Commit 190daf19 authored by Linus Torvalds's avatar Linus Torvalds

Merge tag 'i3c/for-5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/i3c/linux

Pull i3c updates from Boris Brezillon:

 - Add the HCI driver

 - Add a missing destroy_workqueue() in an error path

 - Flag Alexandre Belloni as the new maintainer

* tag 'i3c/for-5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/i3c/linux:
  i3c/master/mipi-i3c-hci: quiet maybe-unused variable warning
  i3c: Resign from my maintainer role
  i3c/master: Fix uninitialized variable next_addr
  i3c/master: introduce the mipi-i3c-hci driver
  dt-bindings: i3c: MIPI I3C Host Controller Interface
  i3c master: fix missing destroy_workqueue() on error in i3c_master_register
parents 11c33652 95393f3e
# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
%YAML 1.2
---
$id: "http://devicetree.org/schemas/i3c/mipi-i3c-hci.yaml#"
$schema: "http://devicetree.org/meta-schemas/core.yaml#"
title: MIPI I3C HCI Device Tree Bindings
maintainers:
- Nicolas Pitre <npitre@baylibre.com>
description: |
MIPI I3C Host Controller Interface
The MIPI I3C HCI (Host Controller Interface) specification defines
a common software driver interface to support compliant MIPI I3C
host controller hardware implementations from multiple vendors.
The hardware is self-advertising for differences in implementation
capabilities, including the spec version it is based on, so there
isn't much to describe here (yet).
For details, please see:
https://www.mipi.org/specifications/i3c-hci
properties:
compatible:
const: mipi-i3c-hci
reg:
maxItems: 1
interrupts:
maxItems: 1
required:
- compatible
- reg
- interrupts
additionalProperties: false
examples:
- |
i3c@a0000000 {
compatible = "mipi-i3c-hci";
reg = <0xa0000000 0x2000>;
interrupts = <89>;
};
......@@ -8416,7 +8416,7 @@ F: Documentation/devicetree/bindings/i3c/snps,dw-i3c-master.txt
F: drivers/i3c/master/dw*
I3C SUBSYSTEM
M: Boris Brezillon <bbrezillon@kernel.org>
M: Alexandre Belloni <alexandre.belloni@bootlin.com>
L: linux-i3c@lists.infradead.org (moderated for non-subscribers)
S: Maintained
C: irc://chat.freenode.net/linux-i3c
......
......@@ -2537,7 +2537,7 @@ int i3c_master_register(struct i3c_master_controller *master,
ret = i3c_master_bus_init(master);
if (ret)
goto err_put_dev;
goto err_destroy_wq;
ret = device_add(&master->dev);
if (ret)
......@@ -2568,6 +2568,9 @@ int i3c_master_register(struct i3c_master_controller *master,
err_cleanup_bus:
i3c_master_bus_cleanup(master);
err_destroy_wq:
destroy_workqueue(master->wq);
err_put_dev:
put_device(&master->dev);
......
......@@ -21,3 +21,16 @@ config DW_I3C_MASTER
This driver can also be built as a module. If so, the module
will be called dw-i3c-master.
config MIPI_I3C_HCI
tristate "MIPI I3C Host Controller Interface driver (EXPERIMENTAL)"
depends on I3C
help
Support for hardware following the MIPI Aliance's I3C Host Controller
Interface specification.
For details please see:
https://www.mipi.org/specifications/i3c-hci
This driver can also be built as a module. If so, the module will be
called mipi-i3c-hci.
# SPDX-License-Identifier: GPL-2.0-only
obj-$(CONFIG_CDNS_I3C_MASTER) += i3c-master-cdns.o
obj-$(CONFIG_DW_I3C_MASTER) += dw-i3c-master.o
obj-$(CONFIG_MIPI_I3C_HCI) += mipi-i3c-hci/
# SPDX-License-Identifier: BSD-3-Clause
obj-$(CONFIG_MIPI_I3C_HCI) += mipi-i3c-hci.o
mipi-i3c-hci-y := core.o ext_caps.o pio.o dma.o \
cmd_v1.o cmd_v2.o \
dat_v1.o dct_v1.o
/* SPDX-License-Identifier: BSD-3-Clause */
/*
* Copyright (c) 2020, MIPI Alliance, Inc.
*
* Author: Nicolas Pitre <npitre@baylibre.com>
*
* Common command/response related stuff
*/
#ifndef CMD_H
#define CMD_H
/*
* Those bits are common to all descriptor formats and
* may be manipulated by the core code.
*/
#define CMD_0_TOC W0_BIT_(31)
#define CMD_0_ROC W0_BIT_(30)
#define CMD_0_ATTR W0_MASK(2, 0)
/*
* Response Descriptor Structure
*/
#define RESP_STATUS(resp) FIELD_GET(GENMASK(31, 28), resp)
#define RESP_TID(resp) FIELD_GET(GENMASK(27, 24), resp)
#define RESP_DATA_LENGTH(resp) FIELD_GET(GENMASK(21, 0), resp)
#define RESP_ERR_FIELD GENMASK(31, 28)
enum hci_resp_err {
RESP_SUCCESS = 0x0,
RESP_ERR_CRC = 0x1,
RESP_ERR_PARITY = 0x2,
RESP_ERR_FRAME = 0x3,
RESP_ERR_ADDR_HEADER = 0x4,
RESP_ERR_BCAST_NACK_7E = 0x4,
RESP_ERR_NACK = 0x5,
RESP_ERR_OVL = 0x6,
RESP_ERR_I3C_SHORT_READ = 0x7,
RESP_ERR_HC_TERMINATED = 0x8,
RESP_ERR_I2C_WR_DATA_NACK = 0x9,
RESP_ERR_BUS_XFER_ABORTED = 0x9,
RESP_ERR_NOT_SUPPORTED = 0xa,
RESP_ERR_ABORTED_WITH_CRC = 0xb,
/* 0xc to 0xf are reserved for transfer specific errors */
};
/* TID generation (4 bits wide in all cases) */
#define hci_get_tid(bits) \
(atomic_inc_return_relaxed(&hci->next_cmd_tid) % (1U << 4))
/* This abstracts operations with our command descriptor formats */
struct hci_cmd_ops {
int (*prep_ccc)(struct i3c_hci *hci, struct hci_xfer *xfer,
u8 ccc_addr, u8 ccc_cmd, bool raw);
void (*prep_i3c_xfer)(struct i3c_hci *hci, struct i3c_dev_desc *dev,
struct hci_xfer *xfer);
void (*prep_i2c_xfer)(struct i3c_hci *hci, struct i2c_dev_desc *dev,
struct hci_xfer *xfer);
int (*perform_daa)(struct i3c_hci *hci);
};
/* Our various instances */
extern const struct hci_cmd_ops mipi_i3c_hci_cmd_v1;
extern const struct hci_cmd_ops mipi_i3c_hci_cmd_v2;
#endif
This diff is collapsed.
// SPDX-License-Identifier: BSD-3-Clause
/*
* Copyright (c) 2020, MIPI Alliance, Inc.
*
* Author: Nicolas Pitre <npitre@baylibre.com>
*
* I3C HCI v2.0 Command Descriptor Handling
*
* Note: The I3C HCI v2.0 spec is still in flux. The code here will change.
*/
#include <linux/bitfield.h>
#include <linux/i3c/master.h>
#include "hci.h"
#include "cmd.h"
#include "xfer_mode_rate.h"
/*
* Unified Data Transfer Command
*/
#define CMD_0_ATTR_U FIELD_PREP(CMD_0_ATTR, 0x4)
#define CMD_U3_HDR_TSP_ML_CTRL(v) FIELD_PREP(W3_MASK(107, 104), v)
#define CMD_U3_IDB4(v) FIELD_PREP(W3_MASK(103, 96), v)
#define CMD_U3_HDR_CMD(v) FIELD_PREP(W3_MASK(103, 96), v)
#define CMD_U2_IDB3(v) FIELD_PREP(W2_MASK( 95, 88), v)
#define CMD_U2_HDR_BT(v) FIELD_PREP(W2_MASK( 95, 88), v)
#define CMD_U2_IDB2(v) FIELD_PREP(W2_MASK( 87, 80), v)
#define CMD_U2_BT_CMD2(v) FIELD_PREP(W2_MASK( 87, 80), v)
#define CMD_U2_IDB1(v) FIELD_PREP(W2_MASK( 79, 72), v)
#define CMD_U2_BT_CMD1(v) FIELD_PREP(W2_MASK( 79, 72), v)
#define CMD_U2_IDB0(v) FIELD_PREP(W2_MASK( 71, 64), v)
#define CMD_U2_BT_CMD0(v) FIELD_PREP(W2_MASK( 71, 64), v)
#define CMD_U1_ERR_HANDLING(v) FIELD_PREP(W1_MASK( 63, 62), v)
#define CMD_U1_ADD_FUNC(v) FIELD_PREP(W1_MASK( 61, 56), v)
#define CMD_U1_COMBO_XFER W1_BIT_( 55)
#define CMD_U1_DATA_LENGTH(v) FIELD_PREP(W1_MASK( 53, 32), v)
#define CMD_U0_TOC W0_BIT_( 31)
#define CMD_U0_ROC W0_BIT_( 30)
#define CMD_U0_MAY_YIELD W0_BIT_( 29)
#define CMD_U0_NACK_RCNT(v) FIELD_PREP(W0_MASK( 28, 27), v)
#define CMD_U0_IDB_COUNT(v) FIELD_PREP(W0_MASK( 26, 24), v)
#define CMD_U0_MODE_INDEX(v) FIELD_PREP(W0_MASK( 22, 18), v)
#define CMD_U0_XFER_RATE(v) FIELD_PREP(W0_MASK( 17, 15), v)
#define CMD_U0_DEV_ADDRESS(v) FIELD_PREP(W0_MASK( 14, 8), v)
#define CMD_U0_RnW W0_BIT_( 7)
#define CMD_U0_TID(v) FIELD_PREP(W0_MASK( 6, 3), v)
/*
* Address Assignment Command
*/
#define CMD_0_ATTR_A FIELD_PREP(CMD_0_ATTR, 0x2)
#define CMD_A1_DATA_LENGTH(v) FIELD_PREP(W1_MASK( 53, 32), v)
#define CMD_A0_TOC W0_BIT_( 31)
#define CMD_A0_ROC W0_BIT_( 30)
#define CMD_A0_XFER_RATE(v) FIELD_PREP(W0_MASK( 17, 15), v)
#define CMD_A0_ASSIGN_ADDRESS(v) FIELD_PREP(W0_MASK( 14, 8), v)
#define CMD_A0_TID(v) FIELD_PREP(W0_MASK( 6, 3), v)
static unsigned int get_i3c_rate_idx(struct i3c_hci *hci)
{
struct i3c_bus *bus = i3c_master_get_bus(&hci->master);
if (bus->scl_rate.i3c >= 12000000)
return XFERRATE_I3C_SDR0;
if (bus->scl_rate.i3c > 8000000)
return XFERRATE_I3C_SDR1;
if (bus->scl_rate.i3c > 6000000)
return XFERRATE_I3C_SDR2;
if (bus->scl_rate.i3c > 4000000)
return XFERRATE_I3C_SDR3;
if (bus->scl_rate.i3c > 2000000)
return XFERRATE_I3C_SDR4;
return XFERRATE_I3C_SDR_FM_FMP;
}
static unsigned int get_i2c_rate_idx(struct i3c_hci *hci)
{
struct i3c_bus *bus = i3c_master_get_bus(&hci->master);
if (bus->scl_rate.i2c >= 1000000)
return XFERRATE_I2C_FMP;
return XFERRATE_I2C_FM;
}
static void hci_cmd_v2_prep_private_xfer(struct i3c_hci *hci,
struct hci_xfer *xfer,
u8 addr, unsigned int mode,
unsigned int rate)
{
u8 *data = xfer->data;
unsigned int data_len = xfer->data_len;
bool rnw = xfer->rnw;
xfer->cmd_tid = hci_get_tid();
if (!rnw && data_len <= 5) {
xfer->cmd_desc[0] =
CMD_0_ATTR_U |
CMD_U0_TID(xfer->cmd_tid) |
CMD_U0_DEV_ADDRESS(addr) |
CMD_U0_XFER_RATE(rate) |
CMD_U0_MODE_INDEX(mode) |
CMD_U0_IDB_COUNT(data_len);
xfer->cmd_desc[1] =
CMD_U1_DATA_LENGTH(0);
xfer->cmd_desc[2] = 0;
xfer->cmd_desc[3] = 0;
switch (data_len) {
case 5:
xfer->cmd_desc[3] |= CMD_U3_IDB4(data[4]);
fallthrough;
case 4:
xfer->cmd_desc[2] |= CMD_U2_IDB3(data[3]);
fallthrough;
case 3:
xfer->cmd_desc[2] |= CMD_U2_IDB2(data[2]);
fallthrough;
case 2:
xfer->cmd_desc[2] |= CMD_U2_IDB1(data[1]);
fallthrough;
case 1:
xfer->cmd_desc[2] |= CMD_U2_IDB0(data[0]);
fallthrough;
case 0:
break;
}
/* we consumed all the data with the cmd descriptor */
xfer->data = NULL;
} else {
xfer->cmd_desc[0] =
CMD_0_ATTR_U |
CMD_U0_TID(xfer->cmd_tid) |
(rnw ? CMD_U0_RnW : 0) |
CMD_U0_DEV_ADDRESS(addr) |
CMD_U0_XFER_RATE(rate) |
CMD_U0_MODE_INDEX(mode);
xfer->cmd_desc[1] =
CMD_U1_DATA_LENGTH(data_len);
xfer->cmd_desc[2] = 0;
xfer->cmd_desc[3] = 0;
}
}
static int hci_cmd_v2_prep_ccc(struct i3c_hci *hci, struct hci_xfer *xfer,
u8 ccc_addr, u8 ccc_cmd, bool raw)
{
unsigned int mode = XFERMODE_IDX_I3C_SDR;
unsigned int rate = get_i3c_rate_idx(hci);
u8 *data = xfer->data;
unsigned int data_len = xfer->data_len;
bool rnw = xfer->rnw;
if (raw && ccc_addr != I3C_BROADCAST_ADDR) {
hci_cmd_v2_prep_private_xfer(hci, xfer, ccc_addr, mode, rate);
return 0;
}
xfer->cmd_tid = hci_get_tid();
if (!rnw && data_len <= 4) {
xfer->cmd_desc[0] =
CMD_0_ATTR_U |
CMD_U0_TID(xfer->cmd_tid) |
CMD_U0_DEV_ADDRESS(ccc_addr) |
CMD_U0_XFER_RATE(rate) |
CMD_U0_MODE_INDEX(mode) |
CMD_U0_IDB_COUNT(data_len + (!raw ? 0 : 1));
xfer->cmd_desc[1] =
CMD_U1_DATA_LENGTH(0);
xfer->cmd_desc[2] =
CMD_U2_IDB0(ccc_cmd);
xfer->cmd_desc[3] = 0;
switch (data_len) {
case 4:
xfer->cmd_desc[3] |= CMD_U3_IDB4(data[3]);
fallthrough;
case 3:
xfer->cmd_desc[2] |= CMD_U2_IDB3(data[2]);
fallthrough;
case 2:
xfer->cmd_desc[2] |= CMD_U2_IDB2(data[1]);
fallthrough;
case 1:
xfer->cmd_desc[2] |= CMD_U2_IDB1(data[0]);
fallthrough;
case 0:
break;
}
/* we consumed all the data with the cmd descriptor */
xfer->data = NULL;
} else {
xfer->cmd_desc[0] =
CMD_0_ATTR_U |
CMD_U0_TID(xfer->cmd_tid) |
(rnw ? CMD_U0_RnW : 0) |
CMD_U0_DEV_ADDRESS(ccc_addr) |
CMD_U0_XFER_RATE(rate) |
CMD_U0_MODE_INDEX(mode) |
CMD_U0_IDB_COUNT(!raw ? 0 : 1);
xfer->cmd_desc[1] =
CMD_U1_DATA_LENGTH(data_len);
xfer->cmd_desc[2] =
CMD_U2_IDB0(ccc_cmd);
xfer->cmd_desc[3] = 0;
}
return 0;
}
static void hci_cmd_v2_prep_i3c_xfer(struct i3c_hci *hci,
struct i3c_dev_desc *dev,
struct hci_xfer *xfer)
{
unsigned int mode = XFERMODE_IDX_I3C_SDR;
unsigned int rate = get_i3c_rate_idx(hci);
u8 addr = dev->info.dyn_addr;
hci_cmd_v2_prep_private_xfer(hci, xfer, addr, mode, rate);
}
static void hci_cmd_v2_prep_i2c_xfer(struct i3c_hci *hci,
struct i2c_dev_desc *dev,
struct hci_xfer *xfer)
{
unsigned int mode = XFERMODE_IDX_I2C;
unsigned int rate = get_i2c_rate_idx(hci);
u8 addr = dev->addr;
hci_cmd_v2_prep_private_xfer(hci, xfer, addr, mode, rate);
}
static int hci_cmd_v2_daa(struct i3c_hci *hci)
{
struct hci_xfer *xfer;
int ret;
u8 next_addr = 0;
u32 device_id[2];
u64 pid;
unsigned int dcr, bcr;
DECLARE_COMPLETION_ONSTACK(done);
xfer = hci_alloc_xfer(2);
if (!xfer)
return -ENOMEM;
xfer[0].data = &device_id;
xfer[0].data_len = 8;
xfer[0].rnw = true;
xfer[0].cmd_desc[1] = CMD_A1_DATA_LENGTH(8);
xfer[1].completion = &done;
for (;;) {
ret = i3c_master_get_free_addr(&hci->master, next_addr);
if (ret < 0)
break;
next_addr = ret;
DBG("next_addr = 0x%02x", next_addr);
xfer[0].cmd_tid = hci_get_tid();
xfer[0].cmd_desc[0] =
CMD_0_ATTR_A |
CMD_A0_TID(xfer[0].cmd_tid) |
CMD_A0_ROC;
xfer[1].cmd_tid = hci_get_tid();
xfer[1].cmd_desc[0] =
CMD_0_ATTR_A |
CMD_A0_TID(xfer[1].cmd_tid) |
CMD_A0_ASSIGN_ADDRESS(next_addr) |
CMD_A0_ROC |
CMD_A0_TOC;
hci->io->queue_xfer(hci, xfer, 2);
if (!wait_for_completion_timeout(&done, HZ) &&
hci->io->dequeue_xfer(hci, xfer, 2)) {
ret = -ETIME;
break;
}
if (RESP_STATUS(xfer[0].response) != RESP_SUCCESS) {
ret = 0; /* no more devices to be assigned */
break;
}
if (RESP_STATUS(xfer[1].response) != RESP_SUCCESS) {
ret = -EIO;
break;
}
pid = FIELD_GET(W1_MASK(47, 32), device_id[1]);
pid = (pid << 32) | device_id[0];
bcr = FIELD_GET(W1_MASK(55, 48), device_id[1]);
dcr = FIELD_GET(W1_MASK(63, 56), device_id[1]);
DBG("assigned address %#x to device PID=0x%llx DCR=%#x BCR=%#x",
next_addr, pid, dcr, bcr);
/*
* TODO: Extend the subsystem layer to allow for registering
* new device and provide BCR/DCR/PID at the same time.
*/
ret = i3c_master_add_i3c_dev_locked(&hci->master, next_addr);
if (ret)
break;
}
hci_free_xfer(xfer, 2);
return ret;
}
const struct hci_cmd_ops mipi_i3c_hci_cmd_v2 = {
.prep_ccc = hci_cmd_v2_prep_ccc,
.prep_i3c_xfer = hci_cmd_v2_prep_i3c_xfer,
.prep_i2c_xfer = hci_cmd_v2_prep_i2c_xfer,
.perform_daa = hci_cmd_v2_daa,
};
This diff is collapsed.
/* SPDX-License-Identifier: BSD-3-Clause */
/*
* Copyright (c) 2020, MIPI Alliance, Inc.
*
* Author: Nicolas Pitre <npitre@baylibre.com>
*
* Common DAT related stuff
*/
#ifndef DAT_H
#define DAT_H
/* Global DAT flags */
#define DAT_0_I2C_DEVICE W0_BIT_(31)
#define DAT_0_SIR_REJECT W0_BIT_(13)
#define DAT_0_IBI_PAYLOAD W0_BIT_(12)
struct hci_dat_ops {
int (*init)(struct i3c_hci *hci);
void (*cleanup)(struct i3c_hci *hci);
int (*alloc_entry)(struct i3c_hci *hci);
void (*free_entry)(struct i3c_hci *hci, unsigned int dat_idx);
void (*set_dynamic_addr)(struct i3c_hci *hci, unsigned int dat_idx, u8 addr);
void (*set_static_addr)(struct i3c_hci *hci, unsigned int dat_idx, u8 addr);
void (*set_flags)(struct i3c_hci *hci, unsigned int dat_idx, u32 w0, u32 w1);
void (*clear_flags)(struct i3c_hci *hci, unsigned int dat_idx, u32 w0, u32 w1);
int (*get_index)(struct i3c_hci *hci, u8 address);
};
extern const struct hci_dat_ops mipi_i3c_hci_dat_v1;
#endif
// SPDX-License-Identifier: BSD-3-Clause
/*
* Copyright (c) 2020, MIPI Alliance, Inc.
*
* Author: Nicolas Pitre <npitre@baylibre.com>
*/
#include <linux/bitfield.h>
#include <linux/bitmap.h>
#include <linux/device.h>
#include <linux/errno.h>
#include <linux/i3c/master.h>
#include <linux/io.h>
#include "hci.h"
#include "dat.h"
/*
* Device Address Table Structure
*/
#define DAT_1_AUTOCMD_HDR_CODE W1_MASK(58, 51)
#define DAT_1_AUTOCMD_MODE W1_MASK(50, 48)
#define DAT_1_AUTOCMD_VALUE W1_MASK(47, 40)
#define DAT_1_AUTOCMD_MASK W1_MASK(39, 32)
/* DAT_0_I2C_DEVICE W0_BIT_(31) */
#define DAT_0_DEV_NACK_RETRY_CNT W0_MASK(30, 29)
#define DAT_0_RING_ID W0_MASK(28, 26)
#define DAT_0_DYNADDR_PARITY W0_BIT_(23)
#define DAT_0_DYNAMIC_ADDRESS W0_MASK(22, 16)
#define DAT_0_TS W0_BIT_(15)
#define DAT_0_MR_REJECT W0_BIT_(14)
/* DAT_0_SIR_REJECT W0_BIT_(13) */
/* DAT_0_IBI_PAYLOAD W0_BIT_(12) */
#define DAT_0_STATIC_ADDRESS W0_MASK(6, 0)
#define dat_w0_read(i) readl(hci->DAT_regs + (i) * 8)
#define dat_w1_read(i) readl(hci->DAT_regs + (i) * 8 + 4)
#define dat_w0_write(i, v) writel(v, hci->DAT_regs + (i) * 8)
#define dat_w1_write(i, v) writel(v, hci->DAT_regs + (i) * 8 + 4)
static inline bool dynaddr_parity(unsigned int addr)
{
addr |= 1 << 7;
addr += addr >> 4;
addr += addr >> 2;
addr += addr >> 1;
return (addr & 1);
}
static int hci_dat_v1_init(struct i3c_hci *hci)
{
unsigned int dat_idx;
if (!hci->DAT_regs) {
dev_err(&hci->master.dev,
"only DAT in register space is supported at the moment\n");
return -EOPNOTSUPP;
}
if (hci->DAT_entry_size != 8) {
dev_err(&hci->master.dev,
"only 8-bytes DAT entries are supported at the moment\n");
return -EOPNOTSUPP;
}
/* use a bitmap for faster free slot search */
hci->DAT_data = bitmap_zalloc(hci->DAT_entries, GFP_KERNEL);
if (!hci->DAT_data)
return -ENOMEM;
/* clear them */
for (dat_idx = 0; dat_idx < hci->DAT_entries; dat_idx++) {
dat_w0_write(dat_idx, 0);
dat_w1_write(dat_idx, 0);
}
return 0;
}
static void hci_dat_v1_cleanup(struct i3c_hci *hci)
{
bitmap_free(hci->DAT_data);
hci->DAT_data = NULL;
}
static int hci_dat_v1_alloc_entry(struct i3c_hci *hci)
{
unsigned int dat_idx;
dat_idx = find_first_zero_bit(hci->DAT_data, hci->DAT_entries);
if (dat_idx >= hci->DAT_entries)
return -ENOENT;
__set_bit(dat_idx, hci->DAT_data);
/* default flags */
dat_w0_write(dat_idx, DAT_0_SIR_REJECT | DAT_0_MR_REJECT);
return dat_idx;
}
static void hci_dat_v1_free_entry(struct i3c_hci *hci, unsigned int dat_idx)
{
dat_w0_write(dat_idx, 0);
dat_w1_write(dat_idx, 0);
__clear_bit(dat_idx, hci->DAT_data);
}
static void hci_dat_v1_set_dynamic_addr(struct i3c_hci *hci,
unsigned int dat_idx, u8 address)
{
u32 dat_w0;
dat_w0 = dat_w0_read(dat_idx);
dat_w0 &= ~(DAT_0_DYNAMIC_ADDRESS | DAT_0_DYNADDR_PARITY);
dat_w0 |= FIELD_PREP(DAT_0_DYNAMIC_ADDRESS, address) |
(dynaddr_parity(address) ? DAT_0_DYNADDR_PARITY : 0);
dat_w0_write(dat_idx, dat_w0);
}
static void hci_dat_v1_set_static_addr(struct i3c_hci *hci,
unsigned int dat_idx, u8 address)
{
u32 dat_w0;
dat_w0 = dat_w0_read(dat_idx);
dat_w0 &= ~DAT_0_STATIC_ADDRESS;
dat_w0 |= FIELD_PREP(DAT_0_STATIC_ADDRESS, address);
dat_w0_write(dat_idx, dat_w0);
}
static void hci_dat_v1_set_flags(struct i3c_hci *hci, unsigned int dat_idx,
u32 w0_flags, u32 w1_flags)
{
u32 dat_w0, dat_w1;
dat_w0 = dat_w0_read(dat_idx);
dat_w1 = dat_w1_read(dat_idx);
dat_w0 |= w0_flags;
dat_w1 |= w1_flags;
dat_w0_write(dat_idx, dat_w0);
dat_w1_write(dat_idx, dat_w1);
}
static void hci_dat_v1_clear_flags(struct i3c_hci *hci, unsigned int dat_idx,
u32 w0_flags, u32 w1_flags)
{
u32 dat_w0, dat_w1;
dat_w0 = dat_w0_read(dat_idx);
dat_w1 = dat_w1_read(dat_idx);
dat_w0 &= ~w0_flags;
dat_w1 &= ~w1_flags;
dat_w0_write(dat_idx, dat_w0);
dat_w1_write(dat_idx, dat_w1);
}
static int hci_dat_v1_get_index(struct i3c_hci *hci, u8 dev_addr)
{
unsigned int dat_idx;
u32 dat_w0;
for (dat_idx = find_first_bit(hci->DAT_data, hci->DAT_entries);
dat_idx < hci->DAT_entries;
dat_idx = find_next_bit(hci->DAT_data, hci->DAT_entries, dat_idx)) {
dat_w0 = dat_w0_read(dat_idx);
if (FIELD_GET(DAT_0_DYNAMIC_ADDRESS, dat_w0) == dev_addr)
return dat_idx;
}
return -ENODEV;
}
const struct hci_dat_ops mipi_i3c_hci_dat_v1 = {
.init = hci_dat_v1_init,
.cleanup = hci_dat_v1_cleanup,
.alloc_entry = hci_dat_v1_alloc_entry,
.free_entry = hci_dat_v1_free_entry,
.set_dynamic_addr = hci_dat_v1_set_dynamic_addr,
.set_static_addr = hci_dat_v1_set_static_addr,
.set_flags = hci_dat_v1_set_flags,
.clear_flags = hci_dat_v1_clear_flags,
.get_index = hci_dat_v1_get_index,
};
/* SPDX-License-Identifier: BSD-3-Clause */
/*
* Copyright (c) 2020, MIPI Alliance, Inc.
*
* Author: Nicolas Pitre <npitre@baylibre.com>
*
* Common DCT related stuff
*/
#ifndef DCT_H
#define DCT_H
void i3c_hci_dct_get_val(struct i3c_hci *hci, unsigned int dct_idx,
u64 *pid, unsigned int *dcr, unsigned int *bcr);
#endif
// SPDX-License-Identifier: BSD-3-Clause
/*
* Copyright (c) 2020, MIPI Alliance, Inc.
*
* Author: Nicolas Pitre <npitre@baylibre.com>
*/
#include <linux/device.h>
#include <linux/bitfield.h>
#include <linux/i3c/master.h>
#include <linux/io.h>
#include "hci.h"
#include "dct.h"
/*
* Device Characteristic Table
*/
void i3c_hci_dct_get_val(struct i3c_hci *hci, unsigned int dct_idx,
u64 *pid, unsigned int *dcr, unsigned int *bcr)
{
void __iomem *reg = hci->DCT_regs + dct_idx * 4 * 4;
u32 dct_entry_data[4];
unsigned int i;
for (i = 0; i < 4; i++) {
dct_entry_data[i] = readl(reg);
reg += 4;
}
*pid = ((u64)dct_entry_data[0]) << (47 - 32 + 1) |
FIELD_GET(W1_MASK(47, 32), dct_entry_data[1]);
*dcr = FIELD_GET(W2_MASK(71, 64), dct_entry_data[2]);
*bcr = FIELD_GET(W2_MASK(79, 72), dct_entry_data[2]);
}
This diff is collapsed.
// SPDX-License-Identifier: BSD-3-Clause
/*
* Copyright (c) 2020, MIPI Alliance, Inc.
*
* Author: Nicolas Pitre <npitre@baylibre.com>
*/
#include <linux/bitfield.h>
#include <linux/device.h>
#include <linux/errno.h>
#include <linux/i3c/master.h>
#include <linux/kernel.h>
#include <linux/io.h>
#include "hci.h"
#include "ext_caps.h"
#include "xfer_mode_rate.h"
/* Extended Capability Header */
#define CAP_HEADER_LENGTH GENMASK(23, 8)
#define CAP_HEADER_ID GENMASK(7, 0)
static int hci_extcap_hardware_id(struct i3c_hci *hci, void __iomem *base)
{
hci->vendor_mipi_id = readl(base + 0x04);
hci->vendor_version_id = readl(base + 0x08);
hci->vendor_product_id = readl(base + 0x0c);
dev_info(&hci->master.dev, "vendor MIPI ID: %#x\n", hci->vendor_mipi_id);
dev_info(&hci->master.dev, "vendor version ID: %#x\n", hci->vendor_version_id);
dev_info(&hci->master.dev, "vendor product ID: %#x\n", hci->vendor_product_id);
/* ought to go in a table if this grows too much */
switch (hci->vendor_mipi_id) {
case MIPI_VENDOR_NXP:
hci->quirks |= HCI_QUIRK_RAW_CCC;
DBG("raw CCC quirks set");
break;
}
return 0;
}
static int hci_extcap_master_config(struct i3c_hci *hci, void __iomem *base)
{
u32 master_config = readl(base + 0x04);
unsigned int operation_mode = FIELD_GET(GENMASK(5, 4), master_config);
static const char * const functionality[] = {
"(unknown)", "master only", "target only",
"primary/secondary master" };
dev_info(&hci->master.dev, "operation mode: %s\n", functionality[operation_mode]);
if (operation_mode & 0x1)
return 0;
dev_err(&hci->master.dev, "only master mode is currently supported\n");
return -EOPNOTSUPP;
}
static int hci_extcap_multi_bus(struct i3c_hci *hci, void __iomem *base)
{
u32 bus_instance = readl(base + 0x04);
unsigned int count = FIELD_GET(GENMASK(3, 0), bus_instance);
dev_info(&hci->master.dev, "%d bus instances\n", count);
return 0;
}
static int hci_extcap_xfer_modes(struct i3c_hci *hci, void __iomem *base)
{
u32 header = readl(base);
u32 entries = FIELD_GET(CAP_HEADER_LENGTH, header) - 1;
unsigned int index;
dev_info(&hci->master.dev, "transfer mode table has %d entries\n",
entries);
base += 4; /* skip header */
for (index = 0; index < entries; index++) {
u32 mode_entry = readl(base);
DBG("mode %d: 0x%08x", index, mode_entry);
/* TODO: will be needed when I3C core does more than SDR */
base += 4;
}
return 0;
}
static int hci_extcap_xfer_rates(struct i3c_hci *hci, void __iomem *base)
{
u32 header = readl(base);
u32 entries = FIELD_GET(CAP_HEADER_LENGTH, header) - 1;
u32 rate_entry;
unsigned int index, rate, rate_id, mode_id;
base += 4; /* skip header */
dev_info(&hci->master.dev, "available data rates:\n");
for (index = 0; index < entries; index++) {
rate_entry = readl(base);
DBG("entry %d: 0x%08x", index, rate_entry);
rate = FIELD_GET(XFERRATE_ACTUAL_RATE_KHZ, rate_entry);
rate_id = FIELD_GET(XFERRATE_RATE_ID, rate_entry);
mode_id = FIELD_GET(XFERRATE_MODE_ID, rate_entry);
dev_info(&hci->master.dev, "rate %d for %s = %d kHz\n",
rate_id,
mode_id == XFERRATE_MODE_I3C ? "I3C" :
mode_id == XFERRATE_MODE_I2C ? "I2C" :
"unknown mode",
rate);
base += 4;
}
return 0;
}
static int hci_extcap_auto_command(struct i3c_hci *hci, void __iomem *base)
{
u32 autocmd_ext_caps = readl(base + 0x04);
unsigned int max_count = FIELD_GET(GENMASK(3, 0), autocmd_ext_caps);
u32 autocmd_ext_config = readl(base + 0x08);
unsigned int count = FIELD_GET(GENMASK(3, 0), autocmd_ext_config);
dev_info(&hci->master.dev, "%d/%d active auto-command entries\n",
count, max_count);
/* remember auto-command register location for later use */
hci->AUTOCMD_regs = base;
return 0;
}
static int hci_extcap_debug(struct i3c_hci *hci, void __iomem *base)
{
dev_info(&hci->master.dev, "debug registers present\n");
hci->DEBUG_regs = base;
return 0;
}
static int hci_extcap_scheduled_cmd(struct i3c_hci *hci, void __iomem *base)
{
dev_info(&hci->master.dev, "scheduled commands available\n");
/* hci->schedcmd_regs = base; */
return 0;
}
static int hci_extcap_non_curr_master(struct i3c_hci *hci, void __iomem *base)
{
dev_info(&hci->master.dev, "Non-Current Master support available\n");
/* hci->NCM_regs = base; */
return 0;
}
static int hci_extcap_ccc_resp_conf(struct i3c_hci *hci, void __iomem *base)
{
dev_info(&hci->master.dev, "CCC Response Configuration available\n");
return 0;
}
static int hci_extcap_global_DAT(struct i3c_hci *hci, void __iomem *base)
{
dev_info(&hci->master.dev, "Global DAT available\n");
return 0;
}
static int hci_extcap_multilane(struct i3c_hci *hci, void __iomem *base)
{
dev_info(&hci->master.dev, "Master Multi-Lane support available\n");
return 0;
}
static int hci_extcap_ncm_multilane(struct i3c_hci *hci, void __iomem *base)
{
dev_info(&hci->master.dev, "NCM Multi-Lane support available\n");
return 0;
}
struct hci_ext_caps {
u8 id;
u16 min_length;
int (*parser)(struct i3c_hci *hci, void __iomem *base);
};
#define EXT_CAP(_id, _highest_mandatory_reg_offset, _parser) \
{ .id = (_id), .parser = (_parser), \
.min_length = (_highest_mandatory_reg_offset)/4 + 1 }
static const struct hci_ext_caps ext_capabilities[] = {
EXT_CAP(0x01, 0x0c, hci_extcap_hardware_id),
EXT_CAP(0x02, 0x04, hci_extcap_master_config),
EXT_CAP(0x03, 0x04, hci_extcap_multi_bus),
EXT_CAP(0x04, 0x24, hci_extcap_xfer_modes),
EXT_CAP(0x05, 0x08, hci_extcap_auto_command),
EXT_CAP(0x08, 0x40, hci_extcap_xfer_rates),
EXT_CAP(0x0c, 0x10, hci_extcap_debug),
EXT_CAP(0x0d, 0x0c, hci_extcap_scheduled_cmd),
EXT_CAP(0x0e, 0x80, hci_extcap_non_curr_master), /* TODO confirm size */
EXT_CAP(0x0f, 0x04, hci_extcap_ccc_resp_conf),
EXT_CAP(0x10, 0x08, hci_extcap_global_DAT),
EXT_CAP(0x9d, 0x04, hci_extcap_multilane),
EXT_CAP(0x9e, 0x04, hci_extcap_ncm_multilane),
};
static int hci_extcap_vendor_NXP(struct i3c_hci *hci, void __iomem *base)
{
hci->vendor_data = (__force void *)base;
dev_info(&hci->master.dev, "Build Date Info = %#x\n", readl(base + 1*4));
/* reset the FPGA */
writel(0xdeadbeef, base + 1*4);
return 0;
}
struct hci_ext_cap_vendor_specific {
u32 vendor;
u8 cap;
u16 min_length;
int (*parser)(struct i3c_hci *hci, void __iomem *base);
};
#define EXT_CAP_VENDOR(_vendor, _cap, _highest_mandatory_reg_offset) \
{ .vendor = (MIPI_VENDOR_##_vendor), .cap = (_cap), \
.parser = (hci_extcap_vendor_##_vendor), \
.min_length = (_highest_mandatory_reg_offset)/4 + 1 }
static const struct hci_ext_cap_vendor_specific vendor_ext_caps[] = {
EXT_CAP_VENDOR(NXP, 0xc0, 0x20),
};
static int hci_extcap_vendor_specific(struct i3c_hci *hci, void __iomem *base,
u32 cap_id, u32 cap_length)
{
const struct hci_ext_cap_vendor_specific *vendor_cap_entry;
int i;
vendor_cap_entry = NULL;
for (i = 0; i < ARRAY_SIZE(vendor_ext_caps); i++) {
if (vendor_ext_caps[i].vendor == hci->vendor_mipi_id &&
vendor_ext_caps[i].cap == cap_id) {
vendor_cap_entry = &vendor_ext_caps[i];
break;
}
}
if (!vendor_cap_entry) {
dev_notice(&hci->master.dev,
"unknown ext_cap 0x%02x for vendor 0x%02x\n",
cap_id, hci->vendor_mipi_id);
return 0;
}
if (cap_length < vendor_cap_entry->min_length) {
dev_err(&hci->master.dev,
"ext_cap 0x%02x has size %d (expecting >= %d)\n",
cap_id, cap_length, vendor_cap_entry->min_length);
return -EINVAL;
}
return vendor_cap_entry->parser(hci, base);
}
int i3c_hci_parse_ext_caps(struct i3c_hci *hci)
{
void __iomem *curr_cap = hci->EXTCAPS_regs;
void __iomem *end = curr_cap + 0x1000; /* some arbitrary limit */
u32 cap_header, cap_id, cap_length;
const struct hci_ext_caps *cap_entry;
int i, err = 0;
if (!curr_cap)
return 0;
for (; !err && curr_cap < end; curr_cap += cap_length * 4) {
cap_header = readl(curr_cap);
cap_id = FIELD_GET(CAP_HEADER_ID, cap_header);
cap_length = FIELD_GET(CAP_HEADER_LENGTH, cap_header);
DBG("id=0x%02x length=%d", cap_id, cap_length);
if (!cap_length)
break;
if (curr_cap + cap_length * 4 >= end) {
dev_err(&hci->master.dev,
"ext_cap 0x%02x has size %d (too big)\n",
cap_id, cap_length);
err = -EINVAL;
break;
}
if (cap_id >= 0xc0 && cap_id <= 0xcf) {
err = hci_extcap_vendor_specific(hci, curr_cap,
cap_id, cap_length);
continue;
}
cap_entry = NULL;
for (i = 0; i < ARRAY_SIZE(ext_capabilities); i++) {
if (ext_capabilities[i].id == cap_id) {
cap_entry = &ext_capabilities[i];
break;
}
}
if (!cap_entry) {
dev_notice(&hci->master.dev,
"unknown ext_cap 0x%02x\n", cap_id);
} else if (cap_length < cap_entry->min_length) {
dev_err(&hci->master.dev,
"ext_cap 0x%02x has size %d (expecting >= %d)\n",
cap_id, cap_length, cap_entry->min_length);
err = -EINVAL;
} else {
err = cap_entry->parser(hci, curr_cap);
}
}
return err;
}
/* SPDX-License-Identifier: BSD-3-Clause */
/*
* Copyright (c) 2020, MIPI Alliance, Inc.
*
* Author: Nicolas Pitre <npitre@baylibre.com>
*
* Extended Capability Definitions
*/
#ifndef EXTCAPS_H
#define EXTCAPS_H
/* MIPI vendor IDs */
#define MIPI_VENDOR_NXP 0x11b
int i3c_hci_parse_ext_caps(struct i3c_hci *hci);
#endif
/* SPDX-License-Identifier: BSD-3-Clause */
/*
* Copyright (c) 2020, MIPI Alliance, Inc.
*
* Author: Nicolas Pitre <npitre@baylibre.com>
*
* Common HCI stuff
*/
#ifndef HCI_H
#define HCI_H
/* Handy logging macro to save on line length */
#define DBG(x, ...) pr_devel("%s: " x "\n", __func__, ##__VA_ARGS__)
/* 32-bit word aware bit and mask macros */
#define W0_MASK(h, l) GENMASK((h) - 0, (l) - 0)
#define W1_MASK(h, l) GENMASK((h) - 32, (l) - 32)
#define W2_MASK(h, l) GENMASK((h) - 64, (l) - 64)
#define W3_MASK(h, l) GENMASK((h) - 96, (l) - 96)
/* Same for single bit macros (trailing _ to align with W*_MASK width) */
#define W0_BIT_(x) BIT((x) - 0)
#define W1_BIT_(x) BIT((x) - 32)
#define W2_BIT_(x) BIT((x) - 64)
#define W3_BIT_(x) BIT((x) - 96)
struct hci_cmd_ops;
/* Our main structure */
struct i3c_hci {
struct i3c_master_controller master;
void __iomem *base_regs;
void __iomem *DAT_regs;
void __iomem *DCT_regs;
void __iomem *RHS_regs;
void __iomem *PIO_regs;
void __iomem *EXTCAPS_regs;
void __iomem *AUTOCMD_regs;
void __iomem *DEBUG_regs;
const struct hci_io_ops *io;
void *io_data;
const struct hci_cmd_ops *cmd;
atomic_t next_cmd_tid;
u32 caps;
unsigned int quirks;
unsigned int DAT_entries;
unsigned int DAT_entry_size;
void *DAT_data;
unsigned int DCT_entries;
unsigned int DCT_entry_size;
u8 version_major;
u8 version_minor;
u8 revision;
u32 vendor_mipi_id;
u32 vendor_version_id;
u32 vendor_product_id;
void *vendor_data;
};
/*
* Structure to represent a master initiated transfer.
* The rnw, data and data_len fields must be initialized before calling any
* hci->cmd->*() method. The cmd method will initialize cmd_desc[] and
* possibly modify (clear) the data field. Then xfer->cmd_desc[0] can
* be augmented with CMD_0_ROC and/or CMD_0_TOC.
* The completion field needs to be initialized before queueing with
* hci->io->queue_xfer(), and requires CMD_0_ROC to be set.
*/
struct hci_xfer {
u32 cmd_desc[4];
u32 response;
bool rnw;
void *data;
unsigned int data_len;
unsigned int cmd_tid;
struct completion *completion;
union {
struct {
/* PIO specific */
struct hci_xfer *next_xfer;
struct hci_xfer *next_data;
struct hci_xfer *next_resp;
unsigned int data_left;
u32 data_word_before_partial;
};
struct {
/* DMA specific */
dma_addr_t data_dma;
int ring_number;
int ring_entry;
};
};
};
static inline struct hci_xfer *hci_alloc_xfer(unsigned int n)
{
return kzalloc(sizeof(struct hci_xfer) * n, GFP_KERNEL);
}
static inline void hci_free_xfer(struct hci_xfer *xfer, unsigned int n)
{
kfree(xfer);
}
/* This abstracts PIO vs DMA operations */
struct hci_io_ops {
bool (*irq_handler)(struct i3c_hci *hci, unsigned int mask);
int (*queue_xfer)(struct i3c_hci *hci, struct hci_xfer *xfer, int n);
bool (*dequeue_xfer)(struct i3c_hci *hci, struct hci_xfer *xfer, int n);
int (*request_ibi)(struct i3c_hci *hci, struct i3c_dev_desc *dev,
const struct i3c_ibi_setup *req);
void (*free_ibi)(struct i3c_hci *hci, struct i3c_dev_desc *dev);
void (*recycle_ibi_slot)(struct i3c_hci *hci, struct i3c_dev_desc *dev,
struct i3c_ibi_slot *slot);
int (*init)(struct i3c_hci *hci);
void (*cleanup)(struct i3c_hci *hci);
};
extern const struct hci_io_ops mipi_i3c_hci_pio;
extern const struct hci_io_ops mipi_i3c_hci_dma;
/* Our per device master private data */
struct i3c_hci_dev_data {
int dat_idx;
void *ibi_data;
};
/* list of quirks */
#define HCI_QUIRK_RAW_CCC BIT(1) /* CCC framing must be explicit */
/* global functions */
void mipi_i3c_hci_resume(struct i3c_hci *hci);
void mipi_i3c_hci_pio_reset(struct i3c_hci *hci);
void mipi_i3c_hci_dct_index_reset(struct i3c_hci *hci);
#endif
/* SPDX-License-Identifier: BSD-3-Clause */
/*
* Copyright (c) 2020, MIPI Alliance, Inc.
*
* Author: Nicolas Pitre <npitre@baylibre.com>
*
* Common IBI related stuff
*/
#ifndef IBI_H
#define IBI_H
/*
* IBI Status Descriptor bits
*/
#define IBI_STS BIT(31)
#define IBI_ERROR BIT(30)
#define IBI_STATUS_TYPE BIT(29)
#define IBI_HW_CONTEXT GENMASK(28, 26)
#define IBI_TS BIT(25)
#define IBI_LAST_STATUS BIT(24)
#define IBI_CHUNKS GENMASK(23, 16)
#define IBI_ID GENMASK(15, 8)
#define IBI_TARGET_ADDR GENMASK(15, 9)
#define IBI_TARGET_RNW BIT(8)
#define IBI_DATA_LENGTH GENMASK(7, 0)
/* handy helpers */
static inline struct i3c_dev_desc *
i3c_hci_addr_to_dev(struct i3c_hci *hci, unsigned int addr)
{
struct i3c_bus *bus = i3c_master_get_bus(&hci->master);
struct i3c_dev_desc *dev;
i3c_bus_for_each_i3cdev(bus, dev) {
if (dev->info.dyn_addr == addr)
return dev;
}
return NULL;
}
#endif
This diff is collapsed.
/* SPDX-License-Identifier: BSD-3-Clause */
/*
* Copyright (c) 2020, MIPI Alliance, Inc.
*
* Author: Nicolas Pitre <npitre@baylibre.com>
*
* Transfer Mode/Rate Table definitions as found in extended capability
* sections 0x04 and 0x08.
* This applies starting from I3C HCI v2.0.
*/
#ifndef XFER_MODE_RATE_H
#define XFER_MODE_RATE_H
/*
* Master Transfer Mode Table Fixed Indexes.
*
* Indexes 0x0 and 0x8 are mandatory. Availability for the rest must be
* obtained from the mode table in the extended capability area.
* Presence and definitions for indexes beyond these ones may vary.
*/
#define XFERMODE_IDX_I3C_SDR 0x00 /* I3C SDR Mode */
#define XFERMODE_IDX_I3C_HDR_DDR 0x01 /* I3C HDR-DDR Mode */
#define XFERMODE_IDX_I3C_HDR_T 0x02 /* I3C HDR-Ternary Mode */
#define XFERMODE_IDX_I3C_HDR_BT 0x03 /* I3C HDR-BT Mode */
#define XFERMODE_IDX_I2C 0x08 /* Legacy I2C Mode */
/*
* Transfer Mode Table Entry Bits Definitions
*/
#define XFERMODE_VALID_XFER_ADD_FUNC GENMASK(21, 16)
#define XFERMODE_ML_DATA_XFER_CODING GENMASK(15, 11)
#define XFERMODE_ML_ADDL_LANES GENMASK(10, 8)
#define XFERMODE_SUPPORTED BIT(7)
#define XFERMODE_MODE GENMASK(3, 0)
/*
* Master Data Transfer Rate Selector Values.
*
* These are the values to be used in the command descriptor XFER_RATE field
* and found in the RATE_ID field below.
* The I3C_SDR0, I3C_SDR1, I3C_SDR2, I3C_SDR3, I3C_SDR4 and I2C_FM rates
* are required, everything else is optional and discoverable in the
* Data Transfer Rate Table. Indicated are typical rates. The actual
* rates may vary slightly and are also specified in the Data Transfer
* Rate Table.
*/
#define XFERRATE_I3C_SDR0 0x00 /* 12.5 MHz */
#define XFERRATE_I3C_SDR1 0x01 /* 8 MHz */
#define XFERRATE_I3C_SDR2 0x02 /* 6 MHz */
#define XFERRATE_I3C_SDR3 0x03 /* 4 MHz */
#define XFERRATE_I3C_SDR4 0x04 /* 2 MHz */
#define XFERRATE_I3C_SDR_FM_FMP 0x05 /* 400 KHz / 1 MHz */
#define XFERRATE_I3C_SDR_USER6 0x06 /* User Defined */
#define XFERRATE_I3C_SDR_USER7 0x07 /* User Defined */
#define XFERRATE_I2C_FM 0x00 /* 400 KHz */
#define XFERRATE_I2C_FMP 0x01 /* 1 MHz */
#define XFERRATE_I2C_USER2 0x02 /* User Defined */
#define XFERRATE_I2C_USER3 0x03 /* User Defined */
#define XFERRATE_I2C_USER4 0x04 /* User Defined */
#define XFERRATE_I2C_USER5 0x05 /* User Defined */
#define XFERRATE_I2C_USER6 0x06 /* User Defined */
#define XFERRATE_I2C_USER7 0x07 /* User Defined */
/*
* Master Data Transfer Rate Table Mode ID values.
*/
#define XFERRATE_MODE_I3C 0x00
#define XFERRATE_MODE_I2C 0x08
/*
* Master Data Transfer Rate Table Entry Bits Definitions
*/
#define XFERRATE_MODE_ID GENMASK(31, 28)
#define XFERRATE_RATE_ID GENMASK(22, 20)
#define XFERRATE_ACTUAL_RATE_KHZ GENMASK(19, 0)
#endif
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment