Commit 12962267 authored by Chris Metcalf's avatar Chris Metcalf

arch/tile: tilegx PCI root complex support

This change implements PCIe root complex support for tilegx using
the kernel support layer for accessing the TRIO hardware shim.

Reviewed-by: Bjorn Helgaas <bhelgaas@google.com> [changes in 07487f3]
Signed-off-by: default avatarChris Metcalf <cmetcalf@tilera.com>
parent bce5bbbb
...@@ -356,6 +356,9 @@ config PCI ...@@ -356,6 +356,9 @@ config PCI
default y default y
select PCI_DOMAINS select PCI_DOMAINS
select GENERIC_PCI_IOMAP select GENERIC_PCI_IOMAP
select TILE_GXIO_TRIO if TILEGX
select ARCH_SUPPORTS_MSI if TILEGX
select PCI_MSI if TILEGX
---help--- ---help---
Enable PCI root complex support, so PCIe endpoint devices can Enable PCI root complex support, so PCIe endpoint devices can
be attached to the Tile chip. Many, but not all, PCI devices be attached to the Tile chip. Many, but not all, PCI devices
......
...@@ -16,8 +16,11 @@ ...@@ -16,8 +16,11 @@
#define _ASM_TILE_PCI_H #define _ASM_TILE_PCI_H
#include <linux/pci.h> #include <linux/pci.h>
#include <linux/numa.h>
#include <asm-generic/pci_iomap.h> #include <asm-generic/pci_iomap.h>
#ifndef __tilegx__
/* /*
* Structure of a PCI controller (host bridge) * Structure of a PCI controller (host bridge)
*/ */
...@@ -40,6 +43,91 @@ struct pci_controller { ...@@ -40,6 +43,91 @@ struct pci_controller {
struct resource mem_resources[3]; struct resource mem_resources[3];
}; };
/*
* This flag tells if the platform is TILEmpower that needs
* special configuration for the PLX switch chip.
*/
extern int tile_plx_gen1;
static inline void pci_iounmap(struct pci_dev *dev, void __iomem *addr) {}
#define TILE_NUM_PCIE 2
#else
#include <asm/page.h>
#include <gxio/trio.h>
/**
* We reserve the hugepage-size address range at the top of the 64-bit address
* space to serve as the PCI window, emulating the BAR0 space of an endpoint
* device. This window is used by the chip-to-chip applications running on
* the RC node. The reason for carving out this window is that Mem-Maps that
* back up this window will not overlap with those that map the real physical
* memory.
*/
#define PCIE_HOST_BAR0_SIZE HPAGE_SIZE
#define PCIE_HOST_BAR0_START HPAGE_MASK
/**
* The first PAGE_SIZE of the above "BAR" window is mapped to the
* gxpci_host_regs structure.
*/
#define PCIE_HOST_REGS_SIZE PAGE_SIZE
/*
* This is the PCI address where the Mem-Map interrupt regions start.
* We use the 2nd to the last huge page of the 64-bit address space.
* The last huge page is used for the rootcomplex "bar", for C2C purpose.
*/
#define MEM_MAP_INTR_REGIONS_BASE (HPAGE_MASK - HPAGE_SIZE)
/*
* Each Mem-Map interrupt region occupies 4KB.
*/
#define MEM_MAP_INTR_REGION_SIZE (1<< TRIO_MAP_MEM_LIM__ADDR_SHIFT)
/*
* Structure of a PCI controller (host bridge) on Gx.
*/
struct pci_controller {
/* Pointer back to the TRIO that this PCIe port is connected to. */
gxio_trio_context_t *trio;
int mac; /* PCIe mac index on the TRIO shim */
int trio_index; /* Index of TRIO shim that contains the MAC. */
int pio_mem_index; /* PIO region index for memory access */
/*
* Mem-Map regions for all the memory controllers so that Linux can
* map all of its physical memory space to the PCI bus.
*/
int mem_maps[MAX_NUMNODES];
int index; /* PCI domain number */
struct pci_bus *root_bus;
int last_busno;
struct pci_ops *ops;
/* Table that maps the INTx numbers to Linux irq numbers. */
int irq_intx_table[4];
struct resource mem_space;
/* Address ranges that are routed to this controller/bridge. */
struct resource mem_resources[3];
};
extern struct pci_controller pci_controllers[TILEGX_NUM_TRIO * TILEGX_TRIO_PCIES];
extern gxio_trio_context_t trio_contexts[TILEGX_NUM_TRIO];
extern void pci_iounmap(struct pci_dev *dev, void __iomem *);
#endif /* __tilegx__ */
/* /*
* The hypervisor maps the entirety of CPA-space as bus addresses, so * The hypervisor maps the entirety of CPA-space as bus addresses, so
* bus addresses are physical addresses. The networking and block * bus addresses are physical addresses. The networking and block
...@@ -50,12 +138,8 @@ struct pci_controller { ...@@ -50,12 +138,8 @@ struct pci_controller {
int __init tile_pci_init(void); int __init tile_pci_init(void);
int __init pcibios_init(void); int __init pcibios_init(void);
static inline void pci_iounmap(struct pci_dev *dev, void __iomem *addr) {}
void __devinit pcibios_fixup_bus(struct pci_bus *bus); void __devinit pcibios_fixup_bus(struct pci_bus *bus);
#define TILE_NUM_PCIE 2
#define pci_domain_nr(bus) (((struct pci_controller *)(bus)->sysdata)->index) #define pci_domain_nr(bus) (((struct pci_controller *)(bus)->sysdata)->index)
/* /*
...@@ -79,12 +163,6 @@ static inline int pcibios_assign_all_busses(void) ...@@ -79,12 +163,6 @@ static inline int pcibios_assign_all_busses(void)
#define PCIBIOS_MIN_MEM 0 #define PCIBIOS_MIN_MEM 0
#define PCIBIOS_MIN_IO 0 #define PCIBIOS_MIN_IO 0
/*
* This flag tells if the platform is TILEmpower that needs
* special configuration for the PLX switch chip.
*/
extern int tile_plx_gen1;
/* Use any cpu for PCI. */ /* Use any cpu for PCI. */
#define cpumask_of_pcibus(bus) cpu_online_mask #define cpumask_of_pcibus(bus) cpu_online_mask
......
...@@ -14,4 +14,8 @@ obj-$(CONFIG_SMP) += smpboot.o smp.o tlb.o ...@@ -14,4 +14,8 @@ obj-$(CONFIG_SMP) += smpboot.o smp.o tlb.o
obj-$(CONFIG_MODULES) += module.o obj-$(CONFIG_MODULES) += module.o
obj-$(CONFIG_EARLY_PRINTK) += early_printk.o obj-$(CONFIG_EARLY_PRINTK) += early_printk.o
obj-$(CONFIG_KEXEC) += machine_kexec.o relocate_kernel_$(BITS).o obj-$(CONFIG_KEXEC) += machine_kexec.o relocate_kernel_$(BITS).o
ifdef CONFIG_TILEGX
obj-$(CONFIG_PCI) += pci_gx.o
else
obj-$(CONFIG_PCI) += pci.o obj-$(CONFIG_PCI) += pci.o
endif
/*
* Copyright 2012 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
#include <linux/kernel.h>
#include <linux/mmzone.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/capability.h>
#include <linux/sched.h>
#include <linux/errno.h>
#include <linux/irq.h>
#include <linux/msi.h>
#include <linux/io.h>
#include <linux/uaccess.h>
#include <linux/ctype.h>
#include <asm/processor.h>
#include <asm/sections.h>
#include <asm/byteorder.h>
#include <gxio/iorpc_globals.h>
#include <gxio/kiorpc.h>
#include <gxio/trio.h>
#include <gxio/iorpc_trio.h>
#include <hv/drv_trio_intf.h>
#include <arch/sim.h>
/*
* Initialization flow and process
* -------------------------------
*
* This files containes the routines to search for PCI buses,
* enumerate the buses, and configure any attached devices.
*
* There are two entry points here:
* 1) tile_pci_init
* This sets up the pci_controller structs, and opens the
* FDs to the hypervisor. This is called from setup_arch() early
* in the boot process.
* 2) pcibios_init
* This probes the PCI bus(es) for any attached hardware. It's
* called by subsys_initcall. All of the real work is done by the
* generic Linux PCI layer.
*
*/
#define DEBUG_PCI_CFG 0
#if DEBUG_PCI_CFG
#define TRACE_CFG_WR(size, val, bus, dev, func, offset) \
pr_info("CFG WR %d-byte VAL %#x to bus %d dev %d func %d addr %u\n", \
size, val, bus, dev, func, offset & 0xFFF);
#define TRACE_CFG_RD(size, val, bus, dev, func, offset) \
pr_info("CFG RD %d-byte VAL %#x from bus %d dev %d func %d addr %u\n", \
size, val, bus, dev, func, offset & 0xFFF);
#else
#define TRACE_CFG_WR(...)
#define TRACE_CFG_RD(...)
#endif
static int __devinitdata pci_probe = 1;
/* Information on the PCIe RC ports configuration. */
static int __devinitdata pcie_rc[TILEGX_NUM_TRIO][TILEGX_TRIO_PCIES];
/*
* On some platforms with one or more Gx endpoint ports, we need to
* delay the PCIe RC port probe for a few seconds to work around
* a HW PCIe link-training bug. The exact delay is specified with
* a kernel boot argument in the form of "pcie_rc_delay=T,P,S",
* where T is the TRIO instance number, P is the port number and S is
* the delay in seconds. If the delay is not provided, the value
* will be DEFAULT_RC_DELAY.
*/
static int __devinitdata rc_delay[TILEGX_NUM_TRIO][TILEGX_TRIO_PCIES];
/* Default number of seconds that the PCIe RC port probe can be delayed. */
#define DEFAULT_RC_DELAY 10
/* Max number of seconds that the PCIe RC port probe can be delayed. */
#define MAX_RC_DELAY 20
/* Array of the PCIe ports configuration info obtained from the BIB. */
struct pcie_port_property pcie_ports[TILEGX_NUM_TRIO][TILEGX_TRIO_PCIES];
/* All drivers share the TRIO contexts defined here. */
gxio_trio_context_t trio_contexts[TILEGX_NUM_TRIO];
/* Pointer to an array of PCIe RC controllers. */
struct pci_controller pci_controllers[TILEGX_NUM_TRIO * TILEGX_TRIO_PCIES];
int num_rc_controllers;
static int num_ep_controllers;
static struct pci_ops tile_cfg_ops;
/* Mask of CPUs that should receive PCIe interrupts. */
static struct cpumask intr_cpus_map;
/*
* We don't need to worry about the alignment of resources.
*/
resource_size_t pcibios_align_resource(void *data, const struct resource *res,
resource_size_t size, resource_size_t align)
{
return res->start;
}
EXPORT_SYMBOL(pcibios_align_resource);
/*
* Pick a CPU to receive and handle the PCIe interrupts, based on the IRQ #.
* For now, we simply send interrupts to non-dataplane CPUs.
* We may implement methods to allow user to specify the target CPUs,
* e.g. via boot arguments.
*/
static int tile_irq_cpu(int irq)
{
unsigned int count;
int i = 0;
int cpu;
count = cpumask_weight(&intr_cpus_map);
if (unlikely(count == 0)) {
pr_warning("intr_cpus_map empty, interrupts will be"
" delievered to dataplane tiles\n");
return irq % (smp_height * smp_width);
}
count = irq % count;
for_each_cpu(cpu, &intr_cpus_map) {
if (i++ == count)
break;
}
return cpu;
}
/*
* Open a file descriptor to the TRIO shim.
*/
static int __devinit tile_pcie_open(int trio_index)
{
gxio_trio_context_t *context = &trio_contexts[trio_index];
int ret;
/*
* This opens a file descriptor to the TRIO shim.
*/
ret = gxio_trio_init(context, trio_index);
if (ret < 0)
return ret;
/*
* Allocate an ASID for the kernel.
*/
ret = gxio_trio_alloc_asids(context, 1, 0, 0);
if (ret < 0) {
pr_err("PCI: ASID alloc failure on TRIO %d, give up\n",
trio_index);
goto asid_alloc_failure;
}
context->asid = ret;
#ifdef USE_SHARED_PCIE_CONFIG_REGION
/*
* Alloc a PIO region for config access, shared by all MACs per TRIO.
* This shouldn't fail since the kernel is supposed to the first
* client of the TRIO's PIO regions.
*/
ret = gxio_trio_alloc_pio_regions(context, 1, 0, 0);
if (ret < 0) {
pr_err("PCI: CFG PIO alloc failure on TRIO %d, give up\n",
trio_index);
goto pio_alloc_failure;
}
context->pio_cfg_index = ret;
/*
* For PIO CFG, the bus_address_hi parameter is 0. The mac parameter
* is also 0 because it is specified in PIO_REGION_SETUP_CFG_ADDR.
*/
ret = gxio_trio_init_pio_region_aux(context, context->pio_cfg_index,
0, 0, HV_TRIO_PIO_FLAG_CONFIG_SPACE);
if (ret < 0) {
pr_err("PCI: CFG PIO init failure on TRIO %d, give up\n",
trio_index);
goto pio_alloc_failure;
}
#endif
return ret;
asid_alloc_failure:
#ifdef USE_SHARED_PCIE_CONFIG_REGION
pio_alloc_failure:
#endif
hv_dev_close(context->fd);
return ret;
}
static void
tilegx_legacy_irq_ack(struct irq_data *d)
{
__insn_mtspr(SPR_IPI_EVENT_RESET_K, 1UL << d->irq);
}
static void
tilegx_legacy_irq_mask(struct irq_data *d)
{
__insn_mtspr(SPR_IPI_MASK_SET_K, 1UL << d->irq);
}
static void
tilegx_legacy_irq_unmask(struct irq_data *d)
{
__insn_mtspr(SPR_IPI_MASK_RESET_K, 1UL << d->irq);
}
static struct irq_chip tilegx_legacy_irq_chip = {
.name = "tilegx_legacy_irq",
.irq_ack = tilegx_legacy_irq_ack,
.irq_mask = tilegx_legacy_irq_mask,
.irq_unmask = tilegx_legacy_irq_unmask,
/* TBD: support set_affinity. */
};
/*
* This is a wrapper function of the kernel level-trigger interrupt
* handler handle_level_irq() for PCI legacy interrupts. The TRIO
* is configured such that only INTx Assert interrupts are proxied
* to Linux which just calls handle_level_irq() after clearing the
* MAC INTx Assert status bit associated with this interrupt.
*/
static void
trio_handle_level_irq(unsigned int irq, struct irq_desc *desc)
{
struct pci_controller *controller = irq_desc_get_handler_data(desc);
gxio_trio_context_t *trio_context = controller->trio;
uint64_t intx = (uint64_t)irq_desc_get_chip_data(desc);
int mac = controller->mac;
unsigned int reg_offset;
uint64_t level_mask;
handle_level_irq(irq, desc);
/*
* Clear the INTx Level status, otherwise future interrupts are
* not sent.
*/
reg_offset = (TRIO_PCIE_INTFC_MAC_INT_STS <<
TRIO_CFG_REGION_ADDR__REG_SHIFT) |
(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE <<
TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
(mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
level_mask = TRIO_PCIE_INTFC_MAC_INT_STS__INT_LEVEL_MASK << intx;
__gxio_mmio_write(trio_context->mmio_base_mac + reg_offset, level_mask);
}
/*
* Create kernel irqs and set up the handlers for the legacy interrupts.
* Also some minimum initialization for the MSI support.
*/
static int __devinit tile_init_irqs(struct pci_controller *controller)
{
int i;
int j;
int irq;
int result;
cpumask_copy(&intr_cpus_map, cpu_online_mask);
for (i = 0; i < 4; i++) {
gxio_trio_context_t *context = controller->trio;
int cpu;
/* Ask the kernel to allocate an IRQ. */
irq = create_irq();
if (irq < 0) {
pr_err("PCI: no free irq vectors, failed for %d\n", i);
goto free_irqs;
}
controller->irq_intx_table[i] = irq;
/* Distribute the 4 IRQs to different tiles. */
cpu = tile_irq_cpu(irq);
/* Configure the TRIO intr binding for this IRQ. */
result = gxio_trio_config_legacy_intr(context, cpu_x(cpu),
cpu_y(cpu), KERNEL_PL,
irq, controller->mac, i);
if (result < 0) {
pr_err("PCI: MAC intx config failed for %d\n", i);
goto free_irqs;
}
/*
* Register the IRQ handler with the kernel.
*/
irq_set_chip_and_handler(irq, &tilegx_legacy_irq_chip,
trio_handle_level_irq);
irq_set_chip_data(irq, (void *)(uint64_t)i);
irq_set_handler_data(irq, controller);
}
return 0;
free_irqs:
for (j = 0; j < i; j++)
destroy_irq(controller->irq_intx_table[j]);
return -1;
}
/*
* First initialization entry point, called from setup_arch().
*
* Find valid controllers and fill in pci_controller structs for each
* of them.
*
* Returns the number of controllers discovered.
*/
int __init tile_pci_init(void)
{
int num_trio_shims = 0;
int ctl_index = 0;
int i, j;
if (!pci_probe) {
pr_info("PCI: disabled by boot argument\n");
return 0;
}
pr_info("PCI: Searching for controllers...\n");
/*
* We loop over all the TRIO shims.
*/
for (i = 0; i < TILEGX_NUM_TRIO; i++) {
int ret;
ret = tile_pcie_open(i);
if (ret < 0)
continue;
num_trio_shims++;
}
if (num_trio_shims == 0 || sim_is_simulator())
return 0;
/*
* Now determine which PCIe ports are configured to operate in RC mode.
* We look at the Board Information Block first and then see if there
* are any overriding configuration by the HW strapping pin.
*/
for (i = 0; i < TILEGX_NUM_TRIO; i++) {
gxio_trio_context_t *context = &trio_contexts[i];
int ret;
if (context->fd < 0)
continue;
ret = hv_dev_pread(context->fd, 0,
(HV_VirtAddr)&pcie_ports[i][0],
sizeof(struct pcie_port_property) * TILEGX_TRIO_PCIES,
GXIO_TRIO_OP_GET_PORT_PROPERTY);
if (ret < 0) {
pr_err("PCI: PCIE_GET_PORT_PROPERTY failure, error %d,"
" on TRIO %d\n", ret, i);
continue;
}
for (j = 0; j < TILEGX_TRIO_PCIES; j++) {
if (pcie_ports[i][j].allow_rc) {
pcie_rc[i][j] = 1;
num_rc_controllers++;
}
else if (pcie_ports[i][j].allow_ep) {
num_ep_controllers++;
}
}
}
/*
* Return if no PCIe ports are configured to operate in RC mode.
*/
if (num_rc_controllers == 0)
return 0;
/*
* Set the TRIO pointer and MAC index for each PCIe RC port.
*/
for (i = 0; i < TILEGX_NUM_TRIO; i++) {
for (j = 0; j < TILEGX_TRIO_PCIES; j++) {
if (pcie_rc[i][j]) {
pci_controllers[ctl_index].trio =
&trio_contexts[i];
pci_controllers[ctl_index].mac = j;
pci_controllers[ctl_index].trio_index = i;
ctl_index++;
if (ctl_index == num_rc_controllers)
goto out;
}
}
}
out:
/*
* Configure each PCIe RC port.
*/
for (i = 0; i < num_rc_controllers; i++) {
/*
* Configure the PCIe MAC to run in RC mode.
*/
struct pci_controller *controller = &pci_controllers[i];
controller->index = i;
controller->last_busno = 0xff;
controller->ops = &tile_cfg_ops;
}
return num_rc_controllers;
}
/*
* (pin - 1) converts from the PCI standard's [1:4] convention to
* a normal [0:3] range.
*/
static int tile_map_irq(const struct pci_dev *dev, u8 device, u8 pin)
{
struct pci_controller *controller =
(struct pci_controller *)dev->sysdata;
return controller->irq_intx_table[pin - 1];
}
static void __devinit fixup_read_and_payload_sizes(struct pci_controller *
controller)
{
gxio_trio_context_t *trio_context = controller->trio;
struct pci_bus *root_bus = controller->root_bus;
TRIO_PCIE_RC_DEVICE_CONTROL_t dev_control;
TRIO_PCIE_RC_DEVICE_CAP_t rc_dev_cap;
unsigned int reg_offset;
struct pci_bus *child;
int mac;
int err;
mac = controller->mac;
/*
* Set our max read request size to be 4KB.
*/
reg_offset =
(TRIO_PCIE_RC_DEVICE_CONTROL <<
TRIO_CFG_REGION_ADDR__REG_SHIFT) |
(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD <<
TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
(mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
dev_control.word = __gxio_mmio_read32(trio_context->mmio_base_mac +
reg_offset);
dev_control.max_read_req_sz = 5;
__gxio_mmio_write32(trio_context->mmio_base_mac + reg_offset,
dev_control.word);
/*
* Set the max payload size supported by this Gx PCIe MAC.
* Though Gx PCIe supports Max Payload Size of up to 1024 bytes,
* experiments have shown that setting MPS to 256 yields the
* best performance.
*/
reg_offset =
(TRIO_PCIE_RC_DEVICE_CAP <<
TRIO_CFG_REGION_ADDR__REG_SHIFT) |
(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD <<
TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
(mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
rc_dev_cap.word = __gxio_mmio_read32(trio_context->mmio_base_mac +
reg_offset);
rc_dev_cap.mps_sup = 1;
__gxio_mmio_write32(trio_context->mmio_base_mac + reg_offset,
rc_dev_cap.word);
/* Configure PCI Express MPS setting. */
list_for_each_entry(child, &root_bus->children, node) {
struct pci_dev *self = child->self;
if (!self)
continue;
pcie_bus_configure_settings(child, self->pcie_mpss);
}
/*
* Set the mac_config register in trio based on the MPS/MRS of the link.
*/
reg_offset =
(TRIO_PCIE_RC_DEVICE_CONTROL <<
TRIO_CFG_REGION_ADDR__REG_SHIFT) |
(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD <<
TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
(mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
dev_control.word = __gxio_mmio_read32(trio_context->mmio_base_mac +
reg_offset);
err = gxio_trio_set_mps_mrs(trio_context,
dev_control.max_payload_size,
dev_control.max_read_req_sz,
mac);
if (err < 0) {
pr_err("PCI: PCIE_CONFIGURE_MAC_MPS_MRS failure, "
"MAC %d on TRIO %d\n",
mac, controller->trio_index);
}
}
static int __devinit setup_pcie_rc_delay(char *str)
{
unsigned long delay = 0;
unsigned long trio_index;
unsigned long mac;
if (str == NULL || !isdigit(*str))
return -EINVAL;
trio_index = simple_strtoul(str, (char **)&str, 10);
if (trio_index >= TILEGX_NUM_TRIO)
return -EINVAL;
if (*str != ',')
return -EINVAL;
str++;
if (!isdigit(*str))
return -EINVAL;
mac = simple_strtoul(str, (char **)&str, 10);
if (mac >= TILEGX_TRIO_PCIES)
return -EINVAL;
if (*str != '\0') {
if (*str != ',')
return -EINVAL;
str++;
if (!isdigit(*str))
return -EINVAL;
delay = simple_strtoul(str, (char **)&str, 10);
if (delay > MAX_RC_DELAY)
return -EINVAL;
}
rc_delay[trio_index][mac] = delay ? : DEFAULT_RC_DELAY;
pr_info("Delaying PCIe RC link training for %u sec"
" on MAC %lu on TRIO %lu\n", rc_delay[trio_index][mac],
mac, trio_index);
return 0;
}
early_param("pcie_rc_delay", setup_pcie_rc_delay);
/*
* Second PCI initialization entry point, called by subsys_initcall.
*
* The controllers have been set up by the time we get here, by a call to
* tile_pci_init.
*/
int __init pcibios_init(void)
{
resource_size_t offset;
LIST_HEAD(resources);
int i;
if (num_rc_controllers == 0 && num_ep_controllers == 0)
return 0;
pr_info("PCI: Probing PCI hardware\n");
/*
* We loop over all the TRIO shims and set up the MMIO mappings.
* This step can't be done in tile_pci_init because the MM subsystem
* hasn't been initialized then.
*/
for (i = 0; i < TILEGX_NUM_TRIO; i++) {
gxio_trio_context_t *context = &trio_contexts[i];
if (context->fd < 0)
continue;
/*
* Map in the MMIO space for the MAC.
*/
offset = 0;
context->mmio_base_mac =
iorpc_ioremap(context->fd, offset,
HV_TRIO_CONFIG_IOREMAP_SIZE);
if (context->mmio_base_mac == NULL) {
pr_err("PCI: MAC map failure on TRIO %d\n", i);
hv_dev_close(context->fd);
context->fd = -1;
continue;
}
}
/*
* Delay a bit in case devices aren't ready. Some devices are
* known to require at least 20ms here, but we use a more
* conservative value.
*/
msleep(250);
/* Scan all of the recorded PCI controllers. */
for (i = 0; i < num_rc_controllers; i++) {
struct pci_controller *controller = &pci_controllers[i];
gxio_trio_context_t *trio_context = controller->trio;
TRIO_PCIE_INTFC_PORT_CONFIG_t port_config;
TRIO_PCIE_INTFC_PORT_STATUS_t port_status;
TRIO_PCIE_INTFC_TX_FIFO_CTL_t tx_fifo_ctl;
struct pci_bus *bus;
unsigned int reg_offset;
unsigned int class_code_revision;
int trio_index;
int mac;
#ifndef USE_SHARED_PCIE_CONFIG_REGION
int ret;
#endif
if (trio_context->fd < 0)
continue;
trio_index = controller->trio_index;
mac = controller->mac;
/*
* Check the port strap state which will override the BIB
* setting.
*/
reg_offset =
(TRIO_PCIE_INTFC_PORT_CONFIG <<
TRIO_CFG_REGION_ADDR__REG_SHIFT) |
(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE <<
TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
(mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
port_config.word =
__gxio_mmio_read(trio_context->mmio_base_mac +
reg_offset);
if ((port_config.strap_state !=
TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_CONFIG_RC) &&
(port_config.strap_state !=
TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_CONFIG_RC_G1)) {
/*
* If this is really intended to be an EP port,
* record it so that the endpoint driver will know about it.
*/
if (port_config.strap_state ==
TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_CONFIG_ENDPOINT ||
port_config.strap_state ==
TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_CONFIG_ENDPOINT_G1)
pcie_ports[trio_index][mac].allow_ep = 1;
continue;
}
/*
* Delay the RC link training if needed.
*/
if (rc_delay[trio_index][mac])
msleep(rc_delay[trio_index][mac] * 1000);
ret = gxio_trio_force_rc_link_up(trio_context, mac);
if (ret < 0)
pr_err("PCI: PCIE_FORCE_LINK_UP failure, "
"MAC %d on TRIO %d\n", mac, trio_index);
pr_info("PCI: Found PCI controller #%d on TRIO %d MAC %d\n", i,
trio_index, controller->mac);
/*
* Wait a bit here because some EP devices take longer
* to come up.
*/
msleep(1000);
/*
* Check for PCIe link-up status.
*/
reg_offset =
(TRIO_PCIE_INTFC_PORT_STATUS <<
TRIO_CFG_REGION_ADDR__REG_SHIFT) |
(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE <<
TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
(mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
port_status.word =
__gxio_mmio_read(trio_context->mmio_base_mac +
reg_offset);
if (!port_status.dl_up) {
pr_err("PCI: link is down, MAC %d on TRIO %d\n",
mac, trio_index);
continue;
}
/*
* Ensure that the link can come out of L1 power down state.
* Strictly speaking, this is needed only in the case of
* heavy RC-initiated DMAs.
*/
reg_offset =
(TRIO_PCIE_INTFC_TX_FIFO_CTL <<
TRIO_CFG_REGION_ADDR__REG_SHIFT) |
(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE <<
TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
(mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
tx_fifo_ctl.word =
__gxio_mmio_read(trio_context->mmio_base_mac +
reg_offset);
tx_fifo_ctl.min_p_credits = 0;
__gxio_mmio_write(trio_context->mmio_base_mac + reg_offset,
tx_fifo_ctl.word);
/*
* Change the device ID so that Linux bus crawl doesn't confuse
* the internal bridge with any Tilera endpoints.
*/
reg_offset =
(TRIO_PCIE_RC_DEVICE_ID_VEN_ID <<
TRIO_CFG_REGION_ADDR__REG_SHIFT) |
(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD <<
TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
(mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
__gxio_mmio_write32(trio_context->mmio_base_mac + reg_offset,
(TILERA_GX36_RC_DEV_ID <<
TRIO_PCIE_RC_DEVICE_ID_VEN_ID__DEV_ID_SHIFT) |
TILERA_VENDOR_ID);
/*
* Set the internal P2P bridge class code.
*/
reg_offset =
(TRIO_PCIE_RC_REVISION_ID <<
TRIO_CFG_REGION_ADDR__REG_SHIFT) |
(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD <<
TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
(mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
class_code_revision =
__gxio_mmio_read32(trio_context->mmio_base_mac +
reg_offset);
class_code_revision = (class_code_revision & 0xff ) |
(PCI_CLASS_BRIDGE_PCI << 16);
__gxio_mmio_write32(trio_context->mmio_base_mac +
reg_offset, class_code_revision);
#ifdef USE_SHARED_PCIE_CONFIG_REGION
/*
* Map in the MMIO space for the PIO region.
*/
offset = HV_TRIO_PIO_OFFSET(trio_context->pio_cfg_index) |
(((unsigned long long)mac) <<
TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR__MAC_SHIFT);
#else
/*
* Alloc a PIO region for PCI config access per MAC.
*/
ret = gxio_trio_alloc_pio_regions(trio_context, 1, 0, 0);
if (ret < 0) {
pr_err("PCI: PCI CFG PIO alloc failure for mac %d "
"on TRIO %d, give up\n", mac, trio_index);
/* TBD: cleanup ... */
continue;
}
trio_context->pio_cfg_index[mac] = ret;
/*
* For PIO CFG, the bus_address_hi parameter is 0.
*/
ret = gxio_trio_init_pio_region_aux(trio_context,
trio_context->pio_cfg_index[mac],
mac, 0, HV_TRIO_PIO_FLAG_CONFIG_SPACE);
if (ret < 0) {
pr_err("PCI: PCI CFG PIO init failure for mac %d "
"on TRIO %d, give up\n", mac, trio_index);
/* TBD: cleanup ... */
continue;
}
offset = HV_TRIO_PIO_OFFSET(trio_context->pio_cfg_index[mac]) |
(((unsigned long long)mac) <<
TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR__MAC_SHIFT);
#endif
trio_context->mmio_base_pio_cfg[mac] =
iorpc_ioremap(trio_context->fd, offset,
(1 << TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR__MAC_SHIFT));
if (trio_context->mmio_base_pio_cfg[mac] == NULL) {
pr_err("PCI: PIO map failure for mac %d on TRIO %d\n",
mac, trio_index);
/* TBD: cleanup ... */
continue;
}
/*
* Initialize the PCIe interrupts.
*/
if (tile_init_irqs(controller)) {
pr_err("PCI: IRQs init failure for mac %d on TRIO %d\n",
mac, trio_index);
continue;
}
pci_add_resource(&resources, &iomem_resource);
bus = pci_scan_root_bus(NULL, 0, controller->ops,
controller, &resources);
controller->root_bus = bus;
controller->last_busno = bus->subordinate;
}
/* Do machine dependent PCI interrupt routing */
pci_fixup_irqs(pci_common_swizzle, tile_map_irq);
/*
* This comes from the generic Linux PCI driver.
*
* It allocates all of the resources (I/O memory, etc)
* associated with the devices read in above.
*/
pci_assign_unassigned_resources();
/* Record the I/O resources in the PCI controller structure. */
for (i = 0; i < num_rc_controllers; i++) {
struct pci_controller *controller = &pci_controllers[i];
gxio_trio_context_t *trio_context = controller->trio;
struct pci_bus *root_bus = pci_controllers[i].root_bus;
struct pci_bus *next_bus;
uint32_t bus_address_hi;
struct pci_dev *dev;
int ret;
int j;
/*
* Skip controllers that are not properly initialized or
* have down links.
*/
if (root_bus == NULL)
continue;
/* Configure the max_payload_size values for this domain. */
fixup_read_and_payload_sizes(controller);
list_for_each_entry(dev, &root_bus->devices, bus_list) {
/* Find the PCI host controller, ie. the 1st bridge. */
if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI &&
(PCI_SLOT(dev->devfn) == 0)) {
next_bus = dev->subordinate;
pci_controllers[i].mem_resources[0] =
*next_bus->resource[0];
pci_controllers[i].mem_resources[1] =
*next_bus->resource[1];
pci_controllers[i].mem_resources[2] =
*next_bus->resource[2];
break;
}
}
if (pci_controllers[i].mem_resources[1].flags & IORESOURCE_MEM)
bus_address_hi =
pci_controllers[i].mem_resources[1].start >> 32;
else if (pci_controllers[i].mem_resources[2].flags & IORESOURCE_PREFETCH)
bus_address_hi =
pci_controllers[i].mem_resources[2].start >> 32;
else {
/* This is unlikely. */
pr_err("PCI: no memory resources on TRIO %d mac %d\n",
controller->trio_index, controller->mac);
continue;
}
/*
* We always assign 32-bit PCI bus BAR ranges.
*/
BUG_ON(bus_address_hi != 0);
/*
* Alloc a PIO region for PCI memory access for each RC port.
*/
ret = gxio_trio_alloc_pio_regions(trio_context, 1, 0, 0);
if (ret < 0) {
pr_err("PCI: MEM PIO alloc failure on TRIO %d mac %d, "
"give up\n", controller->trio_index,
controller->mac);
/* TBD: cleanup ... */
continue;
}
controller->pio_mem_index = ret;
/*
* For PIO MEM, the bus_address_hi parameter is hard-coded 0
* because we always assign 32-bit PCI bus BAR ranges.
*/
ret = gxio_trio_init_pio_region_aux(trio_context,
controller->pio_mem_index,
controller->mac,
bus_address_hi,
0);
if (ret < 0) {
pr_err("PCI: MEM PIO init failure on TRIO %d mac %d, "
"give up\n", controller->trio_index,
controller->mac);
/* TBD: cleanup ... */
continue;
}
/*
* Configure a Mem-Map region for each memory controller so
* that Linux can map all of its PA space to the PCI bus.
* Use the IOMMU to handle hash-for-home memory.
*/
for_each_online_node(j) {
unsigned long start_pfn = node_start_pfn[j];
unsigned long end_pfn = node_end_pfn[j];
unsigned long nr_pages = end_pfn - start_pfn;
ret = gxio_trio_alloc_memory_maps(trio_context, 1, 0,
0);
if (ret < 0) {
pr_err("PCI: Mem-Map alloc failure on TRIO %d "
"mac %d for MC %d, give up\n",
controller->trio_index,
controller->mac, j);
/* TBD: cleanup ... */
goto alloc_mem_map_failed;
}
controller->mem_maps[j] = ret;
/*
* Initialize the Mem-Map and the I/O MMU so that all
* the physical memory can be accessed by the endpoint
* devices. The base bus address is set to the base CPA
* of this memory controller, so is the base VA. The
* I/O MMU table essentially translates the CPA to
* the real PA.
*/
ret = gxio_trio_init_memory_map_mmu_aux(trio_context,
controller->mem_maps[j],
start_pfn << PAGE_SHIFT,
nr_pages << PAGE_SHIFT,
trio_context->asid,
controller->mac,
start_pfn << PAGE_SHIFT,
j,
GXIO_TRIO_ORDER_MODE_UNORDERED);
if (ret < 0) {
pr_err("PCI: Mem-Map init failure on TRIO %d "
"mac %d for MC %d, give up\n",
controller->trio_index,
controller->mac, j);
/* TBD: cleanup ... */
goto alloc_mem_map_failed;
}
continue;
alloc_mem_map_failed:
break;
}
}
return 0;
}
subsys_initcall(pcibios_init);
/*
* No bus fixups needed.
*/
void __devinit pcibios_fixup_bus(struct pci_bus *bus)
{
/* Nothing needs to be done. */
}
/*
* This can be called from the generic PCI layer, but doesn't need to
* do anything.
*/
char __devinit *pcibios_setup(char *str)
{
if (!strcmp(str, "off")) {
pci_probe = 0;
return NULL;
}
return str;
}
/*
* This is called from the generic Linux layer.
*/
void __devinit pcibios_update_irq(struct pci_dev *dev, int irq)
{
pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq);
}
/*
* Enable memory address decoding, as appropriate, for the
* device described by the 'dev' struct. The I/O decoding
* is disabled, though the TILE-Gx supports I/O addressing.
*
* This is called from the generic PCI layer, and can be called
* for bridges or endpoints.
*/
int pcibios_enable_device(struct pci_dev *dev, int mask)
{
return pci_enable_resources(dev, mask);
}
/* Map a PCI MMIO bus address into VA space. */
void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
{
struct pci_controller *controller = NULL;
resource_size_t bar_start;
resource_size_t bar_end;
resource_size_t offset;
resource_size_t start;
resource_size_t end;
int trio_fd;
int i, j;
start = phys_addr;
end = phys_addr + size - 1;
/*
* In the following, each PCI controller's mem_resources[1]
* represents its (non-prefetchable) PCI memory resource and
* mem_resources[2] refers to its prefetchable PCI memory resource.
* By searching phys_addr in each controller's mem_resources[], we can
* determine the controller that should accept the PCI memory access.
*/
for (i = 0; i < num_rc_controllers; i++) {
/*
* Skip controllers that are not properly initialized or
* have down links.
*/
if (pci_controllers[i].root_bus == NULL)
continue;
for (j = 1; j < 3; j++) {
bar_start =
pci_controllers[i].mem_resources[j].start;
bar_end =
pci_controllers[i].mem_resources[j].end;
if ((start >= bar_start) && (end <= bar_end)) {
controller = &pci_controllers[i];
goto got_it;
}
}
}
if (controller == NULL)
return NULL;
got_it:
trio_fd = controller->trio->fd;
offset = HV_TRIO_PIO_OFFSET(controller->pio_mem_index) + phys_addr;
/*
* We need to keep the PCI bus address's in-page offset in the VA.
*/
return iorpc_ioremap(trio_fd, offset, size) +
(phys_addr & (PAGE_SIZE - 1));
}
EXPORT_SYMBOL(ioremap);
void pci_iounmap(struct pci_dev *dev, void __iomem *addr)
{
iounmap(addr);
}
EXPORT_SYMBOL(pci_iounmap);
/****************************************************************
*
* Tile PCI config space read/write routines
*
****************************************************************/
/*
* These are the normal read and write ops
* These are expanded with macros from pci_bus_read_config_byte() etc.
*
* devfn is the combined PCI device & function.
*
* offset is in bytes, from the start of config space for the
* specified bus & device.
*/
static int __devinit tile_cfg_read(struct pci_bus *bus,
unsigned int devfn,
int offset,
int size,
u32 *val)
{
struct pci_controller *controller = bus->sysdata;
gxio_trio_context_t *trio_context = controller->trio;
int busnum = bus->number & 0xff;
int device = PCI_SLOT(devfn);
int function = PCI_FUNC(devfn);
int config_type = 1;
TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR_t cfg_addr;
void *mmio_addr;
/*
* Map all accesses to the local device (bus == 0) into the
* MMIO space of the MAC. Accesses to the downstream devices
* go to the PIO space.
*/
if (busnum == 0) {
if (device == 0) {
/*
* This is the internal downstream P2P bridge,
* access directly.
*/
unsigned int reg_offset;
reg_offset = ((offset & 0xFFF) <<
TRIO_CFG_REGION_ADDR__REG_SHIFT) |
(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_PROTECTED
<< TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
(controller->mac <<
TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
mmio_addr = trio_context->mmio_base_mac + reg_offset;
goto valid_device;
} else {
/*
* We fake an empty device for (device > 0),
* since there is only one device on bus 0.
*/
goto invalid_device;
}
}
/*
* Accesses to the directly attached device (bus == 1) have to be
* sent as type-0 configs.
*/
if (busnum == 1) {
/*
* There is only one device off of our built-in P2P bridge.
*/
if (device != 0)
goto invalid_device;
config_type = 0;
}
cfg_addr.word = 0;
cfg_addr.reg_addr = (offset & 0xFFF);
cfg_addr.fn = function;
cfg_addr.dev = device;
cfg_addr.bus = busnum;
cfg_addr.type = config_type;
/*
* Note that we don't set the mac field in cfg_addr because the
* mapping is per port.
*/
mmio_addr = trio_context->mmio_base_pio_cfg[controller->mac] +
cfg_addr.word;
valid_device:
switch (size) {
case 4:
*val = __gxio_mmio_read32(mmio_addr);
break;
case 2:
*val = __gxio_mmio_read16(mmio_addr);
break;
case 1:
*val = __gxio_mmio_read8(mmio_addr);
break;
default:
return PCIBIOS_FUNC_NOT_SUPPORTED;
}
TRACE_CFG_RD(size, *val, busnum, device, function, offset);
return 0;
invalid_device:
switch (size) {
case 4:
*val = 0xFFFFFFFF;
break;
case 2:
*val = 0xFFFF;
break;
case 1:
*val = 0xFF;
break;
default:
return PCIBIOS_FUNC_NOT_SUPPORTED;
}
return 0;
}
/*
* See tile_cfg_read() for relevent comments.
* Note that "val" is the value to write, not a pointer to that value.
*/
static int __devinit tile_cfg_write(struct pci_bus *bus,
unsigned int devfn,
int offset,
int size,
u32 val)
{
struct pci_controller *controller = bus->sysdata;
gxio_trio_context_t *trio_context = controller->trio;
int busnum = bus->number & 0xff;
int device = PCI_SLOT(devfn);
int function = PCI_FUNC(devfn);
int config_type = 1;
TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR_t cfg_addr;
void *mmio_addr;
u32 val_32 = (u32)val;
u16 val_16 = (u16)val;
u8 val_8 = (u8)val;
/*
* Map all accesses to the local device (bus == 0) into the
* MMIO space of the MAC. Accesses to the downstream devices
* go to the PIO space.
*/
if (busnum == 0) {
if (device == 0) {
/*
* This is the internal downstream P2P bridge,
* access directly.
*/
unsigned int reg_offset;
reg_offset = ((offset & 0xFFF) <<
TRIO_CFG_REGION_ADDR__REG_SHIFT) |
(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_PROTECTED
<< TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
(controller->mac <<
TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
mmio_addr = trio_context->mmio_base_mac + reg_offset;
goto valid_device;
} else {
/*
* We fake an empty device for (device > 0),
* since there is only one device on bus 0.
*/
goto invalid_device;
}
}
/*
* Accesses to the directly attached device (bus == 1) have to be
* sent as type-0 configs.
*/
if (busnum == 1) {
/*
* There is only one device off of our built-in P2P bridge.
*/
if (device != 0)
goto invalid_device;
config_type = 0;
}
cfg_addr.word = 0;
cfg_addr.reg_addr = (offset & 0xFFF);
cfg_addr.fn = function;
cfg_addr.dev = device;
cfg_addr.bus = busnum;
cfg_addr.type = config_type;
/*
* Note that we don't set the mac field in cfg_addr because the
* mapping is per port.
*/
mmio_addr = trio_context->mmio_base_pio_cfg[controller->mac] +
cfg_addr.word;
valid_device:
switch (size) {
case 4:
__gxio_mmio_write32(mmio_addr, val_32);
TRACE_CFG_WR(size, val_32, busnum, device, function, offset);
break;
case 2:
__gxio_mmio_write16(mmio_addr, val_16);
TRACE_CFG_WR(size, val_16, busnum, device, function, offset);
break;
case 1:
__gxio_mmio_write8(mmio_addr, val_8);
TRACE_CFG_WR(size, val_8, busnum, device, function, offset);
break;
default:
return PCIBIOS_FUNC_NOT_SUPPORTED;
}
invalid_device:
return 0;
}
static struct pci_ops tile_cfg_ops = {
.read = tile_cfg_read,
.write = tile_cfg_write,
};
/*
* MSI support starts here.
*/
static unsigned int
tilegx_msi_startup(struct irq_data *d)
{
if (d->msi_desc)
unmask_msi_irq(d);
return 0;
}
static void
tilegx_msi_ack(struct irq_data *d)
{
__insn_mtspr(SPR_IPI_EVENT_RESET_K, 1UL << d->irq);
}
static void
tilegx_msi_mask(struct irq_data *d)
{
mask_msi_irq(d);
__insn_mtspr(SPR_IPI_MASK_SET_K, 1UL << d->irq);
}
static void
tilegx_msi_unmask(struct irq_data *d)
{
__insn_mtspr(SPR_IPI_MASK_RESET_K, 1UL << d->irq);
unmask_msi_irq(d);
}
static struct irq_chip tilegx_msi_chip = {
.name = "tilegx_msi",
.irq_startup = tilegx_msi_startup,
.irq_ack = tilegx_msi_ack,
.irq_mask = tilegx_msi_mask,
.irq_unmask = tilegx_msi_unmask,
/* TBD: support set_affinity. */
};
int arch_setup_msi_irq(struct pci_dev *pdev, struct msi_desc *desc)
{
struct pci_controller *controller;
gxio_trio_context_t *trio_context;
struct msi_msg msg;
int default_irq;
uint64_t mem_map_base;
uint64_t mem_map_limit;
u64 msi_addr;
int mem_map;
int cpu;
int irq;
int ret;
irq = create_irq();
if (irq < 0)
return irq;
/*
* Since we use a 64-bit Mem-Map to accept the MSI write, we fail
* devices that are not capable of generating a 64-bit message address.
* These devices will fall back to using the legacy interrupts.
* Most PCIe endpoint devices do support 64-bit message addressing.
*/
if (desc->msi_attrib.is_64 == 0) {
dev_printk(KERN_INFO, &pdev->dev,
"64-bit MSI message address not supported, "
"falling back to legacy interrupts.\n");
ret = -ENOMEM;
goto is_64_failure;
}
default_irq = desc->msi_attrib.default_irq;
controller = irq_get_handler_data(default_irq);
BUG_ON(!controller);
trio_context = controller->trio;
/*
* Allocate the Mem-Map that will accept the MSI write and
* trigger the TILE-side interrupts.
*/
mem_map = gxio_trio_alloc_memory_maps(trio_context, 1, 0, 0);
if (mem_map < 0) {
dev_printk(KERN_INFO, &pdev->dev,
"%s Mem-Map alloc failure. "
"Failed to initialize MSI interrupts. "
"Falling back to legacy interrupts.\n",
desc->msi_attrib.is_msix ? "MSI-X" : "MSI");
ret = -ENOMEM;
goto msi_mem_map_alloc_failure;
}
/* We try to distribute different IRQs to different tiles. */
cpu = tile_irq_cpu(irq);
/*
* Now call up to the HV to configure the Mem-Map interrupt and
* set up the IPI binding.
*/
mem_map_base = MEM_MAP_INTR_REGIONS_BASE +
mem_map * MEM_MAP_INTR_REGION_SIZE;
mem_map_limit = mem_map_base + MEM_MAP_INTR_REGION_SIZE - 1;
ret = gxio_trio_config_msi_intr(trio_context, cpu_x(cpu), cpu_y(cpu),
KERNEL_PL, irq, controller->mac,
mem_map, mem_map_base, mem_map_limit,
trio_context->asid);
if (ret < 0) {
dev_printk(KERN_INFO, &pdev->dev, "HV MSI config failed.\n");
goto hv_msi_config_failure;
}
irq_set_msi_desc(irq, desc);
msi_addr = mem_map_base + TRIO_MAP_MEM_REG_INT3 - TRIO_MAP_MEM_REG_INT0;
msg.address_hi = msi_addr >> 32;
msg.address_lo = msi_addr & 0xffffffff;
msg.data = mem_map;
write_msi_msg(irq, &msg);
irq_set_chip_and_handler(irq, &tilegx_msi_chip, handle_level_irq);
irq_set_handler_data(irq, controller);
return 0;
hv_msi_config_failure:
/* Free mem-map */
msi_mem_map_alloc_failure:
is_64_failure:
destroy_irq(irq);
return ret;
}
void arch_teardown_msi_irq(unsigned int irq)
{
destroy_irq(irq);
}
...@@ -1344,6 +1344,7 @@ void __init setup_arch(char **cmdline_p) ...@@ -1344,6 +1344,7 @@ void __init setup_arch(char **cmdline_p)
#ifdef CONFIG_PCI #ifdef CONFIG_PCI
#if !defined (__tilegx__)
/* /*
* Initialize the PCI structures. This is done before memory * Initialize the PCI structures. This is done before memory
* setup so that we know whether or not a pci_reserve region * setup so that we know whether or not a pci_reserve region
...@@ -1351,6 +1352,7 @@ void __init setup_arch(char **cmdline_p) ...@@ -1351,6 +1352,7 @@ void __init setup_arch(char **cmdline_p)
*/ */
if (tile_pci_init() == 0) if (tile_pci_init() == 0)
pci_reserve_mb = 0; pci_reserve_mb = 0;
#endif
/* PCI systems reserve a region just below 4GB for mapping iomem. */ /* PCI systems reserve a region just below 4GB for mapping iomem. */
pci_reserve_end_pfn = (1 << (32 - PAGE_SHIFT)); pci_reserve_end_pfn = (1 << (32 - PAGE_SHIFT));
...@@ -1379,6 +1381,10 @@ void __init setup_arch(char **cmdline_p) ...@@ -1379,6 +1381,10 @@ void __init setup_arch(char **cmdline_p)
setup_cpu(1); setup_cpu(1);
setup_clock(); setup_clock();
load_hv_initrd(); load_hv_initrd();
#if defined(CONFIG_PCI) && defined (__tilegx__)
tile_pci_init();
#endif
} }
......
...@@ -575,13 +575,6 @@ void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size, ...@@ -575,13 +575,6 @@ void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
} }
EXPORT_SYMBOL(ioremap_prot); EXPORT_SYMBOL(ioremap_prot);
/* Map a PCI MMIO bus address into VA space. */
void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
{
panic("ioremap for PCI MMIO is not supported");
}
EXPORT_SYMBOL(ioremap);
/* Unmap an MMIO VA mapping. */ /* Unmap an MMIO VA mapping. */
void iounmap(volatile void __iomem *addr_in) void iounmap(volatile void __iomem *addr_in)
{ {
......
...@@ -2143,9 +2143,9 @@ DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82865_HB, ...@@ -2143,9 +2143,9 @@ DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82865_HB,
DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82875_HB, DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82875_HB,
quirk_unhide_mch_dev6); quirk_unhide_mch_dev6);
#ifdef CONFIG_TILE #ifdef CONFIG_TILEPRO
/* /*
* The Tilera TILEmpower platform needs to set the link speed * The Tilera TILEmpower tilepro platform needs to set the link speed
* to 2.5GT(Giga-Transfers)/s (Gen 1). The default link speed * to 2.5GT(Giga-Transfers)/s (Gen 1). The default link speed
* setting is 5GT/s (Gen 2). 0x98 is the Link Control2 PCIe * setting is 5GT/s (Gen 2). 0x98 is the Link Control2 PCIe
* capability register of the PEX8624 PCIe switch. The switch * capability register of the PEX8624 PCIe switch. The switch
...@@ -2160,7 +2160,7 @@ static void __devinit quirk_tile_plx_gen1(struct pci_dev *dev) ...@@ -2160,7 +2160,7 @@ static void __devinit quirk_tile_plx_gen1(struct pci_dev *dev)
} }
} }
DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_PLX, 0x8624, quirk_tile_plx_gen1); DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_PLX, 0x8624, quirk_tile_plx_gen1);
#endif /* CONFIG_TILE */ #endif /* CONFIG_TILEPRO */
#ifdef CONFIG_PCI_MSI #ifdef CONFIG_PCI_MSI
/* Some chipsets do not support MSI. We cannot easily rely on setting /* Some chipsets do not support MSI. We cannot easily rely on setting
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment