Commit 0f206514 authored by Eric Biggers's avatar Eric Biggers Committed by Martin K. Petersen

scsi: firmware: qcom_scm: Add support for programming inline crypto keys

Add support for the Inline Crypto Engine (ICE) key programming interface
that's needed for the ufs-qcom driver to use inline encryption on
Snapdragon SoCs.  This interface consists of two SCM calls: one to program
a key into a keyslot, and one to invalidate a keyslot.

Although the UFS specification defines a standard way to do this, on these
SoCs the Linux kernel isn't permitted to access the needed crypto
configuration registers directly; these SCM calls must be used instead.

Link: https://lore.kernel.org/r/20200710072013.177481-2-ebiggers@kernel.orgAcked-by: default avatarBjorn Andersson <bjorn.andersson@linaro.org>
Signed-off-by: default avatarEric Biggers <ebiggers@google.com>
Signed-off-by: default avatarMartin K. Petersen <martin.petersen@oracle.com>
parent 3eef38a1
...@@ -923,6 +923,107 @@ int qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id, u32 offset, u32 size) ...@@ -923,6 +923,107 @@ int qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id, u32 offset, u32 size)
} }
EXPORT_SYMBOL(qcom_scm_ocmem_unlock); EXPORT_SYMBOL(qcom_scm_ocmem_unlock);
/**
* qcom_scm_ice_available() - Is the ICE key programming interface available?
*
* Return: true iff the SCM calls wrapped by qcom_scm_ice_invalidate_key() and
* qcom_scm_ice_set_key() are available.
*/
bool qcom_scm_ice_available(void)
{
return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
QCOM_SCM_ES_INVALIDATE_ICE_KEY) &&
__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
QCOM_SCM_ES_CONFIG_SET_ICE_KEY);
}
EXPORT_SYMBOL(qcom_scm_ice_available);
/**
* qcom_scm_ice_invalidate_key() - Invalidate an inline encryption key
* @index: the keyslot to invalidate
*
* The UFSHCI standard defines a standard way to do this, but it doesn't work on
* these SoCs; only this SCM call does.
*
* Return: 0 on success; -errno on failure.
*/
int qcom_scm_ice_invalidate_key(u32 index)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_ES,
.cmd = QCOM_SCM_ES_INVALIDATE_ICE_KEY,
.arginfo = QCOM_SCM_ARGS(1),
.args[0] = index,
.owner = ARM_SMCCC_OWNER_SIP,
};
return qcom_scm_call(__scm->dev, &desc, NULL);
}
EXPORT_SYMBOL(qcom_scm_ice_invalidate_key);
/**
* qcom_scm_ice_set_key() - Set an inline encryption key
* @index: the keyslot into which to set the key
* @key: the key to program
* @key_size: the size of the key in bytes
* @cipher: the encryption algorithm the key is for
* @data_unit_size: the encryption data unit size, i.e. the size of each
* individual plaintext and ciphertext. Given in 512-byte
* units, e.g. 1 = 512 bytes, 8 = 4096 bytes, etc.
*
* Program a key into a keyslot of Qualcomm ICE (Inline Crypto Engine), where it
* can then be used to encrypt/decrypt UFS I/O requests inline.
*
* The UFSHCI standard defines a standard way to do this, but it doesn't work on
* these SoCs; only this SCM call does.
*
* Return: 0 on success; -errno on failure.
*/
int qcom_scm_ice_set_key(u32 index, const u8 *key, u32 key_size,
enum qcom_scm_ice_cipher cipher, u32 data_unit_size)
{
struct qcom_scm_desc desc = {
.svc = QCOM_SCM_SVC_ES,
.cmd = QCOM_SCM_ES_CONFIG_SET_ICE_KEY,
.arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_VAL, QCOM_SCM_RW,
QCOM_SCM_VAL, QCOM_SCM_VAL,
QCOM_SCM_VAL),
.args[0] = index,
.args[2] = key_size,
.args[3] = cipher,
.args[4] = data_unit_size,
.owner = ARM_SMCCC_OWNER_SIP,
};
void *keybuf;
dma_addr_t key_phys;
int ret;
/*
* 'key' may point to vmalloc()'ed memory, but we need to pass a
* physical address that's been properly flushed. The sanctioned way to
* do this is by using the DMA API. But as is best practice for crypto
* keys, we also must wipe the key after use. This makes kmemdup() +
* dma_map_single() not clearly correct, since the DMA API can use
* bounce buffers. Instead, just use dma_alloc_coherent(). Programming
* keys is normally rare and thus not performance-critical.
*/
keybuf = dma_alloc_coherent(__scm->dev, key_size, &key_phys,
GFP_KERNEL);
if (!keybuf)
return -ENOMEM;
memcpy(keybuf, key, key_size);
desc.args[1] = key_phys;
ret = qcom_scm_call(__scm->dev, &desc, NULL);
memzero_explicit(keybuf, key_size);
dma_free_coherent(__scm->dev, key_size, keybuf, key_phys);
return ret;
}
EXPORT_SYMBOL(qcom_scm_ice_set_key);
/** /**
* qcom_scm_hdcp_available() - Check if secure environment supports HDCP. * qcom_scm_hdcp_available() - Check if secure environment supports HDCP.
* *
......
...@@ -103,6 +103,10 @@ extern int scm_legacy_call(struct device *dev, const struct qcom_scm_desc *desc, ...@@ -103,6 +103,10 @@ extern int scm_legacy_call(struct device *dev, const struct qcom_scm_desc *desc,
#define QCOM_SCM_OCMEM_LOCK_CMD 0x01 #define QCOM_SCM_OCMEM_LOCK_CMD 0x01
#define QCOM_SCM_OCMEM_UNLOCK_CMD 0x02 #define QCOM_SCM_OCMEM_UNLOCK_CMD 0x02
#define QCOM_SCM_SVC_ES 0x10 /* Enterprise Security */
#define QCOM_SCM_ES_INVALIDATE_ICE_KEY 0x03
#define QCOM_SCM_ES_CONFIG_SET_ICE_KEY 0x04
#define QCOM_SCM_SVC_HDCP 0x11 #define QCOM_SCM_SVC_HDCP 0x11
#define QCOM_SCM_HDCP_INVOKE 0x01 #define QCOM_SCM_HDCP_INVOKE 0x01
......
...@@ -44,6 +44,13 @@ enum qcom_scm_sec_dev_id { ...@@ -44,6 +44,13 @@ enum qcom_scm_sec_dev_id {
QCOM_SCM_ICE_DEV_ID = 20, QCOM_SCM_ICE_DEV_ID = 20,
}; };
enum qcom_scm_ice_cipher {
QCOM_SCM_ICE_CIPHER_AES_128_XTS = 0,
QCOM_SCM_ICE_CIPHER_AES_128_CBC = 1,
QCOM_SCM_ICE_CIPHER_AES_256_XTS = 3,
QCOM_SCM_ICE_CIPHER_AES_256_CBC = 4,
};
#define QCOM_SCM_VMID_HLOS 0x3 #define QCOM_SCM_VMID_HLOS 0x3
#define QCOM_SCM_VMID_MSS_MSA 0xF #define QCOM_SCM_VMID_MSS_MSA 0xF
#define QCOM_SCM_VMID_WLAN 0x18 #define QCOM_SCM_VMID_WLAN 0x18
...@@ -88,6 +95,12 @@ extern int qcom_scm_ocmem_lock(enum qcom_scm_ocmem_client id, u32 offset, ...@@ -88,6 +95,12 @@ extern int qcom_scm_ocmem_lock(enum qcom_scm_ocmem_client id, u32 offset,
extern int qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id, u32 offset, extern int qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id, u32 offset,
u32 size); u32 size);
extern bool qcom_scm_ice_available(void);
extern int qcom_scm_ice_invalidate_key(u32 index);
extern int qcom_scm_ice_set_key(u32 index, const u8 *key, u32 key_size,
enum qcom_scm_ice_cipher cipher,
u32 data_unit_size);
extern bool qcom_scm_hdcp_available(void); extern bool qcom_scm_hdcp_available(void);
extern int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt, extern int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt,
u32 *resp); u32 *resp);
...@@ -138,6 +151,12 @@ static inline int qcom_scm_ocmem_lock(enum qcom_scm_ocmem_client id, u32 offset, ...@@ -138,6 +151,12 @@ static inline int qcom_scm_ocmem_lock(enum qcom_scm_ocmem_client id, u32 offset,
static inline int qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id, static inline int qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id,
u32 offset, u32 size) { return -ENODEV; } u32 offset, u32 size) { return -ENODEV; }
static inline bool qcom_scm_ice_available(void) { return false; }
static inline int qcom_scm_ice_invalidate_key(u32 index) { return -ENODEV; }
static inline int qcom_scm_ice_set_key(u32 index, const u8 *key, u32 key_size,
enum qcom_scm_ice_cipher cipher,
u32 data_unit_size) { return -ENODEV; }
static inline bool qcom_scm_hdcp_available(void) { return false; } static inline bool qcom_scm_hdcp_available(void) { return false; }
static inline int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt, static inline int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt,
u32 *resp) { return -ENODEV; } u32 *resp) { return -ENODEV; }
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment