Commit 156d0e29 authored by Naveen N. Rao's avatar Naveen N. Rao Committed by Michael Ellerman

powerpc/ebpf/jit: Implement JIT compiler for extended BPF

PPC64 eBPF JIT compiler.

Enable with:
  echo 1 > /proc/sys/net/core/bpf_jit_enable
or
  echo 2 > /proc/sys/net/core/bpf_jit_enable

... to see the generated JIT code. This can further be processed with
tools/net/bpf_jit_disasm.

With CONFIG_TEST_BPF=m and 'modprobe test_bpf':

 test_bpf: Summary: 305 PASSED, 0 FAILED, [297/297 JIT'ed]

... on both ppc64 BE and LE.

The details of the approach are documented through various comments in
the code.
Acked-by: default avatarAlexei Starovoitov <ast@kernel.org>
Signed-off-by: default avatarNaveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Signed-off-by: default avatarMichael Ellerman <mpe@ellerman.id.au>
parent 6ac0ba5a
......@@ -128,7 +128,8 @@ config PPC
select IRQ_FORCED_THREADING
select HAVE_RCU_TABLE_FREE if SMP
select HAVE_SYSCALL_TRACEPOINTS
select HAVE_CBPF_JIT
select HAVE_CBPF_JIT if !PPC64
select HAVE_EBPF_JIT if PPC64
select HAVE_ARCH_JUMP_LABEL
select ARCH_HAVE_NMI_SAFE_CMPXCHG
select ARCH_HAS_GCOV_PROFILE_ALL
......
......@@ -36,11 +36,13 @@
#define PPC_MIN_STKFRM 112
#ifdef __BIG_ENDIAN__
#define LHZX_BE stringify_in_c(lhzx)
#define LWZX_BE stringify_in_c(lwzx)
#define LDX_BE stringify_in_c(ldx)
#define STWX_BE stringify_in_c(stwx)
#define STDX_BE stringify_in_c(stdx)
#else
#define LHZX_BE stringify_in_c(lhbrx)
#define LWZX_BE stringify_in_c(lwbrx)
#define LDX_BE stringify_in_c(ldbrx)
#define STWX_BE stringify_in_c(stwbrx)
......
......@@ -142,9 +142,11 @@
#define PPC_INST_ISEL 0x7c00001e
#define PPC_INST_ISEL_MASK 0xfc00003e
#define PPC_INST_LDARX 0x7c0000a8
#define PPC_INST_STDCX 0x7c0001ad
#define PPC_INST_LSWI 0x7c0004aa
#define PPC_INST_LSWX 0x7c00042a
#define PPC_INST_LWARX 0x7c000028
#define PPC_INST_STWCX 0x7c00012d
#define PPC_INST_LWSYNC 0x7c2004ac
#define PPC_INST_SYNC 0x7c0004ac
#define PPC_INST_SYNC_MASK 0xfc0007fe
......@@ -211,8 +213,11 @@
#define PPC_INST_LBZ 0x88000000
#define PPC_INST_LD 0xe8000000
#define PPC_INST_LHZ 0xa0000000
#define PPC_INST_LHBRX 0x7c00062c
#define PPC_INST_LWZ 0x80000000
#define PPC_INST_LHBRX 0x7c00062c
#define PPC_INST_LDBRX 0x7c000428
#define PPC_INST_STB 0x98000000
#define PPC_INST_STH 0xb0000000
#define PPC_INST_STD 0xf8000000
#define PPC_INST_STDU 0xf8000001
#define PPC_INST_STW 0x90000000
......@@ -221,22 +226,34 @@
#define PPC_INST_MTLR 0x7c0803a6
#define PPC_INST_CMPWI 0x2c000000
#define PPC_INST_CMPDI 0x2c200000
#define PPC_INST_CMPW 0x7c000000
#define PPC_INST_CMPD 0x7c200000
#define PPC_INST_CMPLW 0x7c000040
#define PPC_INST_CMPLD 0x7c200040
#define PPC_INST_CMPLWI 0x28000000
#define PPC_INST_CMPLDI 0x28200000
#define PPC_INST_ADDI 0x38000000
#define PPC_INST_ADDIS 0x3c000000
#define PPC_INST_ADD 0x7c000214
#define PPC_INST_SUB 0x7c000050
#define PPC_INST_BLR 0x4e800020
#define PPC_INST_BLRL 0x4e800021
#define PPC_INST_MULLD 0x7c0001d2
#define PPC_INST_MULLW 0x7c0001d6
#define PPC_INST_MULHWU 0x7c000016
#define PPC_INST_MULLI 0x1c000000
#define PPC_INST_DIVWU 0x7c000396
#define PPC_INST_DIVD 0x7c0003d2
#define PPC_INST_RLWINM 0x54000000
#define PPC_INST_RLWIMI 0x50000000
#define PPC_INST_RLDICL 0x78000000
#define PPC_INST_RLDICR 0x78000004
#define PPC_INST_SLW 0x7c000030
#define PPC_INST_SLD 0x7c000036
#define PPC_INST_SRW 0x7c000430
#define PPC_INST_SRD 0x7c000436
#define PPC_INST_SRAD 0x7c000634
#define PPC_INST_SRADI 0x7c000674
#define PPC_INST_AND 0x7c000038
#define PPC_INST_ANDDOT 0x7c000039
#define PPC_INST_OR 0x7c000378
......@@ -247,6 +264,7 @@
#define PPC_INST_XORI 0x68000000
#define PPC_INST_XORIS 0x6c000000
#define PPC_INST_NEG 0x7c0000d0
#define PPC_INST_EXTSW 0x7c0007b4
#define PPC_INST_BRANCH 0x48000000
#define PPC_INST_BRANCH_COND 0x40800000
#define PPC_INST_LBZCIX 0x7c0006aa
......
#
# Arch-specific network modules
#
ifeq ($(CONFIG_PPC64),y)
obj-$(CONFIG_BPF_JIT) += bpf_jit_asm64.o bpf_jit_comp64.o
else
obj-$(CONFIG_BPF_JIT) += bpf_jit_asm.o bpf_jit_comp.o
endif
......@@ -2,6 +2,7 @@
* bpf_jit.h: BPF JIT compiler for PPC
*
* Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation
* 2016 Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
......@@ -13,7 +14,9 @@
#ifndef __ASSEMBLY__
#ifdef CONFIG_PPC64
#include <asm/types.h>
#ifdef PPC64_ELF_ABI_v1
#define FUNCTION_DESCR_SIZE 24
#else
#define FUNCTION_DESCR_SIZE 0
......@@ -52,6 +55,10 @@
___PPC_RA(base) | IMM_L(i))
#define PPC_STWU(r, base, i) EMIT(PPC_INST_STWU | ___PPC_RS(r) | \
___PPC_RA(base) | IMM_L(i))
#define PPC_STH(r, base, i) EMIT(PPC_INST_STH | ___PPC_RS(r) | \
___PPC_RA(base) | IMM_L(i))
#define PPC_STB(r, base, i) EMIT(PPC_INST_STB | ___PPC_RS(r) | \
___PPC_RA(base) | IMM_L(i))
#define PPC_LBZ(r, base, i) EMIT(PPC_INST_LBZ | ___PPC_RT(r) | \
___PPC_RA(base) | IMM_L(i))
......@@ -63,6 +70,19 @@
___PPC_RA(base) | IMM_L(i))
#define PPC_LHBRX(r, base, b) EMIT(PPC_INST_LHBRX | ___PPC_RT(r) | \
___PPC_RA(base) | ___PPC_RB(b))
#define PPC_LDBRX(r, base, b) EMIT(PPC_INST_LDBRX | ___PPC_RT(r) | \
___PPC_RA(base) | ___PPC_RB(b))
#define PPC_BPF_LDARX(t, a, b, eh) EMIT(PPC_INST_LDARX | ___PPC_RT(t) | \
___PPC_RA(a) | ___PPC_RB(b) | \
__PPC_EH(eh))
#define PPC_BPF_LWARX(t, a, b, eh) EMIT(PPC_INST_LWARX | ___PPC_RT(t) | \
___PPC_RA(a) | ___PPC_RB(b) | \
__PPC_EH(eh))
#define PPC_BPF_STWCX(s, a, b) EMIT(PPC_INST_STWCX | ___PPC_RS(s) | \
___PPC_RA(a) | ___PPC_RB(b))
#define PPC_BPF_STDCX(s, a, b) EMIT(PPC_INST_STDCX | ___PPC_RS(s) | \
___PPC_RA(a) | ___PPC_RB(b))
#ifdef CONFIG_PPC64
#define PPC_BPF_LL(r, base, i) do { PPC_LD(r, base, i); } while(0)
......@@ -76,14 +96,23 @@
#define PPC_CMPWI(a, i) EMIT(PPC_INST_CMPWI | ___PPC_RA(a) | IMM_L(i))
#define PPC_CMPDI(a, i) EMIT(PPC_INST_CMPDI | ___PPC_RA(a) | IMM_L(i))
#define PPC_CMPW(a, b) EMIT(PPC_INST_CMPW | ___PPC_RA(a) | \
___PPC_RB(b))
#define PPC_CMPD(a, b) EMIT(PPC_INST_CMPD | ___PPC_RA(a) | \
___PPC_RB(b))
#define PPC_CMPLWI(a, i) EMIT(PPC_INST_CMPLWI | ___PPC_RA(a) | IMM_L(i))
#define PPC_CMPLDI(a, i) EMIT(PPC_INST_CMPLDI | ___PPC_RA(a) | IMM_L(i))
#define PPC_CMPLW(a, b) EMIT(PPC_INST_CMPLW | ___PPC_RA(a) | \
___PPC_RB(b))
#define PPC_CMPLD(a, b) EMIT(PPC_INST_CMPLD | ___PPC_RA(a) | \
___PPC_RB(b))
#define PPC_SUB(d, a, b) EMIT(PPC_INST_SUB | ___PPC_RT(d) | \
___PPC_RB(a) | ___PPC_RA(b))
#define PPC_ADD(d, a, b) EMIT(PPC_INST_ADD | ___PPC_RT(d) | \
___PPC_RA(a) | ___PPC_RB(b))
#define PPC_MULD(d, a, b) EMIT(PPC_INST_MULLD | ___PPC_RT(d) | \
___PPC_RA(a) | ___PPC_RB(b))
#define PPC_MULW(d, a, b) EMIT(PPC_INST_MULLW | ___PPC_RT(d) | \
___PPC_RA(a) | ___PPC_RB(b))
#define PPC_MULHWU(d, a, b) EMIT(PPC_INST_MULHWU | ___PPC_RT(d) | \
......@@ -92,6 +121,8 @@
___PPC_RA(a) | IMM_L(i))
#define PPC_DIVWU(d, a, b) EMIT(PPC_INST_DIVWU | ___PPC_RT(d) | \
___PPC_RA(a) | ___PPC_RB(b))
#define PPC_DIVD(d, a, b) EMIT(PPC_INST_DIVD | ___PPC_RT(d) | \
___PPC_RA(a) | ___PPC_RB(b))
#define PPC_AND(d, a, b) EMIT(PPC_INST_AND | ___PPC_RA(d) | \
___PPC_RS(a) | ___PPC_RB(b))
#define PPC_ANDI(d, a, i) EMIT(PPC_INST_ANDI | ___PPC_RA(d) | \
......@@ -100,6 +131,7 @@
___PPC_RS(a) | ___PPC_RB(b))
#define PPC_OR(d, a, b) EMIT(PPC_INST_OR | ___PPC_RA(d) | \
___PPC_RS(a) | ___PPC_RB(b))
#define PPC_MR(d, a) PPC_OR(d, a, a)
#define PPC_ORI(d, a, i) EMIT(PPC_INST_ORI | ___PPC_RA(d) | \
___PPC_RS(a) | IMM_L(i))
#define PPC_ORIS(d, a, i) EMIT(PPC_INST_ORIS | ___PPC_RA(d) | \
......@@ -110,13 +142,30 @@
___PPC_RS(a) | IMM_L(i))
#define PPC_XORIS(d, a, i) EMIT(PPC_INST_XORIS | ___PPC_RA(d) | \
___PPC_RS(a) | IMM_L(i))
#define PPC_EXTSW(d, a) EMIT(PPC_INST_EXTSW | ___PPC_RA(d) | \
___PPC_RS(a))
#define PPC_SLW(d, a, s) EMIT(PPC_INST_SLW | ___PPC_RA(d) | \
___PPC_RS(a) | ___PPC_RB(s))
#define PPC_SLD(d, a, s) EMIT(PPC_INST_SLD | ___PPC_RA(d) | \
___PPC_RS(a) | ___PPC_RB(s))
#define PPC_SRW(d, a, s) EMIT(PPC_INST_SRW | ___PPC_RA(d) | \
___PPC_RS(a) | ___PPC_RB(s))
#define PPC_SRD(d, a, s) EMIT(PPC_INST_SRD | ___PPC_RA(d) | \
___PPC_RS(a) | ___PPC_RB(s))
#define PPC_SRAD(d, a, s) EMIT(PPC_INST_SRAD | ___PPC_RA(d) | \
___PPC_RS(a) | ___PPC_RB(s))
#define PPC_SRADI(d, a, i) EMIT(PPC_INST_SRADI | ___PPC_RA(d) | \
___PPC_RS(a) | __PPC_SH(i) | \
(((i) & 0x20) >> 4))
#define PPC_RLWINM(d, a, i, mb, me) EMIT(PPC_INST_RLWINM | ___PPC_RA(d) | \
___PPC_RS(a) | __PPC_SH(i) | \
__PPC_MB(mb) | __PPC_ME(me))
#define PPC_RLWIMI(d, a, i, mb, me) EMIT(PPC_INST_RLWIMI | ___PPC_RA(d) | \
___PPC_RS(a) | __PPC_SH(i) | \
__PPC_MB(mb) | __PPC_ME(me))
#define PPC_RLDICL(d, a, i, mb) EMIT(PPC_INST_RLDICL | ___PPC_RA(d) | \
___PPC_RS(a) | __PPC_SH(i) | \
__PPC_MB64(mb) | (((i) & 0x20) >> 4))
#define PPC_RLDICR(d, a, i, me) EMIT(PPC_INST_RLDICR | ___PPC_RA(d) | \
___PPC_RS(a) | __PPC_SH(i) | \
__PPC_ME64(me) | (((i) & 0x20) >> 4))
......@@ -127,6 +176,8 @@
#define PPC_SRWI(d, a, i) PPC_RLWINM(d, a, 32-(i), i, 31)
/* sldi = rldicr Rx, Ry, n, 63-n */
#define PPC_SLDI(d, a, i) PPC_RLDICR(d, a, i, 63-(i))
/* sldi = rldicl Rx, Ry, 64-n, n */
#define PPC_SRDI(d, a, i) PPC_RLDICL(d, a, 64-(i), i)
#define PPC_NEG(d, a) EMIT(PPC_INST_NEG | ___PPC_RT(d) | ___PPC_RA(a))
......
/*
* bpf_jit64.h: BPF JIT compiler for PPC64
*
* Copyright 2016 Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
* IBM Corporation
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; version 2
* of the License.
*/
#ifndef _BPF_JIT64_H
#define _BPF_JIT64_H
#include "bpf_jit.h"
/*
* Stack layout:
*
* [ prev sp ] <-------------
* [ nv gpr save area ] 8*8 |
* fp (r31) --> [ ebpf stack space ] 512 |
* [ local/tmp var space ] 16 |
* [ frame header ] 32/112 |
* sp (r1) ---> [ stack pointer ] --------------
*/
/* for bpf JIT code internal usage */
#define BPF_PPC_STACK_LOCALS 16
/* for gpr non volatile registers BPG_REG_6 to 10, plus skb cache registers */
#define BPF_PPC_STACK_SAVE (8*8)
/* Ensure this is quadword aligned */
#define BPF_PPC_STACKFRAME (STACK_FRAME_MIN_SIZE + BPF_PPC_STACK_LOCALS + \
MAX_BPF_STACK + BPF_PPC_STACK_SAVE)
#ifndef __ASSEMBLY__
/* BPF register usage */
#define SKB_HLEN_REG (MAX_BPF_REG + 0)
#define SKB_DATA_REG (MAX_BPF_REG + 1)
#define TMP_REG_1 (MAX_BPF_REG + 2)
#define TMP_REG_2 (MAX_BPF_REG + 3)
/* BPF to ppc register mappings */
static const int b2p[] = {
/* function return value */
[BPF_REG_0] = 8,
/* function arguments */
[BPF_REG_1] = 3,
[BPF_REG_2] = 4,
[BPF_REG_3] = 5,
[BPF_REG_4] = 6,
[BPF_REG_5] = 7,
/* non volatile registers */
[BPF_REG_6] = 27,
[BPF_REG_7] = 28,
[BPF_REG_8] = 29,
[BPF_REG_9] = 30,
/* frame pointer aka BPF_REG_10 */
[BPF_REG_FP] = 31,
/* eBPF jit internal registers */
[SKB_HLEN_REG] = 25,
[SKB_DATA_REG] = 26,
[TMP_REG_1] = 9,
[TMP_REG_2] = 10
};
/* Assembly helpers */
#define DECLARE_LOAD_FUNC(func) u64 func(u64 r3, u64 r4); \
u64 func##_negative_offset(u64 r3, u64 r4); \
u64 func##_positive_offset(u64 r3, u64 r4);
DECLARE_LOAD_FUNC(sk_load_word);
DECLARE_LOAD_FUNC(sk_load_half);
DECLARE_LOAD_FUNC(sk_load_byte);
#define CHOOSE_LOAD_FUNC(imm, func) \
(imm < 0 ? \
(imm >= SKF_LL_OFF ? func##_negative_offset : func) : \
func##_positive_offset)
#define SEEN_FUNC 0x1000 /* might call external helpers */
#define SEEN_STACK 0x2000 /* uses BPF stack */
#define SEEN_SKB 0x4000 /* uses sk_buff */
struct codegen_context {
/*
* This is used to track register usage as well
* as calls to external helpers.
* - register usage is tracked with corresponding
* bits (r3-r10 and r25-r31)
* - rest of the bits can be used to track other
* things -- for now, we use bits 16 to 23
* encoded in SEEN_* macros above
*/
unsigned int seen;
unsigned int idx;
};
#endif /* !__ASSEMBLY__ */
#endif
/*
* bpf_jit_asm64.S: Packet/header access helper functions
* for PPC64 BPF compiler.
*
* Copyright 2016, Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
* IBM Corporation
*
* Based on bpf_jit_asm.S by Matt Evans
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; version 2
* of the License.
*/
#include <asm/ppc_asm.h>
#include <asm/ptrace.h>
#include "bpf_jit64.h"
/*
* All of these routines are called directly from generated code,
* with the below register usage:
* r27 skb pointer (ctx)
* r25 skb header length
* r26 skb->data pointer
* r4 offset
*
* Result is passed back in:
* r8 data read in host endian format (accumulator)
*
* r9 is used as a temporary register
*/
#define r_skb r27
#define r_hlen r25
#define r_data r26
#define r_off r4
#define r_val r8
#define r_tmp r9
_GLOBAL_TOC(sk_load_word)
cmpdi r_off, 0
blt bpf_slow_path_word_neg
b sk_load_word_positive_offset
_GLOBAL_TOC(sk_load_word_positive_offset)
/* Are we accessing past headlen? */
subi r_tmp, r_hlen, 4
cmpd r_tmp, r_off
blt bpf_slow_path_word
/* Nope, just hitting the header. cr0 here is eq or gt! */
LWZX_BE r_val, r_data, r_off
blr /* Return success, cr0 != LT */
_GLOBAL_TOC(sk_load_half)
cmpdi r_off, 0
blt bpf_slow_path_half_neg
b sk_load_half_positive_offset
_GLOBAL_TOC(sk_load_half_positive_offset)
subi r_tmp, r_hlen, 2
cmpd r_tmp, r_off
blt bpf_slow_path_half
LHZX_BE r_val, r_data, r_off
blr
_GLOBAL_TOC(sk_load_byte)
cmpdi r_off, 0
blt bpf_slow_path_byte_neg
b sk_load_byte_positive_offset
_GLOBAL_TOC(sk_load_byte_positive_offset)
cmpd r_hlen, r_off
ble bpf_slow_path_byte
lbzx r_val, r_data, r_off
blr
/*
* Call out to skb_copy_bits:
* Allocate a new stack frame here to remain ABI-compliant in
* stashing LR.
*/
#define bpf_slow_path_common(SIZE) \
mflr r0; \
std r0, PPC_LR_STKOFF(r1); \
stdu r1, -(STACK_FRAME_MIN_SIZE + BPF_PPC_STACK_LOCALS)(r1); \
mr r3, r_skb; \
/* r4 = r_off as passed */ \
addi r5, r1, STACK_FRAME_MIN_SIZE; \
li r6, SIZE; \
bl skb_copy_bits; \
nop; \
/* save r5 */ \
addi r5, r1, STACK_FRAME_MIN_SIZE; \
/* r3 = 0 on success */ \
addi r1, r1, STACK_FRAME_MIN_SIZE + BPF_PPC_STACK_LOCALS; \
ld r0, PPC_LR_STKOFF(r1); \
mtlr r0; \
cmpdi r3, 0; \
blt bpf_error; /* cr0 = LT */
bpf_slow_path_word:
bpf_slow_path_common(4)
/* Data value is on stack, and cr0 != LT */
LWZX_BE r_val, 0, r5
blr
bpf_slow_path_half:
bpf_slow_path_common(2)
LHZX_BE r_val, 0, r5
blr
bpf_slow_path_byte:
bpf_slow_path_common(1)
lbzx r_val, 0, r5
blr
/*
* Call out to bpf_internal_load_pointer_neg_helper
*/
#define sk_negative_common(SIZE) \
mflr r0; \
std r0, PPC_LR_STKOFF(r1); \
stdu r1, -STACK_FRAME_MIN_SIZE(r1); \
mr r3, r_skb; \
/* r4 = r_off, as passed */ \
li r5, SIZE; \
bl bpf_internal_load_pointer_neg_helper; \
nop; \
addi r1, r1, STACK_FRAME_MIN_SIZE; \
ld r0, PPC_LR_STKOFF(r1); \
mtlr r0; \
/* R3 != 0 on success */ \
cmpldi r3, 0; \
beq bpf_error_slow; /* cr0 = EQ */
bpf_slow_path_word_neg:
lis r_tmp, -32 /* SKF_LL_OFF */
cmpd r_off, r_tmp /* addr < SKF_* */
blt bpf_error /* cr0 = LT */
b sk_load_word_negative_offset
_GLOBAL_TOC(sk_load_word_negative_offset)
sk_negative_common(4)
LWZX_BE r_val, 0, r3
blr
bpf_slow_path_half_neg:
lis r_tmp, -32 /* SKF_LL_OFF */
cmpd r_off, r_tmp /* addr < SKF_* */
blt bpf_error /* cr0 = LT */
b sk_load_half_negative_offset
_GLOBAL_TOC(sk_load_half_negative_offset)
sk_negative_common(2)
LHZX_BE r_val, 0, r3
blr
bpf_slow_path_byte_neg:
lis r_tmp, -32 /* SKF_LL_OFF */
cmpd r_off, r_tmp /* addr < SKF_* */
blt bpf_error /* cr0 = LT */
b sk_load_byte_negative_offset
_GLOBAL_TOC(sk_load_byte_negative_offset)
sk_negative_common(1)
lbzx r_val, 0, r3
blr
bpf_error_slow:
/* fabricate a cr0 = lt */
li r_tmp, -1
cmpdi r_tmp, 0
bpf_error:
/*
* Entered with cr0 = lt
* Generated code will 'blt epilogue', returning 0.
*/
li r_val, 0
blr
/*
* bpf_jit_comp64.c: eBPF JIT compiler
*
* Copyright 2016 Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
* IBM Corporation
*
* Based on the powerpc classic BPF JIT compiler by Matt Evans
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; version 2
* of the License.
*/
#include <linux/moduleloader.h>
#include <asm/cacheflush.h>
#include <linux/netdevice.h>
#include <linux/filter.h>
#include <linux/if_vlan.h>
#include <asm/kprobes.h>
#include "bpf_jit64.h"
int bpf_jit_enable __read_mostly;
static void bpf_jit_fill_ill_insns(void *area, unsigned int size)
{
int *p = area;
/* Fill whole space with trap instructions */
while (p < (int *)((char *)area + size))
*p++ = BREAKPOINT_INSTRUCTION;
}
static inline void bpf_flush_icache(void *start, void *end)
{
smp_wmb();
flush_icache_range((unsigned long)start, (unsigned long)end);
}
static inline bool bpf_is_seen_register(struct codegen_context *ctx, int i)
{
return (ctx->seen & (1 << (31 - b2p[i])));
}
static inline void bpf_set_seen_register(struct codegen_context *ctx, int i)
{
ctx->seen |= (1 << (31 - b2p[i]));
}
static inline bool bpf_has_stack_frame(struct codegen_context *ctx)
{
/*
* We only need a stack frame if:
* - we call other functions (kernel helpers), or
* - the bpf program uses its stack area
* The latter condition is deduced from the usage of BPF_REG_FP
*/
return ctx->seen & SEEN_FUNC || bpf_is_seen_register(ctx, BPF_REG_FP);
}
static void bpf_jit_emit_skb_loads(u32 *image, struct codegen_context *ctx)
{
/*
* Load skb->len and skb->data_len
* r3 points to skb
*/
PPC_LWZ(b2p[SKB_HLEN_REG], 3, offsetof(struct sk_buff, len));
PPC_LWZ(b2p[TMP_REG_1], 3, offsetof(struct sk_buff, data_len));
/* header_len = len - data_len */
PPC_SUB(b2p[SKB_HLEN_REG], b2p[SKB_HLEN_REG], b2p[TMP_REG_1]);
/* skb->data pointer */
PPC_BPF_LL(b2p[SKB_DATA_REG], 3, offsetof(struct sk_buff, data));
}
static void bpf_jit_emit_func_call(u32 *image, struct codegen_context *ctx, u64 func)
{
#ifdef PPC64_ELF_ABI_v1
/* func points to the function descriptor */
PPC_LI64(b2p[TMP_REG_2], func);
/* Load actual entry point from function descriptor */
PPC_BPF_LL(b2p[TMP_REG_1], b2p[TMP_REG_2], 0);
/* ... and move it to LR */
PPC_MTLR(b2p[TMP_REG_1]);
/*
* Load TOC from function descriptor at offset 8.
* We can clobber r2 since we get called through a
* function pointer (so caller will save/restore r2)
* and since we don't use a TOC ourself.
*/
PPC_BPF_LL(2, b2p[TMP_REG_2], 8);
#else
/* We can clobber r12 */
PPC_FUNC_ADDR(12, func);
PPC_MTLR(12);
#endif
PPC_BLRL();
}
static void bpf_jit_build_prologue(u32 *image, struct codegen_context *ctx)
{
int i;
bool new_stack_frame = bpf_has_stack_frame(ctx);
if (new_stack_frame) {
/*
* We need a stack frame, but we don't necessarily need to
* save/restore LR unless we call other functions
*/
if (ctx->seen & SEEN_FUNC) {
EMIT(PPC_INST_MFLR | __PPC_RT(R0));
PPC_BPF_STL(0, 1, PPC_LR_STKOFF);
}
PPC_BPF_STLU(1, 1, -BPF_PPC_STACKFRAME);
}
/*
* Back up non-volatile regs -- BPF registers 6-10
* If we haven't created our own stack frame, we save these
* in the protected zone below the previous stack frame
*/
for (i = BPF_REG_6; i <= BPF_REG_10; i++)
if (bpf_is_seen_register(ctx, i))
PPC_BPF_STL(b2p[i], 1,
(new_stack_frame ? BPF_PPC_STACKFRAME : 0) -
(8 * (32 - b2p[i])));
/*
* Save additional non-volatile regs if we cache skb
* Also, setup skb data
*/
if (ctx->seen & SEEN_SKB) {
PPC_BPF_STL(b2p[SKB_HLEN_REG], 1,
BPF_PPC_STACKFRAME - (8 * (32 - b2p[SKB_HLEN_REG])));
PPC_BPF_STL(b2p[SKB_DATA_REG], 1,
BPF_PPC_STACKFRAME - (8 * (32 - b2p[SKB_DATA_REG])));
bpf_jit_emit_skb_loads(image, ctx);
}
/* Setup frame pointer to point to the bpf stack area */
if (bpf_is_seen_register(ctx, BPF_REG_FP))
PPC_ADDI(b2p[BPF_REG_FP], 1,
BPF_PPC_STACKFRAME - BPF_PPC_STACK_SAVE);
}
static void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx)
{
int i;
bool new_stack_frame = bpf_has_stack_frame(ctx);
/* Move result to r3 */
PPC_MR(3, b2p[BPF_REG_0]);
/* Restore NVRs */
for (i = BPF_REG_6; i <= BPF_REG_10; i++)
if (bpf_is_seen_register(ctx, i))
PPC_BPF_LL(b2p[i], 1,
(new_stack_frame ? BPF_PPC_STACKFRAME : 0) -
(8 * (32 - b2p[i])));
/* Restore non-volatile registers used for skb cache */
if (ctx->seen & SEEN_SKB) {
PPC_BPF_LL(b2p[SKB_HLEN_REG], 1,
BPF_PPC_STACKFRAME - (8 * (32 - b2p[SKB_HLEN_REG])));
PPC_BPF_LL(b2p[SKB_DATA_REG], 1,
BPF_PPC_STACKFRAME - (8 * (32 - b2p[SKB_DATA_REG])));
}
/* Tear down our stack frame */
if (new_stack_frame) {
PPC_ADDI(1, 1, BPF_PPC_STACKFRAME);
if (ctx->seen & SEEN_FUNC) {
PPC_BPF_LL(0, 1, PPC_LR_STKOFF);
PPC_MTLR(0);
}
}
PPC_BLR();
}
/* Assemble the body code between the prologue & epilogue */
static int bpf_jit_build_body(struct bpf_prog *fp, u32 *image,
struct codegen_context *ctx,
u32 *addrs)
{
const struct bpf_insn *insn = fp->insnsi;
int flen = fp->len;
int i;
/* Start of epilogue code - will only be valid 2nd pass onwards */
u32 exit_addr = addrs[flen];
for (i = 0; i < flen; i++) {
u32 code = insn[i].code;
u32 dst_reg = b2p[insn[i].dst_reg];
u32 src_reg = b2p[insn[i].src_reg];
s16 off = insn[i].off;
s32 imm = insn[i].imm;
u64 imm64;
u8 *func;
u32 true_cond;
int stack_local_off;
/*
* addrs[] maps a BPF bytecode address into a real offset from
* the start of the body code.
*/
addrs[i] = ctx->idx * 4;
/*
* As an optimization, we note down which non-volatile registers
* are used so that we can only save/restore those in our
* prologue and epilogue. We do this here regardless of whether
* the actual BPF instruction uses src/dst registers or not
* (for instance, BPF_CALL does not use them). The expectation
* is that those instructions will have src_reg/dst_reg set to
* 0. Even otherwise, we just lose some prologue/epilogue
* optimization but everything else should work without
* any issues.
*/
if (dst_reg >= 24 && dst_reg <= 31)
bpf_set_seen_register(ctx, insn[i].dst_reg);
if (src_reg >= 24 && src_reg <= 31)
bpf_set_seen_register(ctx, insn[i].src_reg);
switch (code) {
/*
* Arithmetic operations: ADD/SUB/MUL/DIV/MOD/NEG
*/
case BPF_ALU | BPF_ADD | BPF_X: /* (u32) dst += (u32) src */
case BPF_ALU64 | BPF_ADD | BPF_X: /* dst += src */
PPC_ADD(dst_reg, dst_reg, src_reg);
goto bpf_alu32_trunc;
case BPF_ALU | BPF_SUB | BPF_X: /* (u32) dst -= (u32) src */
case BPF_ALU64 | BPF_SUB | BPF_X: /* dst -= src */
PPC_SUB(dst_reg, dst_reg, src_reg);
goto bpf_alu32_trunc;
case BPF_ALU | BPF_ADD | BPF_K: /* (u32) dst += (u32) imm */
case BPF_ALU | BPF_SUB | BPF_K: /* (u32) dst -= (u32) imm */
case BPF_ALU64 | BPF_ADD | BPF_K: /* dst += imm */
case BPF_ALU64 | BPF_SUB | BPF_K: /* dst -= imm */
if (BPF_OP(code) == BPF_SUB)
imm = -imm;
if (imm) {
if (imm >= -32768 && imm < 32768)
PPC_ADDI(dst_reg, dst_reg, IMM_L(imm));
else {
PPC_LI32(b2p[TMP_REG_1], imm);
PPC_ADD(dst_reg, dst_reg, b2p[TMP_REG_1]);
}
}
goto bpf_alu32_trunc;
case BPF_ALU | BPF_MUL | BPF_X: /* (u32) dst *= (u32) src */
case BPF_ALU64 | BPF_MUL | BPF_X: /* dst *= src */
if (BPF_CLASS(code) == BPF_ALU)
PPC_MULW(dst_reg, dst_reg, src_reg);
else
PPC_MULD(dst_reg, dst_reg, src_reg);
goto bpf_alu32_trunc;
case BPF_ALU | BPF_MUL | BPF_K: /* (u32) dst *= (u32) imm */
case BPF_ALU64 | BPF_MUL | BPF_K: /* dst *= imm */
if (imm >= -32768 && imm < 32768)
PPC_MULI(dst_reg, dst_reg, IMM_L(imm));
else {
PPC_LI32(b2p[TMP_REG_1], imm);
if (BPF_CLASS(code) == BPF_ALU)
PPC_MULW(dst_reg, dst_reg,
b2p[TMP_REG_1]);
else
PPC_MULD(dst_reg, dst_reg,
b2p[TMP_REG_1]);
}
goto bpf_alu32_trunc;
case BPF_ALU | BPF_DIV | BPF_X: /* (u32) dst /= (u32) src */
case BPF_ALU | BPF_MOD | BPF_X: /* (u32) dst %= (u32) src */
PPC_CMPWI(src_reg, 0);
PPC_BCC_SHORT(COND_NE, (ctx->idx * 4) + 12);
PPC_LI(b2p[BPF_REG_0], 0);
PPC_JMP(exit_addr);
if (BPF_OP(code) == BPF_MOD) {
PPC_DIVWU(b2p[TMP_REG_1], dst_reg, src_reg);
PPC_MULW(b2p[TMP_REG_1], src_reg,
b2p[TMP_REG_1]);
PPC_SUB(dst_reg, dst_reg, b2p[TMP_REG_1]);
} else
PPC_DIVWU(dst_reg, dst_reg, src_reg);
goto bpf_alu32_trunc;
case BPF_ALU64 | BPF_DIV | BPF_X: /* dst /= src */
case BPF_ALU64 | BPF_MOD | BPF_X: /* dst %= src */
PPC_CMPDI(src_reg, 0);
PPC_BCC_SHORT(COND_NE, (ctx->idx * 4) + 12);
PPC_LI(b2p[BPF_REG_0], 0);
PPC_JMP(exit_addr);
if (BPF_OP(code) == BPF_MOD) {
PPC_DIVD(b2p[TMP_REG_1], dst_reg, src_reg);
PPC_MULD(b2p[TMP_REG_1], src_reg,
b2p[TMP_REG_1]);
PPC_SUB(dst_reg, dst_reg, b2p[TMP_REG_1]);
} else
PPC_DIVD(dst_reg, dst_reg, src_reg);
break;
case BPF_ALU | BPF_MOD | BPF_K: /* (u32) dst %= (u32) imm */
case BPF_ALU | BPF_DIV | BPF_K: /* (u32) dst /= (u32) imm */
case BPF_ALU64 | BPF_MOD | BPF_K: /* dst %= imm */
case BPF_ALU64 | BPF_DIV | BPF_K: /* dst /= imm */
if (imm == 0)
return -EINVAL;
else if (imm == 1)
goto bpf_alu32_trunc;
PPC_LI32(b2p[TMP_REG_1], imm);
switch (BPF_CLASS(code)) {
case BPF_ALU:
if (BPF_OP(code) == BPF_MOD) {
PPC_DIVWU(b2p[TMP_REG_2], dst_reg,
b2p[TMP_REG_1]);
PPC_MULW(b2p[TMP_REG_1],
b2p[TMP_REG_1],
b2p[TMP_REG_2]);
PPC_SUB(dst_reg, dst_reg,
b2p[TMP_REG_1]);
} else
PPC_DIVWU(dst_reg, dst_reg,
b2p[TMP_REG_1]);
break;
case BPF_ALU64:
if (BPF_OP(code) == BPF_MOD) {
PPC_DIVD(b2p[TMP_REG_2], dst_reg,
b2p[TMP_REG_1]);
PPC_MULD(b2p[TMP_REG_1],
b2p[TMP_REG_1],
b2p[TMP_REG_2]);
PPC_SUB(dst_reg, dst_reg,
b2p[TMP_REG_1]);
} else
PPC_DIVD(dst_reg, dst_reg,
b2p[TMP_REG_1]);
break;
}
goto bpf_alu32_trunc;
case BPF_ALU | BPF_NEG: /* (u32) dst = -dst */
case BPF_ALU64 | BPF_NEG: /* dst = -dst */
PPC_NEG(dst_reg, dst_reg);
goto bpf_alu32_trunc;
/*
* Logical operations: AND/OR/XOR/[A]LSH/[A]RSH
*/
case BPF_ALU | BPF_AND | BPF_X: /* (u32) dst = dst & src */
case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
PPC_AND(dst_reg, dst_reg, src_reg);
goto bpf_alu32_trunc;
case BPF_ALU | BPF_AND | BPF_K: /* (u32) dst = dst & imm */
case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
if (!IMM_H(imm))
PPC_ANDI(dst_reg, dst_reg, IMM_L(imm));
else {
/* Sign-extended */
PPC_LI32(b2p[TMP_REG_1], imm);
PPC_AND(dst_reg, dst_reg, b2p[TMP_REG_1]);
}
goto bpf_alu32_trunc;
case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
PPC_OR(dst_reg, dst_reg, src_reg);
goto bpf_alu32_trunc;
case BPF_ALU | BPF_OR | BPF_K:/* dst = (u32) dst | (u32) imm */
case BPF_ALU64 | BPF_OR | BPF_K:/* dst = dst | imm */
if (imm < 0 && BPF_CLASS(code) == BPF_ALU64) {
/* Sign-extended */
PPC_LI32(b2p[TMP_REG_1], imm);
PPC_OR(dst_reg, dst_reg, b2p[TMP_REG_1]);
} else {
if (IMM_L(imm))
PPC_ORI(dst_reg, dst_reg, IMM_L(imm));
if (IMM_H(imm))
PPC_ORIS(dst_reg, dst_reg, IMM_H(imm));
}
goto bpf_alu32_trunc;
case BPF_ALU | BPF_XOR | BPF_X: /* (u32) dst ^= src */
case BPF_ALU64 | BPF_XOR | BPF_X: /* dst ^= src */
PPC_XOR(dst_reg, dst_reg, src_reg);
goto bpf_alu32_trunc;
case BPF_ALU | BPF_XOR | BPF_K: /* (u32) dst ^= (u32) imm */
case BPF_ALU64 | BPF_XOR | BPF_K: /* dst ^= imm */
if (imm < 0 && BPF_CLASS(code) == BPF_ALU64) {
/* Sign-extended */
PPC_LI32(b2p[TMP_REG_1], imm);
PPC_XOR(dst_reg, dst_reg, b2p[TMP_REG_1]);
} else {
if (IMM_L(imm))
PPC_XORI(dst_reg, dst_reg, IMM_L(imm));
if (IMM_H(imm))
PPC_XORIS(dst_reg, dst_reg, IMM_H(imm));
}
goto bpf_alu32_trunc;
case BPF_ALU | BPF_LSH | BPF_X: /* (u32) dst <<= (u32) src */
/* slw clears top 32 bits */
PPC_SLW(dst_reg, dst_reg, src_reg);
break;
case BPF_ALU64 | BPF_LSH | BPF_X: /* dst <<= src; */
PPC_SLD(dst_reg, dst_reg, src_reg);
break;
case BPF_ALU | BPF_LSH | BPF_K: /* (u32) dst <<== (u32) imm */
/* with imm 0, we still need to clear top 32 bits */
PPC_SLWI(dst_reg, dst_reg, imm);
break;
case BPF_ALU64 | BPF_LSH | BPF_K: /* dst <<== imm */
if (imm != 0)
PPC_SLDI(dst_reg, dst_reg, imm);
break;
case BPF_ALU | BPF_RSH | BPF_X: /* (u32) dst >>= (u32) src */
PPC_SRW(dst_reg, dst_reg, src_reg);
break;
case BPF_ALU64 | BPF_RSH | BPF_X: /* dst >>= src */
PPC_SRD(dst_reg, dst_reg, src_reg);
break;
case BPF_ALU | BPF_RSH | BPF_K: /* (u32) dst >>= (u32) imm */
PPC_SRWI(dst_reg, dst_reg, imm);
break;
case BPF_ALU64 | BPF_RSH | BPF_K: /* dst >>= imm */
if (imm != 0)
PPC_SRDI(dst_reg, dst_reg, imm);
break;
case BPF_ALU64 | BPF_ARSH | BPF_X: /* (s64) dst >>= src */
PPC_SRAD(dst_reg, dst_reg, src_reg);
break;
case BPF_ALU64 | BPF_ARSH | BPF_K: /* (s64) dst >>= imm */
if (imm != 0)
PPC_SRADI(dst_reg, dst_reg, imm);
break;
/*
* MOV
*/
case BPF_ALU | BPF_MOV | BPF_X: /* (u32) dst = src */
case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
PPC_MR(dst_reg, src_reg);
goto bpf_alu32_trunc;
case BPF_ALU | BPF_MOV | BPF_K: /* (u32) dst = imm */
case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = (s64) imm */
PPC_LI32(dst_reg, imm);
if (imm < 0)
goto bpf_alu32_trunc;
break;
bpf_alu32_trunc:
/* Truncate to 32-bits */
if (BPF_CLASS(code) == BPF_ALU)
PPC_RLWINM(dst_reg, dst_reg, 0, 0, 31);
break;
/*
* BPF_FROM_BE/LE
*/
case BPF_ALU | BPF_END | BPF_FROM_LE:
case BPF_ALU | BPF_END | BPF_FROM_BE:
#ifdef __BIG_ENDIAN__
if (BPF_SRC(code) == BPF_FROM_BE)
goto emit_clear;
#else /* !__BIG_ENDIAN__ */
if (BPF_SRC(code) == BPF_FROM_LE)
goto emit_clear;
#endif
switch (imm) {
case 16:
/* Rotate 8 bits left & mask with 0x0000ff00 */
PPC_RLWINM(b2p[TMP_REG_1], dst_reg, 8, 16, 23);
/* Rotate 8 bits right & insert LSB to reg */
PPC_RLWIMI(b2p[TMP_REG_1], dst_reg, 24, 24, 31);
/* Move result back to dst_reg */
PPC_MR(dst_reg, b2p[TMP_REG_1]);
break;
case 32:
/*
* Rotate word left by 8 bits:
* 2 bytes are already in their final position
* -- byte 2 and 4 (of bytes 1, 2, 3 and 4)
*/
PPC_RLWINM(b2p[TMP_REG_1], dst_reg, 8, 0, 31);
/* Rotate 24 bits and insert byte 1 */
PPC_RLWIMI(b2p[TMP_REG_1], dst_reg, 24, 0, 7);
/* Rotate 24 bits and insert byte 3 */
PPC_RLWIMI(b2p[TMP_REG_1], dst_reg, 24, 16, 23);
PPC_MR(dst_reg, b2p[TMP_REG_1]);
break;
case 64:
/*
* Way easier and faster(?) to store the value
* into stack and then use ldbrx
*
* First, determine where in stack we can store
* this:
* - if we have allotted a stack frame, then we
* will utilize the area set aside by
* BPF_PPC_STACK_LOCALS
* - else, we use the area beneath the NV GPR
* save area
*
* ctx->seen will be reliable in pass2, but
* the instructions generated will remain the
* same across all passes
*/
if (bpf_has_stack_frame(ctx))
stack_local_off = STACK_FRAME_MIN_SIZE;
else
stack_local_off = -(BPF_PPC_STACK_SAVE + 8);
PPC_STD(dst_reg, 1, stack_local_off);
PPC_ADDI(b2p[TMP_REG_1], 1, stack_local_off);
PPC_LDBRX(dst_reg, 0, b2p[TMP_REG_1]);
break;
}
break;
emit_clear:
switch (imm) {
case 16:
/* zero-extend 16 bits into 64 bits */
PPC_RLDICL(dst_reg, dst_reg, 0, 48);
break;
case 32:
/* zero-extend 32 bits into 64 bits */
PPC_RLDICL(dst_reg, dst_reg, 0, 32);
break;
case 64:
/* nop */
break;
}
break;
/*
* BPF_ST(X)
*/
case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src */
case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
if (BPF_CLASS(code) == BPF_ST) {
PPC_LI(b2p[TMP_REG_1], imm);
src_reg = b2p[TMP_REG_1];
}
PPC_STB(src_reg, dst_reg, off);
break;
case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
if (BPF_CLASS(code) == BPF_ST) {
PPC_LI(b2p[TMP_REG_1], imm);
src_reg = b2p[TMP_REG_1];
}
PPC_STH(src_reg, dst_reg, off);
break;
case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
if (BPF_CLASS(code) == BPF_ST) {
PPC_LI32(b2p[TMP_REG_1], imm);
src_reg = b2p[TMP_REG_1];
}
PPC_STW(src_reg, dst_reg, off);
break;
case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
if (BPF_CLASS(code) == BPF_ST) {
PPC_LI32(b2p[TMP_REG_1], imm);
src_reg = b2p[TMP_REG_1];
}
PPC_STD(src_reg, dst_reg, off);
break;
/*
* BPF_STX XADD (atomic_add)
*/
/* *(u32 *)(dst + off) += src */
case BPF_STX | BPF_XADD | BPF_W:
/* Get EA into TMP_REG_1 */
PPC_ADDI(b2p[TMP_REG_1], dst_reg, off);
/* error if EA is not word-aligned */
PPC_ANDI(b2p[TMP_REG_2], b2p[TMP_REG_1], 0x03);
PPC_BCC_SHORT(COND_EQ, (ctx->idx * 4) + 12);
PPC_LI(b2p[BPF_REG_0], 0);
PPC_JMP(exit_addr);
/* load value from memory into TMP_REG_2 */
PPC_BPF_LWARX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1], 0);
/* add value from src_reg into this */
PPC_ADD(b2p[TMP_REG_2], b2p[TMP_REG_2], src_reg);
/* store result back */
PPC_BPF_STWCX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1]);
/* we're done if this succeeded */
PPC_BCC_SHORT(COND_EQ, (ctx->idx * 4) + (7*4));
/* otherwise, let's try once more */
PPC_BPF_LWARX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1], 0);
PPC_ADD(b2p[TMP_REG_2], b2p[TMP_REG_2], src_reg);
PPC_BPF_STWCX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1]);
/* exit if the store was not successful */
PPC_LI(b2p[BPF_REG_0], 0);
PPC_BCC(COND_NE, exit_addr);
break;
/* *(u64 *)(dst + off) += src */
case BPF_STX | BPF_XADD | BPF_DW:
PPC_ADDI(b2p[TMP_REG_1], dst_reg, off);
/* error if EA is not doubleword-aligned */
PPC_ANDI(b2p[TMP_REG_2], b2p[TMP_REG_1], 0x07);
PPC_BCC_SHORT(COND_EQ, (ctx->idx * 4) + (3*4));
PPC_LI(b2p[BPF_REG_0], 0);
PPC_JMP(exit_addr);
PPC_BPF_LDARX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1], 0);
PPC_ADD(b2p[TMP_REG_2], b2p[TMP_REG_2], src_reg);
PPC_BPF_STDCX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1]);
PPC_BCC_SHORT(COND_EQ, (ctx->idx * 4) + (7*4));
PPC_BPF_LDARX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1], 0);
PPC_ADD(b2p[TMP_REG_2], b2p[TMP_REG_2], src_reg);
PPC_BPF_STDCX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1]);
PPC_LI(b2p[BPF_REG_0], 0);
PPC_BCC(COND_NE, exit_addr);
break;
/*
* BPF_LDX
*/
/* dst = *(u8 *)(ul) (src + off) */
case BPF_LDX | BPF_MEM | BPF_B:
PPC_LBZ(dst_reg, src_reg, off);
break;
/* dst = *(u16 *)(ul) (src + off) */
case BPF_LDX | BPF_MEM | BPF_H:
PPC_LHZ(dst_reg, src_reg, off);
break;
/* dst = *(u32 *)(ul) (src + off) */
case BPF_LDX | BPF_MEM | BPF_W:
PPC_LWZ(dst_reg, src_reg, off);
break;
/* dst = *(u64 *)(ul) (src + off) */
case BPF_LDX | BPF_MEM | BPF_DW:
PPC_LD(dst_reg, src_reg, off);
break;
/*
* Doubleword load
* 16 byte instruction that uses two 'struct bpf_insn'
*/
case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
imm64 = ((u64)(u32) insn[i].imm) |
(((u64)(u32) insn[i+1].imm) << 32);
/* Adjust for two bpf instructions */
addrs[++i] = ctx->idx * 4;
PPC_LI64(dst_reg, imm64);
break;
/*
* Return/Exit
*/
case BPF_JMP | BPF_EXIT:
/*
* If this isn't the very last instruction, branch to
* the epilogue. If we _are_ the last instruction,
* we'll just fall through to the epilogue.
*/
if (i != flen - 1)
PPC_JMP(exit_addr);
/* else fall through to the epilogue */
break;
/*
* Call kernel helper
*/
case BPF_JMP | BPF_CALL:
ctx->seen |= SEEN_FUNC;
func = (u8 *) __bpf_call_base + imm;
/* Save skb pointer if we need to re-cache skb data */
if (bpf_helper_changes_skb_data(func))
PPC_BPF_STL(3, 1, STACK_FRAME_MIN_SIZE);
bpf_jit_emit_func_call(image, ctx, (u64)func);
/* move return value from r3 to BPF_REG_0 */
PPC_MR(b2p[BPF_REG_0], 3);
/* refresh skb cache */
if (bpf_helper_changes_skb_data(func)) {
/* reload skb pointer to r3 */
PPC_BPF_LL(3, 1, STACK_FRAME_MIN_SIZE);
bpf_jit_emit_skb_loads(image, ctx);
}
break;
/*
* Jumps and branches
*/
case BPF_JMP | BPF_JA:
PPC_JMP(addrs[i + 1 + off]);
break;
case BPF_JMP | BPF_JGT | BPF_K:
case BPF_JMP | BPF_JGT | BPF_X:
case BPF_JMP | BPF_JSGT | BPF_K:
case BPF_JMP | BPF_JSGT | BPF_X:
true_cond = COND_GT;
goto cond_branch;
case BPF_JMP | BPF_JGE | BPF_K:
case BPF_JMP | BPF_JGE | BPF_X:
case BPF_JMP | BPF_JSGE | BPF_K:
case BPF_JMP | BPF_JSGE | BPF_X:
true_cond = COND_GE;
goto cond_branch;
case BPF_JMP | BPF_JEQ | BPF_K:
case BPF_JMP | BPF_JEQ | BPF_X:
true_cond = COND_EQ;
goto cond_branch;
case BPF_JMP | BPF_JNE | BPF_K:
case BPF_JMP | BPF_JNE | BPF_X:
true_cond = COND_NE;
goto cond_branch;
case BPF_JMP | BPF_JSET | BPF_K:
case BPF_JMP | BPF_JSET | BPF_X:
true_cond = COND_NE;
/* Fall through */
cond_branch:
switch (code) {
case BPF_JMP | BPF_JGT | BPF_X:
case BPF_JMP | BPF_JGE | BPF_X:
case BPF_JMP | BPF_JEQ | BPF_X:
case BPF_JMP | BPF_JNE | BPF_X:
/* unsigned comparison */
PPC_CMPLD(dst_reg, src_reg);
break;
case BPF_JMP | BPF_JSGT | BPF_X:
case BPF_JMP | BPF_JSGE | BPF_X:
/* signed comparison */
PPC_CMPD(dst_reg, src_reg);
break;
case BPF_JMP | BPF_JSET | BPF_X:
PPC_AND_DOT(b2p[TMP_REG_1], dst_reg, src_reg);
break;
case BPF_JMP | BPF_JNE | BPF_K:
case BPF_JMP | BPF_JEQ | BPF_K:
case BPF_JMP | BPF_JGT | BPF_K:
case BPF_JMP | BPF_JGE | BPF_K:
/*
* Need sign-extended load, so only positive
* values can be used as imm in cmpldi
*/
if (imm >= 0 && imm < 32768)
PPC_CMPLDI(dst_reg, imm);
else {
/* sign-extending load */
PPC_LI32(b2p[TMP_REG_1], imm);
/* ... but unsigned comparison */
PPC_CMPLD(dst_reg, b2p[TMP_REG_1]);
}
break;
case BPF_JMP | BPF_JSGT | BPF_K:
case BPF_JMP | BPF_JSGE | BPF_K:
/*
* signed comparison, so any 16-bit value
* can be used in cmpdi
*/
if (imm >= -32768 && imm < 32768)
PPC_CMPDI(dst_reg, imm);
else {
PPC_LI32(b2p[TMP_REG_1], imm);
PPC_CMPD(dst_reg, b2p[TMP_REG_1]);
}
break;
case BPF_JMP | BPF_JSET | BPF_K:
/* andi does not sign-extend the immediate */
if (imm >= 0 && imm < 32768)
/* PPC_ANDI is _only/always_ dot-form */
PPC_ANDI(b2p[TMP_REG_1], dst_reg, imm);
else {
PPC_LI32(b2p[TMP_REG_1], imm);
PPC_AND_DOT(b2p[TMP_REG_1], dst_reg,
b2p[TMP_REG_1]);
}
break;
}
PPC_BCC(true_cond, addrs[i + 1 + off]);
break;
/*
* Loads from packet header/data
* Assume 32-bit input value in imm and X (src_reg)
*/
/* Absolute loads */
case BPF_LD | BPF_W | BPF_ABS:
func = (u8 *)CHOOSE_LOAD_FUNC(imm, sk_load_word);
goto common_load_abs;
case BPF_LD | BPF_H | BPF_ABS:
func = (u8 *)CHOOSE_LOAD_FUNC(imm, sk_load_half);
goto common_load_abs;
case BPF_LD | BPF_B | BPF_ABS:
func = (u8 *)CHOOSE_LOAD_FUNC(imm, sk_load_byte);
common_load_abs:
/*
* Load from [imm]
* Load into r4, which can just be passed onto
* skb load helpers as the second parameter
*/
PPC_LI32(4, imm);
goto common_load;
/* Indirect loads */
case BPF_LD | BPF_W | BPF_IND:
func = (u8 *)sk_load_word;
goto common_load_ind;
case BPF_LD | BPF_H | BPF_IND:
func = (u8 *)sk_load_half;
goto common_load_ind;
case BPF_LD | BPF_B | BPF_IND:
func = (u8 *)sk_load_byte;
common_load_ind:
/*
* Load from [src_reg + imm]
* Treat src_reg as a 32-bit value
*/
PPC_EXTSW(4, src_reg);
if (imm) {
if (imm >= -32768 && imm < 32768)
PPC_ADDI(4, 4, IMM_L(imm));
else {
PPC_LI32(b2p[TMP_REG_1], imm);
PPC_ADD(4, 4, b2p[TMP_REG_1]);
}
}
common_load:
ctx->seen |= SEEN_SKB;
ctx->seen |= SEEN_FUNC;
bpf_jit_emit_func_call(image, ctx, (u64)func);
/*
* Helper returns 'lt' condition on error, and an
* appropriate return value in BPF_REG_0
*/
PPC_BCC(COND_LT, exit_addr);
break;
/*
* TODO: Tail call
*/
case BPF_JMP | BPF_CALL | BPF_X:
default:
/*
* The filter contains something cruel & unusual.
* We don't handle it, but also there shouldn't be
* anything missing from our list.
*/
pr_err_ratelimited("eBPF filter opcode %04x (@%d) unsupported\n",
code, i);
return -ENOTSUPP;
}
}
/* Set end-of-body-code address for exit. */
addrs[i] = ctx->idx * 4;
return 0;
}
void bpf_jit_compile(struct bpf_prog *fp) { }
struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
{
u32 proglen;
u32 alloclen;
u8 *image = NULL;
u32 *code_base;
u32 *addrs;
struct codegen_context cgctx;
int pass;
int flen;
struct bpf_binary_header *bpf_hdr;
if (!bpf_jit_enable)
return fp;
flen = fp->len;
addrs = kzalloc((flen+1) * sizeof(*addrs), GFP_KERNEL);
if (addrs == NULL)
return fp;
cgctx.idx = 0;
cgctx.seen = 0;
/* Scouting faux-generate pass 0 */
if (bpf_jit_build_body(fp, 0, &cgctx, addrs))
/* We hit something illegal or unsupported. */
goto out;
/*
* Pretend to build prologue, given the features we've seen. This will
* update ctgtx.idx as it pretends to output instructions, then we can
* calculate total size from idx.
*/
bpf_jit_build_prologue(0, &cgctx);
bpf_jit_build_epilogue(0, &cgctx);
proglen = cgctx.idx * 4;
alloclen = proglen + FUNCTION_DESCR_SIZE;
bpf_hdr = bpf_jit_binary_alloc(alloclen, &image, 4,
bpf_jit_fill_ill_insns);
if (!bpf_hdr)
goto out;
code_base = (u32 *)(image + FUNCTION_DESCR_SIZE);
/* Code generation passes 1-2 */
for (pass = 1; pass < 3; pass++) {
/* Now build the prologue, body code & epilogue for real. */
cgctx.idx = 0;
bpf_jit_build_prologue(code_base, &cgctx);
bpf_jit_build_body(fp, code_base, &cgctx, addrs);
bpf_jit_build_epilogue(code_base, &cgctx);
if (bpf_jit_enable > 1)
pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass,
proglen - (cgctx.idx * 4), cgctx.seen);
}
if (bpf_jit_enable > 1)
/*
* Note that we output the base address of the code_base
* rather than image, since opcodes are in code_base.
*/
bpf_jit_dump(flen, proglen, pass, code_base);
if (image) {
bpf_flush_icache(bpf_hdr, image + alloclen);
#ifdef PPC64_ELF_ABI_v1
/* Function descriptor nastiness: Address + TOC */
((u64 *)image)[0] = (u64)code_base;
((u64 *)image)[1] = local_paca->kernel_toc;
#endif
fp->bpf_func = (void *)image;
fp->jited = 1;
}
out:
kfree(addrs);
return fp;
}
void bpf_jit_free(struct bpf_prog *fp)
{
unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK;
struct bpf_binary_header *bpf_hdr = (void *)addr;
if (fp->jited)
bpf_jit_binary_free(bpf_hdr);
bpf_prog_unlock_free(fp);
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment