Commit 0d573c6a authored by Rafael J. Wysocki's avatar Rafael J. Wysocki

Merge branches 'acpi-x86', 'acpi-cppc' and 'acpi-soc'

* acpi-x86:
  x86: ACPI: make variable names clearer in acpi_parse_madt_lapic_entries()
  x86: ACPI: remove extraneous white space after semicolon

* acpi-cppc:
  ACPI / CPPC: Support PCC with interrupt flag
  ACPI / CPPC: Add prefix cppc to cpudata structure name
  ACPI / CPPC: Add support for functional fixed hardware address
  ACPI / CPPC: Don't return on CPPC probe failure
  ACPI / CPPC: Allow build with ACPI_CPU_FREQ_PSS config
  ACPI / CPPC: check for error bit in PCC status field
  ACPI / CPPC: move all PCC related information into pcc_data
  ACPI / CPPC: add sysfs support to compute delivered performance
  ACPI / CPPC: set a non-zero value for transition_latency
  ACPI / CPPC: support for batching CPPC requests
  ACPI / CPPC: acquire pcc_lock only while accessing PCC subspace
  ACPI / CPPC: restructure read/writes for efficient sys mapped reg ops
  mailbox: pcc: Support HW-Reduced Communication Subspace type 2

* acpi-soc:
  ACPI / APD: constify local structures
  ACPI / APD: Add device HID for Vulcan SPI controller
obj-$(CONFIG_ACPI) += boot.o obj-$(CONFIG_ACPI) += boot.o
obj-$(CONFIG_ACPI_SLEEP) += sleep.o wakeup_$(BITS).o obj-$(CONFIG_ACPI_SLEEP) += sleep.o wakeup_$(BITS).o
obj-$(CONFIG_ACPI_APEI) += apei.o obj-$(CONFIG_ACPI_APEI) += apei.o
obj-$(CONFIG_ACPI_CPPC_LIB) += cppc_msr.o
ifneq ($(CONFIG_ACPI_PROCESSOR),) ifneq ($(CONFIG_ACPI_PROCESSOR),)
obj-y += cstate.o obj-y += cstate.o
......
...@@ -1031,8 +1031,8 @@ static int __init acpi_parse_madt_lapic_entries(void) ...@@ -1031,8 +1031,8 @@ static int __init acpi_parse_madt_lapic_entries(void)
return ret; return ret;
} }
x2count = madt_proc[0].count; count = madt_proc[0].count;
count = madt_proc[1].count; x2count = madt_proc[1].count;
} }
if (!count && !x2count) { if (!count && !x2count) {
printk(KERN_ERR PREFIX "No LAPIC entries present\n"); printk(KERN_ERR PREFIX "No LAPIC entries present\n");
...@@ -1513,7 +1513,7 @@ void __init acpi_boot_table_init(void) ...@@ -1513,7 +1513,7 @@ void __init acpi_boot_table_init(void)
* If acpi_disabled, bail out * If acpi_disabled, bail out
*/ */
if (acpi_disabled) if (acpi_disabled)
return; return;
/* /*
* Initialize the ACPI boot-time table parser. * Initialize the ACPI boot-time table parser.
......
/*
* cppc_msr.c: MSR Interface for CPPC
* Copyright (c) 2016, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*/
#include <acpi/cppc_acpi.h>
#include <asm/msr.h>
/* Refer to drivers/acpi/cppc_acpi.c for the description of functions */
bool cpc_ffh_supported(void)
{
return true;
}
int cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
{
int err;
err = rdmsrl_safe_on_cpu(cpunum, reg->address, val);
if (!err) {
u64 mask = GENMASK_ULL(reg->bit_offset + reg->bit_width - 1,
reg->bit_offset);
*val &= mask;
*val >>= reg->bit_offset;
}
return err;
}
int cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
{
u64 rd_val;
int err;
err = rdmsrl_safe_on_cpu(cpunum, reg->address, &rd_val);
if (!err) {
u64 mask = GENMASK_ULL(reg->bit_offset + reg->bit_width - 1,
reg->bit_offset);
val <<= reg->bit_offset;
val &= mask;
rd_val &= ~mask;
rd_val |= val;
err = wrmsrl_safe_on_cpu(cpunum, reg->address, rd_val);
}
return err;
}
...@@ -227,7 +227,6 @@ config ACPI_MCFG ...@@ -227,7 +227,6 @@ config ACPI_MCFG
config ACPI_CPPC_LIB config ACPI_CPPC_LIB
bool bool
depends on ACPI_PROCESSOR depends on ACPI_PROCESSOR
depends on !ACPI_CPU_FREQ_PSS
select MAILBOX select MAILBOX
select PCC select PCC
help help
......
...@@ -72,7 +72,7 @@ static int acpi_apd_setup(struct apd_private_data *pdata) ...@@ -72,7 +72,7 @@ static int acpi_apd_setup(struct apd_private_data *pdata)
} }
#ifdef CONFIG_X86_AMD_PLATFORM_DEVICE #ifdef CONFIG_X86_AMD_PLATFORM_DEVICE
static struct apd_device_desc cz_i2c_desc = { static const struct apd_device_desc cz_i2c_desc = {
.setup = acpi_apd_setup, .setup = acpi_apd_setup,
.fixed_clk_rate = 133000000, .fixed_clk_rate = 133000000,
}; };
...@@ -84,7 +84,7 @@ static struct property_entry uart_properties[] = { ...@@ -84,7 +84,7 @@ static struct property_entry uart_properties[] = {
{ }, { },
}; };
static struct apd_device_desc cz_uart_desc = { static const struct apd_device_desc cz_uart_desc = {
.setup = acpi_apd_setup, .setup = acpi_apd_setup,
.fixed_clk_rate = 48000000, .fixed_clk_rate = 48000000,
.properties = uart_properties, .properties = uart_properties,
...@@ -92,10 +92,15 @@ static struct apd_device_desc cz_uart_desc = { ...@@ -92,10 +92,15 @@ static struct apd_device_desc cz_uart_desc = {
#endif #endif
#ifdef CONFIG_ARM64 #ifdef CONFIG_ARM64
static struct apd_device_desc xgene_i2c_desc = { static const struct apd_device_desc xgene_i2c_desc = {
.setup = acpi_apd_setup, .setup = acpi_apd_setup,
.fixed_clk_rate = 100000000, .fixed_clk_rate = 100000000,
}; };
static const struct apd_device_desc vulcan_spi_desc = {
.setup = acpi_apd_setup,
.fixed_clk_rate = 133000000,
};
#endif #endif
#else #else
...@@ -164,6 +169,7 @@ static const struct acpi_device_id acpi_apd_device_ids[] = { ...@@ -164,6 +169,7 @@ static const struct acpi_device_id acpi_apd_device_ids[] = {
#endif #endif
#ifdef CONFIG_ARM64 #ifdef CONFIG_ARM64
{ "APMC0D0F", APD_ADDR(xgene_i2c_desc) }, { "APMC0D0F", APD_ADDR(xgene_i2c_desc) },
{ "BRCM900D", APD_ADDR(vulcan_spi_desc) },
#endif #endif
{ } { }
}; };
......
...@@ -40,15 +40,48 @@ ...@@ -40,15 +40,48 @@
#include <linux/cpufreq.h> #include <linux/cpufreq.h>
#include <linux/delay.h> #include <linux/delay.h>
#include <linux/ktime.h> #include <linux/ktime.h>
#include <linux/rwsem.h>
#include <linux/wait.h>
#include <acpi/cppc_acpi.h> #include <acpi/cppc_acpi.h>
/*
* Lock to provide mutually exclusive access to the PCC struct cppc_pcc_data {
* channel. e.g. When the remote updates the shared region struct mbox_chan *pcc_channel;
* with new data, the reader needs to be protected from void __iomem *pcc_comm_addr;
* other CPUs activity on the same channel. int pcc_subspace_idx;
*/ bool pcc_channel_acquired;
static DEFINE_SPINLOCK(pcc_lock); ktime_t deadline;
unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
bool pending_pcc_write_cmd; /* Any pending/batched PCC write cmds? */
bool platform_owns_pcc; /* Ownership of PCC subspace */
unsigned int pcc_write_cnt; /* Running count of PCC write commands */
/*
* Lock to provide controlled access to the PCC channel.
*
* For performance critical usecases(currently cppc_set_perf)
* We need to take read_lock and check if channel belongs to OSPM
* before reading or writing to PCC subspace
* We need to take write_lock before transferring the channel
* ownership to the platform via a Doorbell
* This allows us to batch a number of CPPC requests if they happen
* to originate in about the same time
*
* For non-performance critical usecases(init)
* Take write_lock for all purposes which gives exclusive access
*/
struct rw_semaphore pcc_lock;
/* Wait queue for CPUs whose requests were batched */
wait_queue_head_t pcc_write_wait_q;
};
/* Structure to represent the single PCC channel */
static struct cppc_pcc_data pcc_data = {
.pcc_subspace_idx = -1,
.platform_owns_pcc = true,
};
/* /*
* The cpc_desc structure contains the ACPI register details * The cpc_desc structure contains the ACPI register details
...@@ -59,18 +92,25 @@ static DEFINE_SPINLOCK(pcc_lock); ...@@ -59,18 +92,25 @@ static DEFINE_SPINLOCK(pcc_lock);
*/ */
static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr); static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
/* This layer handles all the PCC specifics for CPPC. */
static struct mbox_chan *pcc_channel;
static void __iomem *pcc_comm_addr;
static u64 comm_base_addr;
static int pcc_subspace_idx = -1;
static bool pcc_channel_acquired;
static ktime_t deadline;
static unsigned int pcc_mpar, pcc_mrtt;
/* pcc mapped address + header size + offset within PCC subspace */ /* pcc mapped address + header size + offset within PCC subspace */
#define GET_PCC_VADDR(offs) (pcc_comm_addr + 0x8 + (offs)) #define GET_PCC_VADDR(offs) (pcc_data.pcc_comm_addr + 0x8 + (offs))
/* Check if a CPC regsiter is in PCC */
#define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
(cpc)->cpc_entry.reg.space_id == \
ACPI_ADR_SPACE_PLATFORM_COMM)
/* Evalutes to True if reg is a NULL register descriptor */
#define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \
(reg)->address == 0 && \
(reg)->bit_width == 0 && \
(reg)->bit_offset == 0 && \
(reg)->access_width == 0)
/* Evalutes to True if an optional cpc field is supported */
#define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \
!!(cpc)->cpc_entry.int_value : \
!IS_NULL_REG(&(cpc)->cpc_entry.reg))
/* /*
* Arbitrary Retries in case the remote processor is slow to respond * Arbitrary Retries in case the remote processor is slow to respond
* to PCC commands. Keeping it high enough to cover emulators where * to PCC commands. Keeping it high enough to cover emulators where
...@@ -78,11 +118,79 @@ static unsigned int pcc_mpar, pcc_mrtt; ...@@ -78,11 +118,79 @@ static unsigned int pcc_mpar, pcc_mrtt;
*/ */
#define NUM_RETRIES 500 #define NUM_RETRIES 500
static int check_pcc_chan(void) struct cppc_attr {
struct attribute attr;
ssize_t (*show)(struct kobject *kobj,
struct attribute *attr, char *buf);
ssize_t (*store)(struct kobject *kobj,
struct attribute *attr, const char *c, ssize_t count);
};
#define define_one_cppc_ro(_name) \
static struct cppc_attr _name = \
__ATTR(_name, 0444, show_##_name, NULL)
#define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
static ssize_t show_feedback_ctrs(struct kobject *kobj,
struct attribute *attr, char *buf)
{
struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
struct cppc_perf_fb_ctrs fb_ctrs = {0};
cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
fb_ctrs.reference, fb_ctrs.delivered);
}
define_one_cppc_ro(feedback_ctrs);
static ssize_t show_reference_perf(struct kobject *kobj,
struct attribute *attr, char *buf)
{
struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
struct cppc_perf_fb_ctrs fb_ctrs = {0};
cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
return scnprintf(buf, PAGE_SIZE, "%llu\n",
fb_ctrs.reference_perf);
}
define_one_cppc_ro(reference_perf);
static ssize_t show_wraparound_time(struct kobject *kobj,
struct attribute *attr, char *buf)
{
struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
struct cppc_perf_fb_ctrs fb_ctrs = {0};
cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
return scnprintf(buf, PAGE_SIZE, "%llu\n", fb_ctrs.ctr_wrap_time);
}
define_one_cppc_ro(wraparound_time);
static struct attribute *cppc_attrs[] = {
&feedback_ctrs.attr,
&reference_perf.attr,
&wraparound_time.attr,
NULL
};
static struct kobj_type cppc_ktype = {
.sysfs_ops = &kobj_sysfs_ops,
.default_attrs = cppc_attrs,
};
static int check_pcc_chan(bool chk_err_bit)
{ {
int ret = -EIO; int ret = -EIO, status = 0;
struct acpi_pcct_shared_memory __iomem *generic_comm_base = pcc_comm_addr; struct acpi_pcct_shared_memory __iomem *generic_comm_base = pcc_data.pcc_comm_addr;
ktime_t next_deadline = ktime_add(ktime_get(), deadline); ktime_t next_deadline = ktime_add(ktime_get(), pcc_data.deadline);
if (!pcc_data.platform_owns_pcc)
return 0;
/* Retry in case the remote processor was too slow to catch up. */ /* Retry in case the remote processor was too slow to catch up. */
while (!ktime_after(ktime_get(), next_deadline)) { while (!ktime_after(ktime_get(), next_deadline)) {
...@@ -91,8 +199,11 @@ static int check_pcc_chan(void) ...@@ -91,8 +199,11 @@ static int check_pcc_chan(void)
* platform and should have set the command completion bit when * platform and should have set the command completion bit when
* PCC can be used by OSPM * PCC can be used by OSPM
*/ */
if (readw_relaxed(&generic_comm_base->status) & PCC_CMD_COMPLETE) { status = readw_relaxed(&generic_comm_base->status);
if (status & PCC_CMD_COMPLETE_MASK) {
ret = 0; ret = 0;
if (chk_err_bit && (status & PCC_ERROR_MASK))
ret = -EIO;
break; break;
} }
/* /*
...@@ -102,14 +213,23 @@ static int check_pcc_chan(void) ...@@ -102,14 +213,23 @@ static int check_pcc_chan(void)
udelay(3); udelay(3);
} }
if (likely(!ret))
pcc_data.platform_owns_pcc = false;
else
pr_err("PCC check channel failed. Status=%x\n", status);
return ret; return ret;
} }
/*
* This function transfers the ownership of the PCC to the platform
* So it must be called while holding write_lock(pcc_lock)
*/
static int send_pcc_cmd(u16 cmd) static int send_pcc_cmd(u16 cmd)
{ {
int ret = -EIO; int ret = -EIO, i;
struct acpi_pcct_shared_memory *generic_comm_base = struct acpi_pcct_shared_memory *generic_comm_base =
(struct acpi_pcct_shared_memory *) pcc_comm_addr; (struct acpi_pcct_shared_memory *) pcc_data.pcc_comm_addr;
static ktime_t last_cmd_cmpl_time, last_mpar_reset; static ktime_t last_cmd_cmpl_time, last_mpar_reset;
static int mpar_count; static int mpar_count;
unsigned int time_delta; unsigned int time_delta;
...@@ -119,20 +239,29 @@ static int send_pcc_cmd(u16 cmd) ...@@ -119,20 +239,29 @@ static int send_pcc_cmd(u16 cmd)
* the channel before writing to PCC space * the channel before writing to PCC space
*/ */
if (cmd == CMD_READ) { if (cmd == CMD_READ) {
ret = check_pcc_chan(); /*
* If there are pending cpc_writes, then we stole the channel
* before write completion, so first send a WRITE command to
* platform
*/
if (pcc_data.pending_pcc_write_cmd)
send_pcc_cmd(CMD_WRITE);
ret = check_pcc_chan(false);
if (ret) if (ret)
return ret; goto end;
} } else /* CMD_WRITE */
pcc_data.pending_pcc_write_cmd = FALSE;
/* /*
* Handle the Minimum Request Turnaround Time(MRTT) * Handle the Minimum Request Turnaround Time(MRTT)
* "The minimum amount of time that OSPM must wait after the completion * "The minimum amount of time that OSPM must wait after the completion
* of a command before issuing the next command, in microseconds" * of a command before issuing the next command, in microseconds"
*/ */
if (pcc_mrtt) { if (pcc_data.pcc_mrtt) {
time_delta = ktime_us_delta(ktime_get(), last_cmd_cmpl_time); time_delta = ktime_us_delta(ktime_get(), last_cmd_cmpl_time);
if (pcc_mrtt > time_delta) if (pcc_data.pcc_mrtt > time_delta)
udelay(pcc_mrtt - time_delta); udelay(pcc_data.pcc_mrtt - time_delta);
} }
/* /*
...@@ -146,15 +275,16 @@ static int send_pcc_cmd(u16 cmd) ...@@ -146,15 +275,16 @@ static int send_pcc_cmd(u16 cmd)
* not send the request to the platform after hitting the MPAR limit in * not send the request to the platform after hitting the MPAR limit in
* any 60s window * any 60s window
*/ */
if (pcc_mpar) { if (pcc_data.pcc_mpar) {
if (mpar_count == 0) { if (mpar_count == 0) {
time_delta = ktime_ms_delta(ktime_get(), last_mpar_reset); time_delta = ktime_ms_delta(ktime_get(), last_mpar_reset);
if (time_delta < 60 * MSEC_PER_SEC) { if (time_delta < 60 * MSEC_PER_SEC) {
pr_debug("PCC cmd not sent due to MPAR limit"); pr_debug("PCC cmd not sent due to MPAR limit");
return -EIO; ret = -EIO;
goto end;
} }
last_mpar_reset = ktime_get(); last_mpar_reset = ktime_get();
mpar_count = pcc_mpar; mpar_count = pcc_data.pcc_mpar;
} }
mpar_count--; mpar_count--;
} }
...@@ -165,33 +295,43 @@ static int send_pcc_cmd(u16 cmd) ...@@ -165,33 +295,43 @@ static int send_pcc_cmd(u16 cmd)
/* Flip CMD COMPLETE bit */ /* Flip CMD COMPLETE bit */
writew_relaxed(0, &generic_comm_base->status); writew_relaxed(0, &generic_comm_base->status);
pcc_data.platform_owns_pcc = true;
/* Ring doorbell */ /* Ring doorbell */
ret = mbox_send_message(pcc_channel, &cmd); ret = mbox_send_message(pcc_data.pcc_channel, &cmd);
if (ret < 0) { if (ret < 0) {
pr_err("Err sending PCC mbox message. cmd:%d, ret:%d\n", pr_err("Err sending PCC mbox message. cmd:%d, ret:%d\n",
cmd, ret); cmd, ret);
return ret; goto end;
} }
/* /* wait for completion and check for PCC errro bit */
* For READs we need to ensure the cmd completed to ensure ret = check_pcc_chan(true);
* the ensuing read()s can proceed. For WRITEs we dont care
* because the actual write()s are done before coming here if (pcc_data.pcc_mrtt)
* and the next READ or WRITE will check if the channel last_cmd_cmpl_time = ktime_get();
* is busy/free at the entry of this call.
* if (pcc_data.pcc_channel->mbox->txdone_irq)
* If Minimum Request Turnaround Time is non-zero, we need mbox_chan_txdone(pcc_data.pcc_channel, ret);
* to record the completion time of both READ and WRITE else
* command for proper handling of MRTT, so we need to check mbox_client_txdone(pcc_data.pcc_channel, ret);
* for pcc_mrtt in addition to CMD_READ
*/ end:
if (cmd == CMD_READ || pcc_mrtt) { if (cmd == CMD_WRITE) {
ret = check_pcc_chan(); if (unlikely(ret)) {
if (pcc_mrtt) for_each_possible_cpu(i) {
last_cmd_cmpl_time = ktime_get(); struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
if (!desc)
continue;
if (desc->write_cmd_id == pcc_data.pcc_write_cnt)
desc->write_cmd_status = ret;
}
}
pcc_data.pcc_write_cnt++;
wake_up_all(&pcc_data.pcc_write_wait_q);
} }
mbox_client_txdone(pcc_channel, ret);
return ret; return ret;
} }
...@@ -272,13 +412,13 @@ static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle) ...@@ -272,13 +412,13 @@ static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
* *
* Return: 0 for success or negative value for err. * Return: 0 for success or negative value for err.
*/ */
int acpi_get_psd_map(struct cpudata **all_cpu_data) int acpi_get_psd_map(struct cppc_cpudata **all_cpu_data)
{ {
int count_target; int count_target;
int retval = 0; int retval = 0;
unsigned int i, j; unsigned int i, j;
cpumask_var_t covered_cpus; cpumask_var_t covered_cpus;
struct cpudata *pr, *match_pr; struct cppc_cpudata *pr, *match_pr;
struct acpi_psd_package *pdomain; struct acpi_psd_package *pdomain;
struct acpi_psd_package *match_pdomain; struct acpi_psd_package *match_pdomain;
struct cpc_desc *cpc_ptr, *match_cpc_ptr; struct cpc_desc *cpc_ptr, *match_cpc_ptr;
...@@ -394,14 +534,13 @@ EXPORT_SYMBOL_GPL(acpi_get_psd_map); ...@@ -394,14 +534,13 @@ EXPORT_SYMBOL_GPL(acpi_get_psd_map);
static int register_pcc_channel(int pcc_subspace_idx) static int register_pcc_channel(int pcc_subspace_idx)
{ {
struct acpi_pcct_hw_reduced *cppc_ss; struct acpi_pcct_hw_reduced *cppc_ss;
unsigned int len;
u64 usecs_lat; u64 usecs_lat;
if (pcc_subspace_idx >= 0) { if (pcc_subspace_idx >= 0) {
pcc_channel = pcc_mbox_request_channel(&cppc_mbox_cl, pcc_data.pcc_channel = pcc_mbox_request_channel(&cppc_mbox_cl,
pcc_subspace_idx); pcc_subspace_idx);
if (IS_ERR(pcc_channel)) { if (IS_ERR(pcc_data.pcc_channel)) {
pr_err("Failed to find PCC communication channel\n"); pr_err("Failed to find PCC communication channel\n");
return -ENODEV; return -ENODEV;
} }
...@@ -412,43 +551,50 @@ static int register_pcc_channel(int pcc_subspace_idx) ...@@ -412,43 +551,50 @@ static int register_pcc_channel(int pcc_subspace_idx)
* PCC channels) and stored pointers to the * PCC channels) and stored pointers to the
* subspace communication region in con_priv. * subspace communication region in con_priv.
*/ */
cppc_ss = pcc_channel->con_priv; cppc_ss = (pcc_data.pcc_channel)->con_priv;
if (!cppc_ss) { if (!cppc_ss) {
pr_err("No PCC subspace found for CPPC\n"); pr_err("No PCC subspace found for CPPC\n");
return -ENODEV; return -ENODEV;
} }
/*
* This is the shared communication region
* for the OS and Platform to communicate over.
*/
comm_base_addr = cppc_ss->base_address;
len = cppc_ss->length;
/* /*
* cppc_ss->latency is just a Nominal value. In reality * cppc_ss->latency is just a Nominal value. In reality
* the remote processor could be much slower to reply. * the remote processor could be much slower to reply.
* So add an arbitrary amount of wait on top of Nominal. * So add an arbitrary amount of wait on top of Nominal.
*/ */
usecs_lat = NUM_RETRIES * cppc_ss->latency; usecs_lat = NUM_RETRIES * cppc_ss->latency;
deadline = ns_to_ktime(usecs_lat * NSEC_PER_USEC); pcc_data.deadline = ns_to_ktime(usecs_lat * NSEC_PER_USEC);
pcc_mrtt = cppc_ss->min_turnaround_time; pcc_data.pcc_mrtt = cppc_ss->min_turnaround_time;
pcc_mpar = cppc_ss->max_access_rate; pcc_data.pcc_mpar = cppc_ss->max_access_rate;
pcc_data.pcc_nominal = cppc_ss->latency;
pcc_comm_addr = acpi_os_ioremap(comm_base_addr, len); pcc_data.pcc_comm_addr = acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
if (!pcc_comm_addr) { if (!pcc_data.pcc_comm_addr) {
pr_err("Failed to ioremap PCC comm region mem\n"); pr_err("Failed to ioremap PCC comm region mem\n");
return -ENOMEM; return -ENOMEM;
} }
/* Set flag so that we dont come here for each CPU. */ /* Set flag so that we dont come here for each CPU. */
pcc_channel_acquired = true; pcc_data.pcc_channel_acquired = true;
} }
return 0; return 0;
} }
/**
* cpc_ffh_supported() - check if FFH reading supported
*
* Check if the architecture has support for functional fixed hardware
* read/write capability.
*
* Return: true for supported, false for not supported
*/
bool __weak cpc_ffh_supported(void)
{
return false;
}
/* /*
* An example CPC table looks like the following. * An example CPC table looks like the following.
* *
...@@ -507,6 +653,7 @@ int acpi_cppc_processor_probe(struct acpi_processor *pr) ...@@ -507,6 +653,7 @@ int acpi_cppc_processor_probe(struct acpi_processor *pr)
union acpi_object *out_obj, *cpc_obj; union acpi_object *out_obj, *cpc_obj;
struct cpc_desc *cpc_ptr; struct cpc_desc *cpc_ptr;
struct cpc_reg *gas_t; struct cpc_reg *gas_t;
struct device *cpu_dev;
acpi_handle handle = pr->handle; acpi_handle handle = pr->handle;
unsigned int num_ent, i, cpc_rev; unsigned int num_ent, i, cpc_rev;
acpi_status status; acpi_status status;
...@@ -545,6 +692,8 @@ int acpi_cppc_processor_probe(struct acpi_processor *pr) ...@@ -545,6 +692,8 @@ int acpi_cppc_processor_probe(struct acpi_processor *pr)
goto out_free; goto out_free;
} }
cpc_ptr->num_entries = num_ent;
/* Second entry should be revision. */ /* Second entry should be revision. */
cpc_obj = &out_obj->package.elements[1]; cpc_obj = &out_obj->package.elements[1];
if (cpc_obj->type == ACPI_TYPE_INTEGER) { if (cpc_obj->type == ACPI_TYPE_INTEGER) {
...@@ -579,16 +728,27 @@ int acpi_cppc_processor_probe(struct acpi_processor *pr) ...@@ -579,16 +728,27 @@ int acpi_cppc_processor_probe(struct acpi_processor *pr)
* so extract it only once. * so extract it only once.
*/ */
if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) { if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
if (pcc_subspace_idx < 0) if (pcc_data.pcc_subspace_idx < 0)
pcc_subspace_idx = gas_t->access_width; pcc_data.pcc_subspace_idx = gas_t->access_width;
else if (pcc_subspace_idx != gas_t->access_width) { else if (pcc_data.pcc_subspace_idx != gas_t->access_width) {
pr_debug("Mismatched PCC ids.\n"); pr_debug("Mismatched PCC ids.\n");
goto out_free; goto out_free;
} }
} else if (gas_t->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY) { } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
/* Support only PCC and SYS MEM type regs */ if (gas_t->address) {
pr_debug("Unsupported register type: %d\n", gas_t->space_id); void __iomem *addr;
goto out_free;
addr = ioremap(gas_t->address, gas_t->bit_width/8);
if (!addr)
goto out_free;
cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
}
} else {
if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
/* Support only PCC ,SYS MEM and FFH type regs */
pr_debug("Unsupported register type: %d\n", gas_t->space_id);
goto out_free;
}
} }
cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER; cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
...@@ -607,10 +767,13 @@ int acpi_cppc_processor_probe(struct acpi_processor *pr) ...@@ -607,10 +767,13 @@ int acpi_cppc_processor_probe(struct acpi_processor *pr)
goto out_free; goto out_free;
/* Register PCC channel once for all CPUs. */ /* Register PCC channel once for all CPUs. */
if (!pcc_channel_acquired) { if (!pcc_data.pcc_channel_acquired) {
ret = register_pcc_channel(pcc_subspace_idx); ret = register_pcc_channel(pcc_data.pcc_subspace_idx);
if (ret) if (ret)
goto out_free; goto out_free;
init_rwsem(&pcc_data.pcc_lock);
init_waitqueue_head(&pcc_data.pcc_write_wait_q);
} }
/* Plug PSD data into this CPUs CPC descriptor. */ /* Plug PSD data into this CPUs CPC descriptor. */
...@@ -619,10 +782,27 @@ int acpi_cppc_processor_probe(struct acpi_processor *pr) ...@@ -619,10 +782,27 @@ int acpi_cppc_processor_probe(struct acpi_processor *pr)
/* Everything looks okay */ /* Everything looks okay */
pr_debug("Parsed CPC struct for CPU: %d\n", pr->id); pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
/* Add per logical CPU nodes for reading its feedback counters. */
cpu_dev = get_cpu_device(pr->id);
if (!cpu_dev)
goto out_free;
ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
"acpi_cppc");
if (ret)
goto out_free;
kfree(output.pointer); kfree(output.pointer);
return 0; return 0;
out_free: out_free:
/* Free all the mapped sys mem areas for this CPU */
for (i = 2; i < cpc_ptr->num_entries; i++) {
void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
if (addr)
iounmap(addr);
}
kfree(cpc_ptr); kfree(cpc_ptr);
out_buf_free: out_buf_free:
...@@ -640,26 +820,82 @@ EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe); ...@@ -640,26 +820,82 @@ EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
void acpi_cppc_processor_exit(struct acpi_processor *pr) void acpi_cppc_processor_exit(struct acpi_processor *pr)
{ {
struct cpc_desc *cpc_ptr; struct cpc_desc *cpc_ptr;
unsigned int i;
void __iomem *addr;
cpc_ptr = per_cpu(cpc_desc_ptr, pr->id); cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
/* Free all the mapped sys mem areas for this CPU */
for (i = 2; i < cpc_ptr->num_entries; i++) {
addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
if (addr)
iounmap(addr);
}
kobject_put(&cpc_ptr->kobj);
kfree(cpc_ptr); kfree(cpc_ptr);
} }
EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit); EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
/**
* cpc_read_ffh() - Read FFH register
* @cpunum: cpu number to read
* @reg: cppc register information
* @val: place holder for return value
*
* Read bit_width bits from a specified address and bit_offset
*
* Return: 0 for success and error code
*/
int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
{
return -ENOTSUPP;
}
/**
* cpc_write_ffh() - Write FFH register
* @cpunum: cpu number to write
* @reg: cppc register information
* @val: value to write
*
* Write value of bit_width bits to a specified address and bit_offset
*
* Return: 0 for success and error code
*/
int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
{
return -ENOTSUPP;
}
/* /*
* Since cpc_read and cpc_write are called while holding pcc_lock, it should be * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
* as fast as possible. We have already mapped the PCC subspace during init, so * as fast as possible. We have already mapped the PCC subspace during init, so
* we can directly write to it. * we can directly write to it.
*/ */
static int cpc_read(struct cpc_reg *reg, u64 *val) static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
{ {
int ret_val = 0; int ret_val = 0;
void __iomem *vaddr = 0;
struct cpc_reg *reg = &reg_res->cpc_entry.reg;
if (reg_res->type == ACPI_TYPE_INTEGER) {
*val = reg_res->cpc_entry.int_value;
return ret_val;
}
*val = 0; *val = 0;
if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) { if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM)
void __iomem *vaddr = GET_PCC_VADDR(reg->address); vaddr = GET_PCC_VADDR(reg->address);
else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
vaddr = reg_res->sys_mem_vaddr;
else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
return cpc_read_ffh(cpu, reg, val);
else
return acpi_os_read_memory((acpi_physical_address)reg->address,
val, reg->bit_width);
switch (reg->bit_width) { switch (reg->bit_width) {
case 8: case 8:
*val = readb_relaxed(vaddr); *val = readb_relaxed(vaddr);
break; break;
...@@ -674,23 +910,30 @@ static int cpc_read(struct cpc_reg *reg, u64 *val) ...@@ -674,23 +910,30 @@ static int cpc_read(struct cpc_reg *reg, u64 *val)
break; break;
default: default:
pr_debug("Error: Cannot read %u bit width from PCC\n", pr_debug("Error: Cannot read %u bit width from PCC\n",
reg->bit_width); reg->bit_width);
ret_val = -EFAULT; ret_val = -EFAULT;
} }
} else
ret_val = acpi_os_read_memory((acpi_physical_address)reg->address,
val, reg->bit_width);
return ret_val; return ret_val;
} }
static int cpc_write(struct cpc_reg *reg, u64 val) static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
{ {
int ret_val = 0; int ret_val = 0;
void __iomem *vaddr = 0;
struct cpc_reg *reg = &reg_res->cpc_entry.reg;
if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM)
vaddr = GET_PCC_VADDR(reg->address);
else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
vaddr = reg_res->sys_mem_vaddr;
else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
return cpc_write_ffh(cpu, reg, val);
else
return acpi_os_write_memory((acpi_physical_address)reg->address,
val, reg->bit_width);
if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) { switch (reg->bit_width) {
void __iomem *vaddr = GET_PCC_VADDR(reg->address);
switch (reg->bit_width) {
case 8: case 8:
writeb_relaxed(val, vaddr); writeb_relaxed(val, vaddr);
break; break;
...@@ -705,13 +948,11 @@ static int cpc_write(struct cpc_reg *reg, u64 val) ...@@ -705,13 +948,11 @@ static int cpc_write(struct cpc_reg *reg, u64 val)
break; break;
default: default:
pr_debug("Error: Cannot write %u bit width to PCC\n", pr_debug("Error: Cannot write %u bit width to PCC\n",
reg->bit_width); reg->bit_width);
ret_val = -EFAULT; ret_val = -EFAULT;
break; break;
} }
} else
ret_val = acpi_os_write_memory((acpi_physical_address)reg->address,
val, reg->bit_width);
return ret_val; return ret_val;
} }
...@@ -727,8 +968,8 @@ int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps) ...@@ -727,8 +968,8 @@ int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum); struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
struct cpc_register_resource *highest_reg, *lowest_reg, *ref_perf, struct cpc_register_resource *highest_reg, *lowest_reg, *ref_perf,
*nom_perf; *nom_perf;
u64 high, low, ref, nom; u64 high, low, nom;
int ret = 0; int ret = 0, regs_in_pcc = 0;
if (!cpc_desc) { if (!cpc_desc) {
pr_debug("No CPC descriptor for CPU:%d\n", cpunum); pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
...@@ -740,13 +981,11 @@ int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps) ...@@ -740,13 +981,11 @@ int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
ref_perf = &cpc_desc->cpc_regs[REFERENCE_PERF]; ref_perf = &cpc_desc->cpc_regs[REFERENCE_PERF];
nom_perf = &cpc_desc->cpc_regs[NOMINAL_PERF]; nom_perf = &cpc_desc->cpc_regs[NOMINAL_PERF];
spin_lock(&pcc_lock);
/* Are any of the regs PCC ?*/ /* Are any of the regs PCC ?*/
if ((highest_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) || if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
(lowest_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) || CPC_IN_PCC(ref_perf) || CPC_IN_PCC(nom_perf)) {
(ref_perf->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) || regs_in_pcc = 1;
(nom_perf->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM)) { down_write(&pcc_data.pcc_lock);
/* Ring doorbell once to update PCC subspace */ /* Ring doorbell once to update PCC subspace */
if (send_pcc_cmd(CMD_READ) < 0) { if (send_pcc_cmd(CMD_READ) < 0) {
ret = -EIO; ret = -EIO;
...@@ -754,26 +993,21 @@ int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps) ...@@ -754,26 +993,21 @@ int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
} }
} }
cpc_read(&highest_reg->cpc_entry.reg, &high); cpc_read(cpunum, highest_reg, &high);
perf_caps->highest_perf = high; perf_caps->highest_perf = high;
cpc_read(&lowest_reg->cpc_entry.reg, &low); cpc_read(cpunum, lowest_reg, &low);
perf_caps->lowest_perf = low; perf_caps->lowest_perf = low;
cpc_read(&ref_perf->cpc_entry.reg, &ref); cpc_read(cpunum, nom_perf, &nom);
perf_caps->reference_perf = ref;
cpc_read(&nom_perf->cpc_entry.reg, &nom);
perf_caps->nominal_perf = nom; perf_caps->nominal_perf = nom;
if (!ref)
perf_caps->reference_perf = perf_caps->nominal_perf;
if (!high || !low || !nom) if (!high || !low || !nom)
ret = -EFAULT; ret = -EFAULT;
out_err: out_err:
spin_unlock(&pcc_lock); if (regs_in_pcc)
up_write(&pcc_data.pcc_lock);
return ret; return ret;
} }
EXPORT_SYMBOL_GPL(cppc_get_perf_caps); EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
...@@ -788,9 +1022,10 @@ EXPORT_SYMBOL_GPL(cppc_get_perf_caps); ...@@ -788,9 +1022,10 @@ EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs) int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
{ {
struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum); struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
struct cpc_register_resource *delivered_reg, *reference_reg; struct cpc_register_resource *delivered_reg, *reference_reg,
u64 delivered, reference; *ref_perf_reg, *ctr_wrap_reg;
int ret = 0; u64 delivered, reference, ref_perf, ctr_wrap_time;
int ret = 0, regs_in_pcc = 0;
if (!cpc_desc) { if (!cpc_desc) {
pr_debug("No CPC descriptor for CPU:%d\n", cpunum); pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
...@@ -799,12 +1034,21 @@ int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs) ...@@ -799,12 +1034,21 @@ int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR]; delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR]; reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
spin_lock(&pcc_lock); /*
* If refernce perf register is not supported then we should
* use the nominal perf value
*/
if (!CPC_SUPPORTED(ref_perf_reg))
ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
/* Are any of the regs PCC ?*/ /* Are any of the regs PCC ?*/
if ((delivered_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) || if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
(reference_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM)) { CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
down_write(&pcc_data.pcc_lock);
regs_in_pcc = 1;
/* Ring doorbell once to update PCC subspace */ /* Ring doorbell once to update PCC subspace */
if (send_pcc_cmd(CMD_READ) < 0) { if (send_pcc_cmd(CMD_READ) < 0) {
ret = -EIO; ret = -EIO;
...@@ -812,25 +1056,31 @@ int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs) ...@@ -812,25 +1056,31 @@ int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
} }
} }
cpc_read(&delivered_reg->cpc_entry.reg, &delivered); cpc_read(cpunum, delivered_reg, &delivered);
cpc_read(&reference_reg->cpc_entry.reg, &reference); cpc_read(cpunum, reference_reg, &reference);
cpc_read(cpunum, ref_perf_reg, &ref_perf);
if (!delivered || !reference) { /*
* Per spec, if ctr_wrap_time optional register is unsupported, then the
* performance counters are assumed to never wrap during the lifetime of
* platform
*/
ctr_wrap_time = (u64)(~((u64)0));
if (CPC_SUPPORTED(ctr_wrap_reg))
cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
if (!delivered || !reference || !ref_perf) {
ret = -EFAULT; ret = -EFAULT;
goto out_err; goto out_err;
} }
perf_fb_ctrs->delivered = delivered; perf_fb_ctrs->delivered = delivered;
perf_fb_ctrs->reference = reference; perf_fb_ctrs->reference = reference;
perf_fb_ctrs->reference_perf = ref_perf;
perf_fb_ctrs->delivered -= perf_fb_ctrs->prev_delivered; perf_fb_ctrs->ctr_wrap_time = ctr_wrap_time;
perf_fb_ctrs->reference -= perf_fb_ctrs->prev_reference;
perf_fb_ctrs->prev_delivered = delivered;
perf_fb_ctrs->prev_reference = reference;
out_err: out_err:
spin_unlock(&pcc_lock); if (regs_in_pcc)
up_write(&pcc_data.pcc_lock);
return ret; return ret;
} }
EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs); EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
...@@ -855,30 +1105,142 @@ int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls) ...@@ -855,30 +1105,142 @@ int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF]; desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
spin_lock(&pcc_lock); /*
* This is Phase-I where we want to write to CPC registers
/* If this is PCC reg, check if channel is free before writing */ * -> We want all CPUs to be able to execute this phase in parallel
if (desired_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) { *
ret = check_pcc_chan(); * Since read_lock can be acquired by multiple CPUs simultaneously we
if (ret) * achieve that goal here
goto busy_channel; */
if (CPC_IN_PCC(desired_reg)) {
down_read(&pcc_data.pcc_lock); /* BEGIN Phase-I */
if (pcc_data.platform_owns_pcc) {
ret = check_pcc_chan(false);
if (ret) {
up_read(&pcc_data.pcc_lock);
return ret;
}
}
/*
* Update the pending_write to make sure a PCC CMD_READ will not
* arrive and steal the channel during the switch to write lock
*/
pcc_data.pending_pcc_write_cmd = true;
cpc_desc->write_cmd_id = pcc_data.pcc_write_cnt;
cpc_desc->write_cmd_status = 0;
} }
/* /*
* Skip writing MIN/MAX until Linux knows how to come up with * Skip writing MIN/MAX until Linux knows how to come up with
* useful values. * useful values.
*/ */
cpc_write(&desired_reg->cpc_entry.reg, perf_ctrls->desired_perf); cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
/* Is this a PCC reg ?*/ if (CPC_IN_PCC(desired_reg))
if (desired_reg->cpc_entry.reg.space_id == ACPI_ADR_SPACE_PLATFORM_COMM) { up_read(&pcc_data.pcc_lock); /* END Phase-I */
/* Ring doorbell so Remote can get our perf request. */ /*
if (send_pcc_cmd(CMD_WRITE) < 0) * This is Phase-II where we transfer the ownership of PCC to Platform
ret = -EIO; *
* Short Summary: Basically if we think of a group of cppc_set_perf
* requests that happened in short overlapping interval. The last CPU to
* come out of Phase-I will enter Phase-II and ring the doorbell.
*
* We have the following requirements for Phase-II:
* 1. We want to execute Phase-II only when there are no CPUs
* currently executing in Phase-I
* 2. Once we start Phase-II we want to avoid all other CPUs from
* entering Phase-I.
* 3. We want only one CPU among all those who went through Phase-I
* to run phase-II
*
* If write_trylock fails to get the lock and doesn't transfer the
* PCC ownership to the platform, then one of the following will be TRUE
* 1. There is at-least one CPU in Phase-I which will later execute
* write_trylock, so the CPUs in Phase-I will be responsible for
* executing the Phase-II.
* 2. Some other CPU has beaten this CPU to successfully execute the
* write_trylock and has already acquired the write_lock. We know for a
* fact it(other CPU acquiring the write_lock) couldn't have happened
* before this CPU's Phase-I as we held the read_lock.
* 3. Some other CPU executing pcc CMD_READ has stolen the
* down_write, in which case, send_pcc_cmd will check for pending
* CMD_WRITE commands by checking the pending_pcc_write_cmd.
* So this CPU can be certain that its request will be delivered
* So in all cases, this CPU knows that its request will be delivered
* by another CPU and can return
*
* After getting the down_write we still need to check for
* pending_pcc_write_cmd to take care of the following scenario
* The thread running this code could be scheduled out between
* Phase-I and Phase-II. Before it is scheduled back on, another CPU
* could have delivered the request to Platform by triggering the
* doorbell and transferred the ownership of PCC to platform. So this
* avoids triggering an unnecessary doorbell and more importantly before
* triggering the doorbell it makes sure that the PCC channel ownership
* is still with OSPM.
* pending_pcc_write_cmd can also be cleared by a different CPU, if
* there was a pcc CMD_READ waiting on down_write and it steals the lock
* before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
* case during a CMD_READ and if there are pending writes it delivers
* the write command before servicing the read command
*/
if (CPC_IN_PCC(desired_reg)) {
if (down_write_trylock(&pcc_data.pcc_lock)) { /* BEGIN Phase-II */
/* Update only if there are pending write commands */
if (pcc_data.pending_pcc_write_cmd)
send_pcc_cmd(CMD_WRITE);
up_write(&pcc_data.pcc_lock); /* END Phase-II */
} else
/* Wait until pcc_write_cnt is updated by send_pcc_cmd */
wait_event(pcc_data.pcc_write_wait_q,
cpc_desc->write_cmd_id != pcc_data.pcc_write_cnt);
/* send_pcc_cmd updates the status in case of failure */
ret = cpc_desc->write_cmd_status;
} }
busy_channel:
spin_unlock(&pcc_lock);
return ret; return ret;
} }
EXPORT_SYMBOL_GPL(cppc_set_perf); EXPORT_SYMBOL_GPL(cppc_set_perf);
/**
* cppc_get_transition_latency - returns frequency transition latency in ns
*
* ACPI CPPC does not explicitly specifiy how a platform can specify the
* transition latency for perfromance change requests. The closest we have
* is the timing information from the PCCT tables which provides the info
* on the number and frequency of PCC commands the platform can handle.
*/
unsigned int cppc_get_transition_latency(int cpu_num)
{
/*
* Expected transition latency is based on the PCCT timing values
* Below are definition from ACPI spec:
* pcc_nominal- Expected latency to process a command, in microseconds
* pcc_mpar - The maximum number of periodic requests that the subspace
* channel can support, reported in commands per minute. 0
* indicates no limitation.
* pcc_mrtt - The minimum amount of time that OSPM must wait after the
* completion of a command before issuing the next command,
* in microseconds.
*/
unsigned int latency_ns = 0;
struct cpc_desc *cpc_desc;
struct cpc_register_resource *desired_reg;
cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
if (!cpc_desc)
return CPUFREQ_ETERNAL;
desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
if (!CPC_IN_PCC(desired_reg))
return CPUFREQ_ETERNAL;
if (pcc_data.pcc_mpar)
latency_ns = 60 * (1000 * 1000 * 1000 / pcc_data.pcc_mpar);
latency_ns = max(latency_ns, pcc_data.pcc_nominal * 1000);
latency_ns = max(latency_ns, pcc_data.pcc_mrtt * 1000);
return latency_ns;
}
EXPORT_SYMBOL_GPL(cppc_get_transition_latency);
...@@ -245,8 +245,8 @@ static int __acpi_processor_start(struct acpi_device *device) ...@@ -245,8 +245,8 @@ static int __acpi_processor_start(struct acpi_device *device)
return 0; return 0;
result = acpi_cppc_processor_probe(pr); result = acpi_cppc_processor_probe(pr);
if (result) if (result && !IS_ENABLED(CONFIG_ACPI_CPU_FREQ_PSS))
return -ENODEV; dev_warn(&device->dev, "CPPC data invalid or not present\n");
if (!cpuidle_get_driver() || cpuidle_get_driver() == &acpi_idle_driver) if (!cpuidle_get_driver() || cpuidle_get_driver() == &acpi_idle_driver)
acpi_processor_power_init(pr); acpi_processor_power_init(pr);
......
...@@ -30,13 +30,13 @@ ...@@ -30,13 +30,13 @@
* performance capabilities, desired performance level * performance capabilities, desired performance level
* requested etc. * requested etc.
*/ */
static struct cpudata **all_cpu_data; static struct cppc_cpudata **all_cpu_data;
static int cppc_cpufreq_set_target(struct cpufreq_policy *policy, static int cppc_cpufreq_set_target(struct cpufreq_policy *policy,
unsigned int target_freq, unsigned int target_freq,
unsigned int relation) unsigned int relation)
{ {
struct cpudata *cpu; struct cppc_cpudata *cpu;
struct cpufreq_freqs freqs; struct cpufreq_freqs freqs;
int ret = 0; int ret = 0;
...@@ -66,7 +66,7 @@ static int cppc_verify_policy(struct cpufreq_policy *policy) ...@@ -66,7 +66,7 @@ static int cppc_verify_policy(struct cpufreq_policy *policy)
static void cppc_cpufreq_stop_cpu(struct cpufreq_policy *policy) static void cppc_cpufreq_stop_cpu(struct cpufreq_policy *policy)
{ {
int cpu_num = policy->cpu; int cpu_num = policy->cpu;
struct cpudata *cpu = all_cpu_data[cpu_num]; struct cppc_cpudata *cpu = all_cpu_data[cpu_num];
int ret; int ret;
cpu->perf_ctrls.desired_perf = cpu->perf_caps.lowest_perf; cpu->perf_ctrls.desired_perf = cpu->perf_caps.lowest_perf;
...@@ -79,7 +79,7 @@ static void cppc_cpufreq_stop_cpu(struct cpufreq_policy *policy) ...@@ -79,7 +79,7 @@ static void cppc_cpufreq_stop_cpu(struct cpufreq_policy *policy)
static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy) static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
{ {
struct cpudata *cpu; struct cppc_cpudata *cpu;
unsigned int cpu_num = policy->cpu; unsigned int cpu_num = policy->cpu;
int ret = 0; int ret = 0;
...@@ -98,6 +98,7 @@ static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy) ...@@ -98,6 +98,7 @@ static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
policy->max = cpu->perf_caps.highest_perf; policy->max = cpu->perf_caps.highest_perf;
policy->cpuinfo.min_freq = policy->min; policy->cpuinfo.min_freq = policy->min;
policy->cpuinfo.max_freq = policy->max; policy->cpuinfo.max_freq = policy->max;
policy->cpuinfo.transition_latency = cppc_get_transition_latency(cpu_num);
policy->shared_type = cpu->shared_type; policy->shared_type = cpu->shared_type;
if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY)
...@@ -134,7 +135,7 @@ static struct cpufreq_driver cppc_cpufreq_driver = { ...@@ -134,7 +135,7 @@ static struct cpufreq_driver cppc_cpufreq_driver = {
static int __init cppc_cpufreq_init(void) static int __init cppc_cpufreq_init(void)
{ {
int i, ret = 0; int i, ret = 0;
struct cpudata *cpu; struct cppc_cpudata *cpu;
if (acpi_disabled) if (acpi_disabled)
return -ENODEV; return -ENODEV;
...@@ -144,7 +145,7 @@ static int __init cppc_cpufreq_init(void) ...@@ -144,7 +145,7 @@ static int __init cppc_cpufreq_init(void)
return -ENOMEM; return -ENOMEM;
for_each_possible_cpu(i) { for_each_possible_cpu(i) {
all_cpu_data[i] = kzalloc(sizeof(struct cpudata), GFP_KERNEL); all_cpu_data[i] = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL);
if (!all_cpu_data[i]) if (!all_cpu_data[i])
goto out; goto out;
...@@ -175,7 +176,7 @@ static int __init cppc_cpufreq_init(void) ...@@ -175,7 +176,7 @@ static int __init cppc_cpufreq_init(void)
static void __exit cppc_cpufreq_exit(void) static void __exit cppc_cpufreq_exit(void)
{ {
struct cpudata *cpu; struct cppc_cpudata *cpu;
int i; int i;
cpufreq_unregister_driver(&cppc_cpufreq_driver); cpufreq_unregister_driver(&cppc_cpufreq_driver);
......
...@@ -59,6 +59,7 @@ ...@@ -59,6 +59,7 @@
#include <linux/delay.h> #include <linux/delay.h>
#include <linux/io.h> #include <linux/io.h>
#include <linux/init.h> #include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/list.h> #include <linux/list.h>
#include <linux/platform_device.h> #include <linux/platform_device.h>
#include <linux/mailbox_controller.h> #include <linux/mailbox_controller.h>
...@@ -68,11 +69,16 @@ ...@@ -68,11 +69,16 @@
#include "mailbox.h" #include "mailbox.h"
#define MAX_PCC_SUBSPACES 256 #define MAX_PCC_SUBSPACES 256
#define MBOX_IRQ_NAME "pcc-mbox"
static struct mbox_chan *pcc_mbox_channels; static struct mbox_chan *pcc_mbox_channels;
/* Array of cached virtual address for doorbell registers */ /* Array of cached virtual address for doorbell registers */
static void __iomem **pcc_doorbell_vaddr; static void __iomem **pcc_doorbell_vaddr;
/* Array of cached virtual address for doorbell ack registers */
static void __iomem **pcc_doorbell_ack_vaddr;
/* Array of doorbell interrupts */
static int *pcc_doorbell_irq;
static struct mbox_controller pcc_mbox_ctrl = {}; static struct mbox_controller pcc_mbox_ctrl = {};
/** /**
...@@ -91,6 +97,132 @@ static struct mbox_chan *get_pcc_channel(int id) ...@@ -91,6 +97,132 @@ static struct mbox_chan *get_pcc_channel(int id)
return &pcc_mbox_channels[id]; return &pcc_mbox_channels[id];
} }
/*
* PCC can be used with perf critical drivers such as CPPC
* So it makes sense to locally cache the virtual address and
* use it to read/write to PCC registers such as doorbell register
*
* The below read_register and write_registers are used to read and
* write from perf critical registers such as PCC doorbell register
*/
static int read_register(void __iomem *vaddr, u64 *val, unsigned int bit_width)
{
int ret_val = 0;
switch (bit_width) {
case 8:
*val = readb(vaddr);
break;
case 16:
*val = readw(vaddr);
break;
case 32:
*val = readl(vaddr);
break;
case 64:
*val = readq(vaddr);
break;
default:
pr_debug("Error: Cannot read register of %u bit width",
bit_width);
ret_val = -EFAULT;
break;
}
return ret_val;
}
static int write_register(void __iomem *vaddr, u64 val, unsigned int bit_width)
{
int ret_val = 0;
switch (bit_width) {
case 8:
writeb(val, vaddr);
break;
case 16:
writew(val, vaddr);
break;
case 32:
writel(val, vaddr);
break;
case 64:
writeq(val, vaddr);
break;
default:
pr_debug("Error: Cannot write register of %u bit width",
bit_width);
ret_val = -EFAULT;
break;
}
return ret_val;
}
/**
* pcc_map_interrupt - Map a PCC subspace GSI to a linux IRQ number
* @interrupt: GSI number.
* @flags: interrupt flags
*
* Returns: a valid linux IRQ number on success
* 0 or -EINVAL on failure
*/
static int pcc_map_interrupt(u32 interrupt, u32 flags)
{
int trigger, polarity;
if (!interrupt)
return 0;
trigger = (flags & ACPI_PCCT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE
: ACPI_LEVEL_SENSITIVE;
polarity = (flags & ACPI_PCCT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW
: ACPI_ACTIVE_HIGH;
return acpi_register_gsi(NULL, interrupt, trigger, polarity);
}
/**
* pcc_mbox_irq - PCC mailbox interrupt handler
*/
static irqreturn_t pcc_mbox_irq(int irq, void *p)
{
struct acpi_generic_address *doorbell_ack;
struct acpi_pcct_hw_reduced *pcct_ss;
struct mbox_chan *chan = p;
u64 doorbell_ack_preserve;
u64 doorbell_ack_write;
u64 doorbell_ack_val;
int ret;
pcct_ss = chan->con_priv;
mbox_chan_received_data(chan, NULL);
if (pcct_ss->header.type == ACPI_PCCT_TYPE_HW_REDUCED_SUBSPACE_TYPE2) {
struct acpi_pcct_hw_reduced_type2 *pcct2_ss = chan->con_priv;
u32 id = chan - pcc_mbox_channels;
doorbell_ack = &pcct2_ss->doorbell_ack_register;
doorbell_ack_preserve = pcct2_ss->ack_preserve_mask;
doorbell_ack_write = pcct2_ss->ack_write_mask;
ret = read_register(pcc_doorbell_ack_vaddr[id],
&doorbell_ack_val,
doorbell_ack->bit_width);
if (ret)
return IRQ_NONE;
ret = write_register(pcc_doorbell_ack_vaddr[id],
(doorbell_ack_val & doorbell_ack_preserve)
| doorbell_ack_write,
doorbell_ack->bit_width);
if (ret)
return IRQ_NONE;
}
return IRQ_HANDLED;
}
/** /**
* pcc_mbox_request_channel - PCC clients call this function to * pcc_mbox_request_channel - PCC clients call this function to
* request a pointer to their PCC subspace, from which they * request a pointer to their PCC subspace, from which they
...@@ -135,6 +267,18 @@ struct mbox_chan *pcc_mbox_request_channel(struct mbox_client *cl, ...@@ -135,6 +267,18 @@ struct mbox_chan *pcc_mbox_request_channel(struct mbox_client *cl,
if (chan->txdone_method == TXDONE_BY_POLL && cl->knows_txdone) if (chan->txdone_method == TXDONE_BY_POLL && cl->knows_txdone)
chan->txdone_method |= TXDONE_BY_ACK; chan->txdone_method |= TXDONE_BY_ACK;
if (pcc_doorbell_irq[subspace_id] > 0) {
int rc;
rc = devm_request_irq(dev, pcc_doorbell_irq[subspace_id],
pcc_mbox_irq, 0, MBOX_IRQ_NAME, chan);
if (unlikely(rc)) {
dev_err(dev, "failed to register PCC interrupt %d\n",
pcc_doorbell_irq[subspace_id]);
chan = ERR_PTR(rc);
}
}
spin_unlock_irqrestore(&chan->lock, flags); spin_unlock_irqrestore(&chan->lock, flags);
return chan; return chan;
...@@ -149,80 +293,30 @@ EXPORT_SYMBOL_GPL(pcc_mbox_request_channel); ...@@ -149,80 +293,30 @@ EXPORT_SYMBOL_GPL(pcc_mbox_request_channel);
*/ */
void pcc_mbox_free_channel(struct mbox_chan *chan) void pcc_mbox_free_channel(struct mbox_chan *chan)
{ {
u32 id = chan - pcc_mbox_channels;
unsigned long flags; unsigned long flags;
if (!chan || !chan->cl) if (!chan || !chan->cl)
return; return;
if (id >= pcc_mbox_ctrl.num_chans) {
pr_debug("pcc_mbox_free_channel: Invalid mbox_chan passed\n");
return;
}
spin_lock_irqsave(&chan->lock, flags); spin_lock_irqsave(&chan->lock, flags);
chan->cl = NULL; chan->cl = NULL;
chan->active_req = NULL; chan->active_req = NULL;
if (chan->txdone_method == (TXDONE_BY_POLL | TXDONE_BY_ACK)) if (chan->txdone_method == (TXDONE_BY_POLL | TXDONE_BY_ACK))
chan->txdone_method = TXDONE_BY_POLL; chan->txdone_method = TXDONE_BY_POLL;
if (pcc_doorbell_irq[id] > 0)
devm_free_irq(chan->mbox->dev, pcc_doorbell_irq[id], chan);
spin_unlock_irqrestore(&chan->lock, flags); spin_unlock_irqrestore(&chan->lock, flags);
} }
EXPORT_SYMBOL_GPL(pcc_mbox_free_channel); EXPORT_SYMBOL_GPL(pcc_mbox_free_channel);
/*
* PCC can be used with perf critical drivers such as CPPC
* So it makes sense to locally cache the virtual address and
* use it to read/write to PCC registers such as doorbell register
*
* The below read_register and write_registers are used to read and
* write from perf critical registers such as PCC doorbell register
*/
static int read_register(void __iomem *vaddr, u64 *val, unsigned int bit_width)
{
int ret_val = 0;
switch (bit_width) {
case 8:
*val = readb(vaddr);
break;
case 16:
*val = readw(vaddr);
break;
case 32:
*val = readl(vaddr);
break;
case 64:
*val = readq(vaddr);
break;
default:
pr_debug("Error: Cannot read register of %u bit width",
bit_width);
ret_val = -EFAULT;
break;
}
return ret_val;
}
static int write_register(void __iomem *vaddr, u64 val, unsigned int bit_width)
{
int ret_val = 0;
switch (bit_width) {
case 8:
writeb(val, vaddr);
break;
case 16:
writew(val, vaddr);
break;
case 32:
writel(val, vaddr);
break;
case 64:
writeq(val, vaddr);
break;
default:
pr_debug("Error: Cannot write register of %u bit width",
bit_width);
ret_val = -EFAULT;
break;
}
return ret_val;
}
/** /**
* pcc_send_data - Called from Mailbox Controller code. Used * pcc_send_data - Called from Mailbox Controller code. Used
...@@ -296,8 +390,10 @@ static int parse_pcc_subspace(struct acpi_subtable_header *header, ...@@ -296,8 +390,10 @@ static int parse_pcc_subspace(struct acpi_subtable_header *header,
if (pcc_mbox_ctrl.num_chans <= MAX_PCC_SUBSPACES) { if (pcc_mbox_ctrl.num_chans <= MAX_PCC_SUBSPACES) {
pcct_ss = (struct acpi_pcct_hw_reduced *) header; pcct_ss = (struct acpi_pcct_hw_reduced *) header;
if (pcct_ss->header.type != if ((pcct_ss->header.type !=
ACPI_PCCT_TYPE_HW_REDUCED_SUBSPACE) { ACPI_PCCT_TYPE_HW_REDUCED_SUBSPACE)
&& (pcct_ss->header.type !=
ACPI_PCCT_TYPE_HW_REDUCED_SUBSPACE_TYPE2)) {
pr_err("Incorrect PCC Subspace type detected\n"); pr_err("Incorrect PCC Subspace type detected\n");
return -EINVAL; return -EINVAL;
} }
...@@ -306,6 +402,43 @@ static int parse_pcc_subspace(struct acpi_subtable_header *header, ...@@ -306,6 +402,43 @@ static int parse_pcc_subspace(struct acpi_subtable_header *header,
return 0; return 0;
} }
/**
* pcc_parse_subspace_irq - Parse the PCC IRQ and PCC ACK register
* There should be one entry per PCC client.
* @id: PCC subspace index.
* @pcct_ss: Pointer to the ACPI subtable header under the PCCT.
*
* Return: 0 for Success, else errno.
*
* This gets called for each entry in the PCC table.
*/
static int pcc_parse_subspace_irq(int id,
struct acpi_pcct_hw_reduced *pcct_ss)
{
pcc_doorbell_irq[id] = pcc_map_interrupt(pcct_ss->doorbell_interrupt,
(u32)pcct_ss->flags);
if (pcc_doorbell_irq[id] <= 0) {
pr_err("PCC GSI %d not registered\n",
pcct_ss->doorbell_interrupt);
return -EINVAL;
}
if (pcct_ss->header.type
== ACPI_PCCT_TYPE_HW_REDUCED_SUBSPACE_TYPE2) {
struct acpi_pcct_hw_reduced_type2 *pcct2_ss = (void *)pcct_ss;
pcc_doorbell_ack_vaddr[id] = acpi_os_ioremap(
pcct2_ss->doorbell_ack_register.address,
pcct2_ss->doorbell_ack_register.bit_width / 8);
if (!pcc_doorbell_ack_vaddr[id]) {
pr_err("Failed to ioremap PCC ACK register\n");
return -ENOMEM;
}
}
return 0;
}
/** /**
* acpi_pcc_probe - Parse the ACPI tree for the PCCT. * acpi_pcc_probe - Parse the ACPI tree for the PCCT.
* *
...@@ -316,7 +449,9 @@ static int __init acpi_pcc_probe(void) ...@@ -316,7 +449,9 @@ static int __init acpi_pcc_probe(void)
acpi_size pcct_tbl_header_size; acpi_size pcct_tbl_header_size;
struct acpi_table_header *pcct_tbl; struct acpi_table_header *pcct_tbl;
struct acpi_subtable_header *pcct_entry; struct acpi_subtable_header *pcct_entry;
int count, i; struct acpi_table_pcct *acpi_pcct_tbl;
int count, i, rc;
int sum = 0;
acpi_status status = AE_OK; acpi_status status = AE_OK;
/* Search for PCCT */ /* Search for PCCT */
...@@ -333,37 +468,66 @@ static int __init acpi_pcc_probe(void) ...@@ -333,37 +468,66 @@ static int __init acpi_pcc_probe(void)
sizeof(struct acpi_table_pcct), sizeof(struct acpi_table_pcct),
ACPI_PCCT_TYPE_HW_REDUCED_SUBSPACE, ACPI_PCCT_TYPE_HW_REDUCED_SUBSPACE,
parse_pcc_subspace, MAX_PCC_SUBSPACES); parse_pcc_subspace, MAX_PCC_SUBSPACES);
sum += (count > 0) ? count : 0;
count = acpi_table_parse_entries(ACPI_SIG_PCCT,
sizeof(struct acpi_table_pcct),
ACPI_PCCT_TYPE_HW_REDUCED_SUBSPACE_TYPE2,
parse_pcc_subspace, MAX_PCC_SUBSPACES);
sum += (count > 0) ? count : 0;
if (count <= 0) { if (sum == 0 || sum >= MAX_PCC_SUBSPACES) {
pr_err("Error parsing PCC subspaces from PCCT\n"); pr_err("Error parsing PCC subspaces from PCCT\n");
return -EINVAL; return -EINVAL;
} }
pcc_mbox_channels = kzalloc(sizeof(struct mbox_chan) * pcc_mbox_channels = kzalloc(sizeof(struct mbox_chan) *
count, GFP_KERNEL); sum, GFP_KERNEL);
if (!pcc_mbox_channels) { if (!pcc_mbox_channels) {
pr_err("Could not allocate space for PCC mbox channels\n"); pr_err("Could not allocate space for PCC mbox channels\n");
return -ENOMEM; return -ENOMEM;
} }
pcc_doorbell_vaddr = kcalloc(count, sizeof(void *), GFP_KERNEL); pcc_doorbell_vaddr = kcalloc(sum, sizeof(void *), GFP_KERNEL);
if (!pcc_doorbell_vaddr) { if (!pcc_doorbell_vaddr) {
kfree(pcc_mbox_channels); rc = -ENOMEM;
return -ENOMEM; goto err_free_mbox;
}
pcc_doorbell_ack_vaddr = kcalloc(sum, sizeof(void *), GFP_KERNEL);
if (!pcc_doorbell_ack_vaddr) {
rc = -ENOMEM;
goto err_free_db_vaddr;
}
pcc_doorbell_irq = kcalloc(sum, sizeof(int), GFP_KERNEL);
if (!pcc_doorbell_irq) {
rc = -ENOMEM;
goto err_free_db_ack_vaddr;
} }
/* Point to the first PCC subspace entry */ /* Point to the first PCC subspace entry */
pcct_entry = (struct acpi_subtable_header *) ( pcct_entry = (struct acpi_subtable_header *) (
(unsigned long) pcct_tbl + sizeof(struct acpi_table_pcct)); (unsigned long) pcct_tbl + sizeof(struct acpi_table_pcct));
for (i = 0; i < count; i++) { acpi_pcct_tbl = (struct acpi_table_pcct *) pcct_tbl;
if (acpi_pcct_tbl->flags & ACPI_PCCT_DOORBELL)
pcc_mbox_ctrl.txdone_irq = true;
for (i = 0; i < sum; i++) {
struct acpi_generic_address *db_reg; struct acpi_generic_address *db_reg;
struct acpi_pcct_hw_reduced *pcct_ss; struct acpi_pcct_hw_reduced *pcct_ss;
pcc_mbox_channels[i].con_priv = pcct_entry; pcc_mbox_channels[i].con_priv = pcct_entry;
pcct_ss = (struct acpi_pcct_hw_reduced *) pcct_entry;
if (pcc_mbox_ctrl.txdone_irq) {
rc = pcc_parse_subspace_irq(i, pcct_ss);
if (rc < 0)
goto err;
}
/* If doorbell is in system memory cache the virt address */ /* If doorbell is in system memory cache the virt address */
pcct_ss = (struct acpi_pcct_hw_reduced *)pcct_entry;
db_reg = &pcct_ss->doorbell_register; db_reg = &pcct_ss->doorbell_register;
if (db_reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) if (db_reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
pcc_doorbell_vaddr[i] = acpi_os_ioremap(db_reg->address, pcc_doorbell_vaddr[i] = acpi_os_ioremap(db_reg->address,
...@@ -372,11 +536,21 @@ static int __init acpi_pcc_probe(void) ...@@ -372,11 +536,21 @@ static int __init acpi_pcc_probe(void)
((unsigned long) pcct_entry + pcct_entry->length); ((unsigned long) pcct_entry + pcct_entry->length);
} }
pcc_mbox_ctrl.num_chans = count; pcc_mbox_ctrl.num_chans = sum;
pr_info("Detected %d PCC Subspaces\n", pcc_mbox_ctrl.num_chans); pr_info("Detected %d PCC Subspaces\n", pcc_mbox_ctrl.num_chans);
return 0; return 0;
err:
kfree(pcc_doorbell_irq);
err_free_db_ack_vaddr:
kfree(pcc_doorbell_ack_vaddr);
err_free_db_vaddr:
kfree(pcc_doorbell_vaddr);
err_free_mbox:
kfree(pcc_mbox_channels);
return rc;
} }
/** /**
......
...@@ -24,7 +24,9 @@ ...@@ -24,7 +24,9 @@
#define CPPC_NUM_ENT 21 #define CPPC_NUM_ENT 21
#define CPPC_REV 2 #define CPPC_REV 2
#define PCC_CMD_COMPLETE 1 #define PCC_CMD_COMPLETE_MASK (1 << 0)
#define PCC_ERROR_MASK (1 << 2)
#define MAX_CPC_REG_ENT 19 #define MAX_CPC_REG_ENT 19
/* CPPC specific PCC commands. */ /* CPPC specific PCC commands. */
...@@ -49,6 +51,7 @@ struct cpc_reg { ...@@ -49,6 +51,7 @@ struct cpc_reg {
*/ */
struct cpc_register_resource { struct cpc_register_resource {
acpi_object_type type; acpi_object_type type;
u64 __iomem *sys_mem_vaddr;
union { union {
struct cpc_reg reg; struct cpc_reg reg;
u64 int_value; u64 int_value;
...@@ -60,8 +63,11 @@ struct cpc_desc { ...@@ -60,8 +63,11 @@ struct cpc_desc {
int num_entries; int num_entries;
int version; int version;
int cpu_id; int cpu_id;
int write_cmd_status;
int write_cmd_id;
struct cpc_register_resource cpc_regs[MAX_CPC_REG_ENT]; struct cpc_register_resource cpc_regs[MAX_CPC_REG_ENT];
struct acpi_psd_package domain_info; struct acpi_psd_package domain_info;
struct kobject kobj;
}; };
/* These are indexes into the per-cpu cpc_regs[]. Order is important. */ /* These are indexes into the per-cpu cpc_regs[]. Order is important. */
...@@ -96,7 +102,6 @@ enum cppc_regs { ...@@ -96,7 +102,6 @@ enum cppc_regs {
struct cppc_perf_caps { struct cppc_perf_caps {
u32 highest_perf; u32 highest_perf;
u32 nominal_perf; u32 nominal_perf;
u32 reference_perf;
u32 lowest_perf; u32 lowest_perf;
}; };
...@@ -108,13 +113,13 @@ struct cppc_perf_ctrls { ...@@ -108,13 +113,13 @@ struct cppc_perf_ctrls {
struct cppc_perf_fb_ctrs { struct cppc_perf_fb_ctrs {
u64 reference; u64 reference;
u64 prev_reference;
u64 delivered; u64 delivered;
u64 prev_delivered; u64 reference_perf;
u64 ctr_wrap_time;
}; };
/* Per CPU container for runtime CPPC management. */ /* Per CPU container for runtime CPPC management. */
struct cpudata { struct cppc_cpudata {
int cpu; int cpu;
struct cppc_perf_caps perf_caps; struct cppc_perf_caps perf_caps;
struct cppc_perf_ctrls perf_ctrls; struct cppc_perf_ctrls perf_ctrls;
...@@ -127,6 +132,7 @@ struct cpudata { ...@@ -127,6 +132,7 @@ struct cpudata {
extern int cppc_get_perf_ctrs(int cpu, struct cppc_perf_fb_ctrs *perf_fb_ctrs); extern int cppc_get_perf_ctrs(int cpu, struct cppc_perf_fb_ctrs *perf_fb_ctrs);
extern int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls); extern int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls);
extern int cppc_get_perf_caps(int cpu, struct cppc_perf_caps *caps); extern int cppc_get_perf_caps(int cpu, struct cppc_perf_caps *caps);
extern int acpi_get_psd_map(struct cpudata **); extern int acpi_get_psd_map(struct cppc_cpudata **);
extern unsigned int cppc_get_transition_latency(int cpu);
#endif /* _CPPC_ACPI_H*/ #endif /* _CPPC_ACPI_H*/
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment