 @@ void exit_sem(struct task_struct *tsk)
} }
sem_lock(sma, NULL, -1); sem_lock(sma, NULL, -1);
/* exit_sem raced with IPC_RMID, nothing to do */
if (sma->sem_perm.deleted) {
sem_unlock(sma, -1);
rcu_read_unlock();
continue;
}
un = __lookup_undo(ulp, semid); un = __lookup_undo(ulp, semid);
if (un == NULL) { if (un == NULL) {
/* exit_sem raced with IPC_RMID+semget() that created /* exit_sem raced with IPC_RMID+semget() that created
......
...@@ -17,12 +17,27 @@ ...@@ -17,12 +17,27 @@
* Pavel Emelianov <xemul@openvz.org> * Pavel Emelianov <xemul@openvz.org>
* *
* General sysv ipc locking scheme: * General sysv ipc locking scheme:
* when doing ipc id lookups, take the ids->rwsem * rcu_read_lock()
* rcu_read_lock() * obtain the ipc object (kern_ipc_perm) by looking up the id in an idr
* obtain the ipc object (kern_ipc_perm) * tree.
* perform security, capabilities, auditing and permission checks, etc. * - perform initial checks (capabilities, auditing and permission,
* acquire the ipc lock (kern_ipc_perm.lock) throught ipc_lock_object() * etc).
* perform data updates (ie: SET, RMID, LOCK/UNLOCK commands) * - perform read-only operations, such as STAT, INFO commands.
* acquire the ipc lock (kern_ipc_perm.lock) through
* ipc_lock_object()
* - perform data updates, such as SET, RMID commands and
* mechanism-specific operations (semop/semtimedop,
* msgsnd/msgrcv, shmat/shmdt).
* drop the ipc lock, through ipc_unlock_object().
* rcu_read_unlock()
*
* The ids->rwsem must be taken when:
* - creating, removing and iterating the existing entries in ipc
* identifier sets.
* - iterating through files under /proc/sysvipc/
*
* Note that sems have a special fast path that avoids kern_ipc_perm.lock -
* see sem_lock().
*/ */
#include <linux/mm.h> #include <linux/mm.h>
......
...@@ -53,6 +53,7 @@ int percpu_ref_init(struct percpu_ref *ref, percpu_ref_func_t *release) ...@@ -53,6 +53,7 @@ int percpu_ref_init(struct percpu_ref *ref, percpu_ref_func_t *release)
ref->release = release; ref->release = release;
return 0; return 0;
} }
EXPORT_SYMBOL_GPL(percpu_ref_init);
/** /**
* percpu_ref_cancel_init - cancel percpu_ref_init() * percpu_ref_cancel_init - cancel percpu_ref_init()
...@@ -84,6 +85,7 @@ void percpu_ref_cancel_init(struct percpu_ref *ref) ...@@ -84,6 +85,7 @@ void percpu_ref_cancel_init(struct percpu_ref *ref)
free_percpu(ref->pcpu_count); free_percpu(ref->pcpu_count);
} }
} }
EXPORT_SYMBOL_GPL(percpu_ref_cancel_init);
static void percpu_ref_kill_rcu(struct rcu_head *rcu) static void percpu_ref_kill_rcu(struct rcu_head *rcu)
{ {
...@@ -156,3 +158,4 @@ void percpu_ref_kill_and_confirm(struct percpu_ref *ref, ...@@ -156,3 +158,4 @@ void percpu_ref_kill_and_confirm(struct percpu_ref *ref,
call_rcu_sched(&ref->rcu, percpu_ref_kill_rcu); call_rcu_sched(&ref->rcu, percpu_ref_kill_rcu);
} }
EXPORT_SYMBOL_GPL(percpu_ref_kill_and_confirm);
...@@ -1616,7 +1616,6 @@ int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) ...@@ -1616,7 +1616,6 @@ int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
struct inode *inode = mapping->host; struct inode *inode = mapping->host;
pgoff_t offset = vmf->pgoff; pgoff_t offset = vmf->pgoff;
struct page *page; struct page *page;
bool memcg_oom;
pgoff_t size; pgoff_t size;
int ret = 0; int ret = 0;
...@@ -1625,11 +1624,7 @@ int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) ...@@ -1625,11 +1624,7 @@ int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
return VM_FAULT_SIGBUS; return VM_FAULT_SIGBUS;
/* /*
* Do we have something in the page cache already? Either * Do we have something in the page cache already?
* way, try readahead, but disable the memcg OOM killer for it
* as readahead is optional and no errors are propagated up
* the fault stack. The OOM killer is enabled while trying to
* instantiate the faulting page individually below.
*/ */
page = find_get_page(mapping, offset); page = find_get_page(mapping, offset);
if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
...@@ -1637,14 +1632,10 @@ int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) ...@@ -1637,14 +1632,10 @@ int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
* We found the page, so try async readahead before * We found the page, so try async readahead before
* waiting for the lock. * waiting for the lock.
*/ */
memcg_oom = mem_cgroup_toggle_oom(false);
do_async_mmap_readahead(vma, ra, file, page, offset); do_async_mmap_readahead(vma, ra, file, page, offset);
mem_cgroup_toggle_oom(memcg_oom);
} else if (!page) { } else if (!page) {
/* No page in the page cache at all */ /* No page in the page cache at all */
memcg_oom = mem_cgroup_toggle_oom(false);
do_sync_mmap_readahead(vma, ra, file, offset); do_sync_mmap_readahead(vma, ra, file, offset);
mem_cgroup_toggle_oom(memcg_oom);
count_vm_event(PGMAJFAULT); count_vm_event(PGMAJFAULT);
mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
ret = VM_FAULT_MAJOR; ret = VM_FAULT_MAJOR;
......
...@@ -2697,6 +2697,7 @@ void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address, ...@@ -2697,6 +2697,7 @@ void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
mmun_start = haddr; mmun_start = haddr;
mmun_end = haddr + HPAGE_PMD_SIZE; mmun_end = haddr + HPAGE_PMD_SIZE;
again:
mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
spin_lock(&mm->page_table_lock); spin_lock(&mm->page_table_lock);
if (unlikely(!pmd_trans_huge(*pmd))) { if (unlikely(!pmd_trans_huge(*pmd))) {
...@@ -2719,7 +2720,14 @@ void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address, ...@@ -2719,7 +2720,14 @@ void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
split_huge_page(page); split_huge_page(page);
put_page(page); put_page(page);
BUG_ON(pmd_trans_huge(*pmd));
/*
* We don't always have down_write of mmap_sem here: a racing
* do_huge_pmd_wp_page() might have copied-on-write to another
* huge page before our split_huge_page() got the anon_vma lock.
*/
if (unlikely(pmd_trans_huge(*pmd)))
goto again;
} }
void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address, void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
......
...@@ -653,6 +653,7 @@ static void free_huge_page(struct page *page) ...@@ -653,6 +653,7 @@ static void free_huge_page(struct page *page)
BUG_ON(page_count(page)); BUG_ON(page_count(page));
BUG_ON(page_mapcount(page)); BUG_ON(page_mapcount(page));
restore_reserve = PagePrivate(page); restore_reserve = PagePrivate(page);
ClearPagePrivate(page);
spin_lock(&hugetlb_lock); spin_lock(&hugetlb_lock);
hugetlb_cgroup_uncharge_page(hstate_index(h), hugetlb_cgroup_uncharge_page(hstate_index(h),
...@@ -695,8 +696,22 @@ static void prep_compound_gigantic_page(struct page *page, unsigned long order) ...@@ -695,8 +696,22 @@ static void prep_compound_gigantic_page(struct page *page, unsigned long order)
/* we rely on prep_new_huge_page to set the destructor */ /* we rely on prep_new_huge_page to set the destructor */
set_compound_order(page, order); set_compound_order(page, order);
__SetPageHead(page); __SetPageHead(page);
__ClearPageReserved(page);
for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) { for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
__SetPageTail(p); __SetPageTail(p);
/*
* For gigantic hugepages allocated through bootmem at
* boot, it's safer to be consistent with the not-gigantic
* hugepages and clear the PG_reserved bit from all tail pages
* too. Otherwse drivers using get_user_pages() to access tail
* pages may get the reference counting wrong if they see
* PG_reserved set on a tail page (despite the head page not
* having PG_reserved set). Enforcing this consistency between
* head and tail pages allows drivers to optimize away a check
* on the head page when they need know if put_page() is needed
* after get_user_pages().
*/
__ClearPageReserved(p);
set_page_count(p, 0); set_page_count(p, 0);
p->first_page = page; p->first_page = page;
} }
...@@ -1329,9 +1344,9 @@ static void __init gather_bootmem_prealloc(void) ...@@ -1329,9 +1344,9 @@ static void __init gather_bootmem_prealloc(void)
#else #else
page = virt_to_page(m); page = virt_to_page(m);
#endif #endif
__ClearPageReserved(page);
WARN_ON(page_count(page) != 1); WARN_ON(page_count(page) != 1);
prep_compound_huge_page(page, h->order); prep_compound_huge_page(page, h->order);
WARN_ON(PageReserved(page));
prep_new_huge_page(h, page, page_to_nid(page)); prep_new_huge_page(h, page, page_to_nid(page));
/* /*
* If we had gigantic hugepages allocated at boot time, we need * If we had gigantic hugepages allocated at boot time, we need
......
...@@ -866,6 +866,7 @@ static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, ...@@ -866,6 +866,7 @@ static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
unsigned long val = 0; unsigned long val = 0;
int cpu; int cpu;
get_online_cpus();
for_each_online_cpu(cpu) for_each_online_cpu(cpu)
val += per_cpu(memcg->stat->events[idx], cpu); val += per_cpu(memcg->stat->events[idx], cpu);
#ifdef CONFIG_HOTPLUG_CPU #ifdef CONFIG_HOTPLUG_CPU
...@@ -873,6 +874,7 @@ static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, ...@@ -873,6 +874,7 @@ static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
val += memcg->nocpu_base.events[idx]; val += memcg->nocpu_base.events[idx];
spin_unlock(&memcg->pcp_counter_lock); spin_unlock(&memcg->pcp_counter_lock);
#endif #endif
put_online_cpus();
return val; return val;
} }
...@@ -2159,110 +2161,59 @@ static void memcg_oom_recover(struct mem_cgroup *memcg) ...@@ -2159,110 +2161,59 @@ static void memcg_oom_recover(struct mem_cgroup *memcg)
memcg_wakeup_oom(memcg); memcg_wakeup_oom(memcg);
} }
/*
* try to call OOM killer
*/
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
{ {
bool locked;
int wakeups;
if (!current->memcg_oom.may_oom) if (!current->memcg_oom.may_oom)
return; return;
current->memcg_oom.in_memcg_oom = 1;
/* /*
* As with any blocking lock, a contender needs to start * We are in the middle of the charge context here, so we
* listening for wakeups before attempting the trylock, * don't want to block when potentially sitting on a callstack
* otherwise it can miss the wakeup from the unlock and sleep * that holds all kinds of filesystem and mm locks.
* indefinitely. This is just open-coded because our locking *
* is so particular to memcg hierarchies. * Also, the caller may handle a failed allocation gracefully
* (like optional page cache readahead) and so an OOM killer
* invocation might not even be necessary.
*
* That's why we don't do anything here except remember the
* OOM context and then deal with it at the end of the page
* fault when the stack is unwound, the locks are released,
* and when we know whether the fault was overall successful.
*/ */
wakeups = atomic_read(&memcg->oom_wakeups); css_get(&memcg->css);
mem_cgroup_mark_under_oom(memcg); current->memcg_oom.memcg = memcg;
current->memcg_oom.gfp_mask = mask;
locked = mem_cgroup_oom_trylock(memcg); current->memcg_oom.order = order;
if (locked)
mem_cgroup_oom_notify(memcg);
if (locked && !memcg->oom_kill_disable) {
mem_cgroup_unmark_under_oom(memcg);
mem_cgroup_out_of_memory(memcg, mask, order);
mem_cgroup_oom_unlock(memcg);
/*
* There is no guarantee that an OOM-lock contender
* sees the wakeups triggered by the OOM kill
* uncharges. Wake any sleepers explicitely.
*/
memcg_oom_recover(memcg);
} else {
/*
* A system call can just return -ENOMEM, but if this
* is a page fault and somebody else is handling the
* OOM already, we need to sleep on the OOM waitqueue
* for this memcg until the situation is resolved.
* Which can take some time because it might be
* handled by a userspace task.
*
* However, this is the charge context, which means
* that we may sit on a large call stack and hold
* various filesystem locks, the mmap_sem etc. and we
* don't want the OOM handler to deadlock on them
* while we sit here and wait. Store the current OOM
* context in the task_struct, then return -ENOMEM.
* At the end of the page fault handler, with the
* stack unwound, pagefault_out_of_memory() will check
* back with us by calling
* mem_cgroup_oom_synchronize(), possibly putting the
* task to sleep.
*/
current->memcg_oom.oom_locked = locked;
current->memcg_oom.wakeups = wakeups;
css_get(&memcg->css);
current->memcg_oom.wait_on_memcg = memcg;
}
} }
/** /**
* mem_cgroup_oom_synchronize - complete memcg OOM handling * mem_cgroup_oom_synchronize - complete memcg OOM handling
* @handle: actually kill/wait or just clean up the OOM state
* *
* This has to be called at the end of a page fault if the the memcg * This has to be called at the end of a page fault if the memcg OOM
* OOM handler was enabled and the fault is returning %VM_FAULT_OOM. * handler was enabled.
* *
* Memcg supports userspace OOM handling, so failed allocations must * Memcg supports userspace OOM handling where failed allocations must
* sleep on a waitqueue until the userspace task resolves the * sleep on a waitqueue until the userspace task resolves the
* situation. Sleeping directly in the charge context with all kinds * situation. Sleeping directly in the charge context with all kinds
* of locks held is not a good idea, instead we remember an OOM state * of locks held is not a good idea, instead we remember an OOM state
* in the task and mem_cgroup_oom_synchronize() has to be called at * in the task and mem_cgroup_oom_synchronize() has to be called at
* the end of the page fault to put the task to sleep and clean up the * the end of the page fault to complete the OOM handling.
* OOM state.
* *
* Returns %true if an ongoing memcg OOM situation was detected and * Returns %true if an ongoing memcg OOM situation was detected and
* finalized, %false otherwise. * completed, %false otherwise.
*/ */
bool mem_cgroup_oom_synchronize(void) bool mem_cgroup_oom_synchronize(bool handle)
{ {
struct mem_cgroup *memcg = current->memcg_oom.memcg;
struct oom_wait_info owait; struct oom_wait_info owait;
struct mem_cgroup *memcg; bool locked;
/* OOM is global, do not handle */ /* OOM is global, do not handle */
if (!current->memcg_oom.in_memcg_oom)
return false;
/*
* We invoked the OOM killer but there is a chance that a kill
* did not free up any charges. Everybody else might already
* be sleeping, so restart the fault and keep the rampage
* going until some charges are released.
*/
memcg = current->memcg_oom.wait_on_memcg;
if (!memcg) if (!memcg)
goto out; return false;
if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current)) if (!handle)
goto out_memcg; goto cleanup;
owait.memcg = memcg; owait.memcg = memcg;
owait.wait.flags = 0; owait.wait.flags = 0;
...@@ -2271,13 +2222,25 @@ bool mem_cgroup_oom_synchronize(void) ...@@ -2271,13 +2222,25 @@ bool mem_cgroup_oom_synchronize(void)
INIT_LIST_HEAD(&owait.wait.task_list); INIT_LIST_HEAD(&owait.wait.task_list);
prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
/* Only sleep if we didn't miss any wakeups since OOM */ mem_cgroup_mark_under_oom(memcg);
if (atomic_read(&memcg->oom_wakeups) == current->memcg_oom.wakeups)
locked = mem_cgroup_oom_trylock(memcg);
if (locked)
mem_cgroup_oom_notify(memcg);
if (locked && !memcg->oom_kill_disable) {
mem_cgroup_unmark_under_oom(memcg);
finish_wait(&memcg_oom_waitq, &owait.wait);
mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
current->memcg_oom.order);
} else {
schedule(); schedule();
finish_wait(&memcg_oom_waitq, &owait.wait); mem_cgroup_unmark_under_oom(memcg);
out_memcg: finish_wait(&memcg_oom_waitq, &owait.wait);
mem_cgroup_unmark_under_oom(memcg); }
if (current->memcg_oom.oom_locked) {
if (locked) {
mem_cgroup_oom_unlock(memcg); mem_cgroup_oom_unlock(memcg);
/* /*
* There is no guarantee that an OOM-lock contender * There is no guarantee that an OOM-lock contender
...@@ -2286,10 +2249,9 @@ bool mem_cgroup_oom_synchronize(void) ...@@ -2286,10 +2249,9 @@ bool mem_cgroup_oom_synchronize(void)
*/ */
memcg_oom_recover(memcg); memcg_oom_recover(memcg);
} }
cleanup:
current->memcg_oom.memcg = NULL;
css_put(&memcg->css); css_put(&memcg->css);
current->memcg_oom.wait_on_memcg = NULL;
out:
current->memcg_oom.in_memcg_oom = 0;
return true; return true;
} }
...@@ -2703,6 +2665,9 @@ static int __mem_cgroup_try_charge(struct mm_struct *mm, ...@@ -2703,6 +2665,9 @@ static int __mem_cgroup_try_charge(struct mm_struct *mm,
|| fatal_signal_pending(current))) || fatal_signal_pending(current)))
goto bypass; goto bypass;
if (unlikely(task_in_memcg_oom(current)))
goto bypass;
/* /*
* We always charge the cgroup the mm_struct belongs to. * We always charge the cgroup the mm_struct belongs to.
* The mm_struct's mem_cgroup changes on task migration if the * The mm_struct's mem_cgroup changes on task migration if the
...@@ -2801,6 +2766,8 @@ static int __mem_cgroup_try_charge(struct mm_struct *mm, ...@@ -2801,6 +2766,8 @@ static int __mem_cgroup_try_charge(struct mm_struct *mm,
return 0; return 0;
nomem: nomem:
*ptr = NULL; *ptr = NULL;
if (gfp_mask & __GFP_NOFAIL)
return 0;
return -ENOMEM; return -ENOMEM;
bypass: bypass:
*ptr = root_mem_cgroup; *ptr = root_mem_cgroup;
......
...@@ -837,6 +837,8 @@ copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, ...@@ -837,6 +837,8 @@ copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
*/ */
make_migration_entry_read(&entry); make_migration_entry_read(&entry);
pte = swp_entry_to_pte(entry); pte = swp_entry_to_pte(entry);
if (pte_swp_soft_dirty(*src_pte))
pte = pte_swp_mksoft_dirty(pte);
set_pte_at(src_mm, addr, src_pte, pte); set_pte_at(src_mm, addr, src_pte, pte);
} }
} }
...@@ -3863,15 +3865,21 @@ int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, ...@@ -3863,15 +3865,21 @@ int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
* space. Kernel faults are handled more gracefully. * space. Kernel faults are handled more gracefully.
*/ */
if (flags & FAULT_FLAG_USER) if (flags & FAULT_FLAG_USER)
mem_cgroup_enable_oom(); mem_cgroup_oom_enable();
ret = __handle_mm_fault(mm, vma, address, flags); ret = __handle_mm_fault(mm, vma, address, flags);
if (flags & FAULT_FLAG_USER) if (flags & FAULT_FLAG_USER) {
mem_cgroup_disable_oom(); mem_cgroup_oom_disable();
/*
if (WARN_ON(task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))) * The task may have entered a memcg OOM situation but
mem_cgroup_oom_synchronize(); * if the allocation error was handled gracefully (no
* VM_FAULT_OOM), there is no need to kill anything.
* Just clean up the OOM state peacefully.
*/
if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
mem_cgroup_oom_synchronize(false);
}
return ret; return ret;
} }
......
...@@ -161,6 +161,8 @@ static int remove_migration_pte(struct page *new, struct vm_area_struct *vma, ...@@ -161,6 +161,8 @@ static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
get_page(new); get_page(new);
pte = pte_mkold(mk_pte(new, vma->vm_page_prot)); pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
if (pte_swp_soft_dirty(*ptep))
pte = pte_mksoft_dirty(pte);
if (is_write_migration_entry(entry)) if (is_write_migration_entry(entry))
pte = pte_mkwrite(pte); pte = pte_mkwrite(pte);
#ifdef CONFIG_HUGETLB_PAGE #ifdef CONFIG_HUGETLB_PAGE
......
...@@ -94,13 +94,16 @@ static unsigned long change_pte_range(struct vm_area_struct *vma, pmd_t *pmd, ...@@ -94,13 +94,16 @@ static unsigned long change_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
swp_entry_t entry = pte_to_swp_entry(oldpte); swp_entry_t entry = pte_to_swp_entry(oldpte);
if (is_write_migration_entry(entry)) { if (is_write_migration_entry(entry)) {
pte_t newpte;
/* /*
* A protection check is difficult so * A protection check is difficult so
* just be safe and disable write * just be safe and disable write
*/ */
make_migration_entry_read(&entry); make_migration_entry_read(&entry);
set_pte_at(mm, addr, pte, newpte = swp_entry_to_pte(entry);
swp_entry_to_pte(entry)); if (pte_swp_soft_dirty(oldpte))
newpte = pte_swp_mksoft_dirty(newpte);
set_pte_at(mm, addr, pte, newpte);
} }
pages++; pages++;
} }
......
...@@ -25,7 +25,6 @@ ...@@ -25,7 +25,6 @@
#include <asm/uaccess.h> #include <asm/uaccess.h>
#include <asm/cacheflush.h> #include <asm/cacheflush.h>
#include <asm/tlbflush.h> #include <asm/tlbflush.h>
#include <asm/pgalloc.h>
#include "internal.h" #include "internal.h"
...@@ -63,10 +62,8 @@ static pmd_t *alloc_new_pmd(struct mm_struct *mm, struct vm_area_struct *vma, ...@@ -63,10 +62,8 @@ static pmd_t *alloc_new_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
return NULL; return NULL;
pmd = pmd_alloc(mm, pud, addr); pmd = pmd_alloc(mm, pud, addr);
if (!pmd) { if (!pmd)
pud_free(mm, pud);
return NULL; return NULL;
}
VM_BUG_ON(pmd_trans_huge(*pmd)); VM_BUG_ON(pmd_trans_huge(*pmd));
......
...@@ -680,7 +680,7 @@ void pagefault_out_of_memory(void) ...@@ -680,7 +680,7 @@ void pagefault_out_of_memory(void)
{ {
struct zonelist *zonelist; struct zonelist *zonelist;
if (mem_cgroup_oom_synchronize()) if (mem_cgroup_oom_synchronize(true))
return; return;
zonelist = node_zonelist(first_online_node, GFP_KERNEL); zonelist = node_zonelist(first_online_node, GFP_KERNEL);
......
...@@ -1210,11 +1210,11 @@ static unsigned long dirty_poll_interval(unsigned long dirty, ...@@ -1210,11 +1210,11 @@ static unsigned long dirty_poll_interval(unsigned long dirty,
return 1; return 1;
} }
static long bdi_max_pause(struct backing_dev_info *bdi, static unsigned long bdi_max_pause(struct backing_dev_info *bdi,
unsigned long bdi_dirty) unsigned long bdi_dirty)
{ {
long bw = bdi->avg_write_bandwidth; unsigned long bw = bdi->avg_write_bandwidth;
long t; unsigned long t;
/* /*
* Limit pause time for small memory systems. If sleeping for too long * Limit pause time for small memory systems. If sleeping for too long
...@@ -1226,7 +1226,7 @@ static long bdi_max_pause(struct backing_dev_info *bdi, ...@@ -1226,7 +1226,7 @@ static long bdi_max_pause(struct backing_dev_info *bdi,
t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8)); t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
t++; t++;
return min_t(long, t, MAX_PAUSE); return min_t(unsigned long, t, MAX_PAUSE);
} }
static long bdi_min_pause(struct backing_dev_info *bdi, static long bdi_min_pause(struct backing_dev_info *bdi,
......
...@@ -1824,6 +1824,7 @@ SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) ...@@ -1824,6 +1824,7 @@ SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
struct filename *pathname; struct filename *pathname;
int i, type, prev; int i, type, prev;
int err; int err;
unsigned int old_block_size;
if (!capable(CAP_SYS_ADMIN)) if (!capable(CAP_SYS_ADMIN))
return -EPERM; return -EPERM;
...@@ -1914,6 +1915,7 @@ SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) ...@@ -1914,6 +1915,7 @@ SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
} }
swap_file = p->swap_file; swap_file = p->swap_file;
old_block_size = p->old_block_size;
p->swap_file = NULL; p->swap_file = NULL;
p->max = 0; p->max = 0;
swap_map = p->swap_map; swap_map = p->swap_map;
...@@ -1938,7 +1940,7 @@ SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) ...@@ -1938,7 +1940,7 @@ SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
inode = mapping->host; inode = mapping->host;
if (S_ISBLK(inode->i_mode)) { if (S_ISBLK(inode->i_mode)) {
struct block_device *bdev = I_BDEV(inode); struct block_device *bdev = I_BDEV(inode);
set_blocksize(bdev, p->old_block_size); set_blocksize(bdev, old_block_size);
blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
} else { } else {
mutex_lock(&inode->i_mutex); mutex_lock(&inode->i_mutex);
......
...@@ -211,6 +211,7 @@ void unregister_shrinker(struct shrinker *shrinker) ...@@ -211,6 +211,7 @@ void unregister_shrinker(struct shrinker *shrinker)
down_write(&shrinker_rwsem); down_write(&shrinker_rwsem);
list_del(&shrinker->list); list_del(&shrinker->list);
up_write(&shrinker_rwsem); up_write(&shrinker_rwsem);
kfree(shrinker->nr_deferred);
} }
EXPORT_SYMBOL(unregister_shrinker); EXPORT_SYMBOL(unregister_shrinker);
......
...@@ -804,6 +804,10 @@ static void zswap_frontswap_invalidate_area(unsigned type) ...@@ -804,6 +804,10 @@ static void zswap_frontswap_invalidate_area(unsigned type)
} }
tree->rbroot = RB_ROOT; tree->rbroot = RB_ROOT;
spin_unlock(&tree->lock); spin_unlock(&tree->lock);
zbud_destroy_pool(tree->pool);
kfree(tree);
zswap_trees[type] = NULL;
} }
static struct zbud_ops zswap_zbud_ops = { static struct zbud_ops zswap_zbud_ops = {
......
...@@ -151,7 +151,7 @@ static int check_timer_create(int which) ...@@ -151,7 +151,7 @@ static int check_timer_create(int which)
fflush(stdout); fflush(stdout);
done = 0; done = 0;
timer_create(which, NULL, &id); err = timer_create(which, NULL, &id);
if (err < 0) { if (err < 0) {
perror("Can't create timer\n"); perror("Can't create timer\n");
return -1; return -1;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment