Commit 13a62fd9 authored by Qu Wenruo's avatar Qu Wenruo Committed by David Sterba

btrfs: scrub: remove scrub_bio structure

Since scrub path has been fully moved to scrub_stripe based facilities,
no more scrub_bio would be submitted.
Thus we can remove it completely, this involves:

- SCRUB_SECTORS_PER_BIO macro
- SCRUB_BIOS_PER_SCTX macro
- SCRUB_MAX_PAGES macro
- BTRFS_MAX_MIRRORS macro
- scrub_bio structure
- scrub_ctx::bios member
- scrub_ctx::curr member
- scrub_ctx::bios_in_flight member
- scrub_ctx::workers_pending member
- scrub_ctx::list_lock member
- scrub_ctx::list_wait member

- function scrub_bio_end_io_worker()
- function scrub_pending_bio_inc()
- function scrub_pending_bio_dec()
- function scrub_throttle()
- function scrub_submit()

- function scrub_find_csum()
- function drop_csum_range()

- Some unnecessary flush and scrub pauses
Signed-off-by: default avatarQu Wenruo <wqu@suse.com>
Reviewed-by: default avatarDavid Sterba <dsterba@suse.com>
Signed-off-by: default avatarDavid Sterba <dsterba@suse.com>
parent 001e3fc2
......@@ -41,14 +41,10 @@
struct scrub_ctx;
/*
* The following three values only influence the performance.
* The following value only influences the performance.
*
* The last one configures the number of parallel and outstanding I/O
* operations. The first one configures an upper limit for the number
* of (dynamically allocated) pages that are added to a bio.
* This determines the batch size for stripe submitted in one go.
*/
#define SCRUB_SECTORS_PER_BIO 32 /* 128KiB per bio for 4KiB pages */
#define SCRUB_BIOS_PER_SCTX 64 /* 8MiB per device in flight for 4KiB pages */
#define SCRUB_STRIPES_PER_SCTX 8 /* That would be 8 64K stripe per-device. */
/*
......@@ -57,19 +53,6 @@ struct scrub_ctx;
*/
#define SCRUB_MAX_SECTORS_PER_BLOCK (BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
#define SCRUB_MAX_PAGES (DIV_ROUND_UP(BTRFS_MAX_METADATA_BLOCKSIZE, PAGE_SIZE))
/*
* Maximum number of mirrors that can be available for all profiles counting
* the target device of dev-replace as one. During an active device replace
* procedure, the target device of the copy operation is a mirror for the
* filesystem data as well that can be used to read data in order to repair
* read errors on other disks.
*
* Current value is derived from RAID1C4 with 4 copies.
*/
#define BTRFS_MAX_MIRRORS (4 + 1)
/* Represent one sector and its needed info to verify the content. */
struct scrub_sector_verification {
bool is_metadata;
......@@ -182,31 +165,12 @@ struct scrub_stripe {
struct work_struct work;
};
struct scrub_bio {
int index;
struct scrub_ctx *sctx;
struct btrfs_device *dev;
struct bio *bio;
blk_status_t status;
u64 logical;
u64 physical;
int sector_count;
int next_free;
struct work_struct work;
};
struct scrub_ctx {
struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX];
struct scrub_stripe stripes[SCRUB_STRIPES_PER_SCTX];
struct scrub_stripe *raid56_data_stripes;
struct btrfs_fs_info *fs_info;
int first_free;
int curr;
int cur_stripe;
atomic_t bios_in_flight;
atomic_t workers_pending;
spinlock_t list_lock;
wait_queue_head_t list_wait;
struct list_head csum_list;
atomic_t cancel_req;
int readonly;
......@@ -305,22 +269,8 @@ static void wait_scrub_stripe_io(struct scrub_stripe *stripe)
wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0);
}
static void scrub_bio_end_io_worker(struct work_struct *work);
static void scrub_put_ctx(struct scrub_ctx *sctx);
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
refcount_inc(&sctx->refs);
atomic_inc(&sctx->bios_in_flight);
}
static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
atomic_dec(&sctx->bios_in_flight);
wake_up(&sctx->list_wait);
scrub_put_ctx(sctx);
}
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
while (atomic_read(&fs_info->scrub_pause_req)) {
......@@ -371,21 +321,6 @@ static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
if (!sctx)
return;
/* this can happen when scrub is cancelled */
if (sctx->curr != -1) {
struct scrub_bio *sbio = sctx->bios[sctx->curr];
bio_put(sbio->bio);
}
for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
struct scrub_bio *sbio = sctx->bios[i];
if (!sbio)
break;
kfree(sbio);
}
for (i = 0; i < SCRUB_STRIPES_PER_SCTX; i++)
release_scrub_stripe(&sctx->stripes[i]);
......@@ -410,28 +345,8 @@ static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
goto nomem;
refcount_set(&sctx->refs, 1);
sctx->is_dev_replace = is_dev_replace;
sctx->sectors_per_bio = SCRUB_SECTORS_PER_BIO;
sctx->curr = -1;
sctx->fs_info = fs_info;
INIT_LIST_HEAD(&sctx->csum_list);
for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
struct scrub_bio *sbio;
sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
if (!sbio)
goto nomem;
sctx->bios[i] = sbio;
sbio->index = i;
sbio->sctx = sctx;
sbio->sector_count = 0;
INIT_WORK(&sbio->work, scrub_bio_end_io_worker);
if (i != SCRUB_BIOS_PER_SCTX - 1)
sctx->bios[i]->next_free = i + 1;
else
sctx->bios[i]->next_free = -1;
}
for (i = 0; i < SCRUB_STRIPES_PER_SCTX; i++) {
int ret;
......@@ -441,13 +356,9 @@ static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
sctx->stripes[i].sctx = sctx;
}
sctx->first_free = 0;
atomic_set(&sctx->bios_in_flight, 0);
atomic_set(&sctx->workers_pending, 0);
atomic_set(&sctx->cancel_req, 0);
spin_lock_init(&sctx->list_lock);
spin_lock_init(&sctx->stat_lock);
init_waitqueue_head(&sctx->list_wait);
sctx->throttle_deadline = 0;
mutex_init(&sctx->wr_lock);
......@@ -1286,6 +1197,10 @@ static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *str
}
}
/*
* Throttling of IO submission, bandwidth-limit based, the timeslice is 1
* second. Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
*/
static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device,
unsigned int bio_size)
{
......@@ -1338,112 +1253,6 @@ static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *d
sctx->throttle_deadline = 0;
}
/*
* Throttling of IO submission, bandwidth-limit based, the timeslice is 1
* second. Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
*/
static void scrub_throttle(struct scrub_ctx *sctx)
{
struct scrub_bio *sbio = sctx->bios[sctx->curr];
scrub_throttle_dev_io(sctx, sbio->dev, sbio->bio->bi_iter.bi_size);
}
static void scrub_submit(struct scrub_ctx *sctx)
{
struct scrub_bio *sbio;
if (sctx->curr == -1)
return;
scrub_throttle(sctx);
sbio = sctx->bios[sctx->curr];
sctx->curr = -1;
scrub_pending_bio_inc(sctx);
btrfsic_check_bio(sbio->bio);
submit_bio(sbio->bio);
}
static void scrub_bio_end_io_worker(struct work_struct *work)
{
struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
struct scrub_ctx *sctx = sbio->sctx;
ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO);
bio_put(sbio->bio);
sbio->bio = NULL;
spin_lock(&sctx->list_lock);
sbio->next_free = sctx->first_free;
sctx->first_free = sbio->index;
spin_unlock(&sctx->list_lock);
scrub_pending_bio_dec(sctx);
}
static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum)
{
sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits;
list_del(&sum->list);
kfree(sum);
}
/*
* Find the desired csum for range [logical, logical + sectorsize), and store
* the csum into @csum.
*
* The search source is sctx->csum_list, which is a pre-populated list
* storing bytenr ordered csum ranges. We're responsible to cleanup any range
* that is before @logical.
*
* Return 0 if there is no csum for the range.
* Return 1 if there is csum for the range and copied to @csum.
*/
int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
{
bool found = false;
while (!list_empty(&sctx->csum_list)) {
struct btrfs_ordered_sum *sum = NULL;
unsigned long index;
unsigned long num_sectors;
sum = list_first_entry(&sctx->csum_list,
struct btrfs_ordered_sum, list);
/* The current csum range is beyond our range, no csum found */
if (sum->bytenr > logical)
break;
/*
* The current sum is before our bytenr, since scrub is always
* done in bytenr order, the csum will never be used anymore,
* clean it up so that later calls won't bother with the range,
* and continue search the next range.
*/
if (sum->bytenr + sum->len <= logical) {
drop_csum_range(sctx, sum);
continue;
}
/* Now the csum range covers our bytenr, copy the csum */
found = true;
index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits;
num_sectors = sum->len >> sctx->fs_info->sectorsize_bits;
memcpy(csum, sum->sums + index * sctx->fs_info->csum_size,
sctx->fs_info->csum_size);
/* Cleanup the range if we're at the end of the csum range */
if (index == num_sectors - 1)
drop_csum_range(sctx, sum);
break;
}
if (!found)
return 0;
return 1;
}
/*
* Given a physical address, this will calculate it's
* logical offset. if this is a parity stripe, it will return
......@@ -1624,8 +1433,6 @@ static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
if (!btrfs_is_zoned(fs_info))
return 0;
wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
mutex_lock(&sctx->wr_lock);
if (sctx->write_pointer < physical_end) {
ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
......@@ -2153,11 +1960,6 @@ static int scrub_simple_mirror(struct scrub_ctx *sctx,
/* Paused? */
if (atomic_read(&fs_info->scrub_pause_req)) {
/* Push queued extents */
scrub_submit(sctx);
mutex_lock(&sctx->wr_lock);
mutex_unlock(&sctx->wr_lock);
wait_event(sctx->list_wait,
atomic_read(&sctx->bios_in_flight) == 0);
scrub_blocked_if_needed(fs_info);
}
/* Block group removed? */
......@@ -2285,8 +2087,6 @@ static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
u64 stripe_logical;
int stop_loop = 0;
wait_event(sctx->list_wait,
atomic_read(&sctx->bios_in_flight) == 0);
scrub_blocked_if_needed(fs_info);
if (sctx->is_dev_replace &&
......@@ -2402,8 +2202,6 @@ static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
break;
}
out:
/* push queued extents */
scrub_submit(sctx);
flush_scrub_stripes(sctx);
if (sctx->raid56_data_stripes) {
for (int i = 0; i < nr_data_stripes(map); i++)
......@@ -2728,34 +2526,6 @@ int scrub_enumerate_chunks(struct scrub_ctx *sctx,
ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
dev_extent_len);
/*
* flush, submit all pending read and write bios, afterwards
* wait for them.
* Note that in the dev replace case, a read request causes
* write requests that are submitted in the read completion
* worker. Therefore in the current situation, it is required
* that all write requests are flushed, so that all read and
* write requests are really completed when bios_in_flight
* changes to 0.
*/
scrub_submit(sctx);
wait_event(sctx->list_wait,
atomic_read(&sctx->bios_in_flight) == 0);
scrub_pause_on(fs_info);
/*
* must be called before we decrease @scrub_paused.
* make sure we don't block transaction commit while
* we are waiting pending workers finished.
*/
wait_event(sctx->list_wait,
atomic_read(&sctx->workers_pending) == 0);
scrub_pause_off(fs_info);
if (sctx->is_dev_replace &&
!btrfs_finish_block_group_to_copy(dev_replace->srcdev,
cache, found_key.offset))
......@@ -3086,12 +2856,9 @@ int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
ret = scrub_enumerate_chunks(sctx, dev, start, end);
memalloc_nofs_restore(nofs_flag);
wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
atomic_dec(&fs_info->scrubs_running);
wake_up(&fs_info->scrub_pause_wait);
wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
if (progress)
memcpy(progress, &sctx->stat, sizeof(*progress));
......
......@@ -13,9 +13,4 @@ int btrfs_scrub_cancel_dev(struct btrfs_device *dev);
int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
struct btrfs_scrub_progress *progress);
/* Temporary declaration, would be deleted later. */
struct scrub_ctx;
struct scrub_block;
int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum);
#endif
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment