Commit 19c3205c authored by John Stultz's avatar John Stultz

Merge branch 'fortglx/3.12/sched-clock64-base' into fortglx/3.13/time

Merge in 64bit sched_clock support that missed 3.12.

Conflicts:
	kernel/time/sched_clock.c
Signed-off-by: default avatarJohn.Stultz <john.stultz@linaro.org>
parents 272b98c6 e7e3ff1b
......@@ -292,6 +292,8 @@ extern void clocksource_resume(void);
extern struct clocksource * __init __weak clocksource_default_clock(void);
extern void clocksource_mark_unstable(struct clocksource *cs);
extern u64
clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask);
extern void
clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 minsec);
......
......@@ -15,6 +15,8 @@ static inline void sched_clock_postinit(void) { }
#endif
extern void setup_sched_clock(u32 (*read)(void), int bits, unsigned long rate);
extern void sched_clock_register(u64 (*read)(void), int bits,
unsigned long rate);
extern unsigned long long (*sched_clock_func)(void);
......
......@@ -537,40 +537,55 @@ static u32 clocksource_max_adjustment(struct clocksource *cs)
}
/**
* clocksource_max_deferment - Returns max time the clocksource can be deferred
* @cs: Pointer to clocksource
*
* clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
* @mult: cycle to nanosecond multiplier
* @shift: cycle to nanosecond divisor (power of two)
* @maxadj: maximum adjustment value to mult (~11%)
* @mask: bitmask for two's complement subtraction of non 64 bit counters
*/
static u64 clocksource_max_deferment(struct clocksource *cs)
u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask)
{
u64 max_nsecs, max_cycles;
/*
* Calculate the maximum number of cycles that we can pass to the
* cyc2ns function without overflowing a 64-bit signed result. The
* maximum number of cycles is equal to ULLONG_MAX/(cs->mult+cs->maxadj)
* maximum number of cycles is equal to ULLONG_MAX/(mult+maxadj)
* which is equivalent to the below.
* max_cycles < (2^63)/(cs->mult + cs->maxadj)
* max_cycles < 2^(log2((2^63)/(cs->mult + cs->maxadj)))
* max_cycles < 2^(log2(2^63) - log2(cs->mult + cs->maxadj))
* max_cycles < 2^(63 - log2(cs->mult + cs->maxadj))
* max_cycles < 1 << (63 - log2(cs->mult + cs->maxadj))
* max_cycles < (2^63)/(mult + maxadj)
* max_cycles < 2^(log2((2^63)/(mult + maxadj)))
* max_cycles < 2^(log2(2^63) - log2(mult + maxadj))
* max_cycles < 2^(63 - log2(mult + maxadj))
* max_cycles < 1 << (63 - log2(mult + maxadj))
* Please note that we add 1 to the result of the log2 to account for
* any rounding errors, ensure the above inequality is satisfied and
* no overflow will occur.
*/
max_cycles = 1ULL << (63 - (ilog2(cs->mult + cs->maxadj) + 1));
max_cycles = 1ULL << (63 - (ilog2(mult + maxadj) + 1));
/*
* The actual maximum number of cycles we can defer the clocksource is
* determined by the minimum of max_cycles and cs->mask.
* determined by the minimum of max_cycles and mask.
* Note: Here we subtract the maxadj to make sure we don't sleep for
* too long if there's a large negative adjustment.
*/
max_cycles = min_t(u64, max_cycles, (u64) cs->mask);
max_nsecs = clocksource_cyc2ns(max_cycles, cs->mult - cs->maxadj,
cs->shift);
max_cycles = min(max_cycles, mask);
max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
return max_nsecs;
}
/**
* clocksource_max_deferment - Returns max time the clocksource can be deferred
* @cs: Pointer to clocksource
*
*/
static u64 clocksource_max_deferment(struct clocksource *cs)
{
u64 max_nsecs;
max_nsecs = clocks_calc_max_nsecs(cs->mult, cs->shift, cs->maxadj,
cs->mask);
/*
* To ensure that the clocksource does not wrap whilst we are idle,
* limit the time the clocksource can be deferred by 12.5%. Please
......
......@@ -8,25 +8,28 @@
#include <linux/clocksource.h>
#include <linux/init.h>
#include <linux/jiffies.h>
#include <linux/ktime.h>
#include <linux/kernel.h>
#include <linux/moduleparam.h>
#include <linux/sched.h>
#include <linux/syscore_ops.h>
#include <linux/timer.h>
#include <linux/hrtimer.h>
#include <linux/sched_clock.h>
#include <linux/seqlock.h>
#include <linux/bitops.h>
struct clock_data {
ktime_t wrap_kt;
u64 epoch_ns;
u32 epoch_cyc;
u32 epoch_cyc_copy;
u64 epoch_cyc;
seqcount_t seq;
unsigned long rate;
u32 mult;
u32 shift;
bool suspended;
};
static void sched_clock_poll(unsigned long wrap_ticks);
static DEFINE_TIMER(sched_clock_timer, sched_clock_poll, 0, 0);
static struct hrtimer sched_clock_timer;
static int irqtime = -1;
core_param(irqtime, irqtime, int, 0400);
......@@ -35,14 +38,25 @@ static struct clock_data cd = {
.mult = NSEC_PER_SEC / HZ,
};
static u32 __read_mostly sched_clock_mask = 0xffffffff;
static u64 __read_mostly sched_clock_mask;
static u32 notrace jiffy_sched_clock_read(void)
static u64 notrace jiffy_sched_clock_read(void)
{
return (u32)(jiffies - INITIAL_JIFFIES);
/*
* We don't need to use get_jiffies_64 on 32-bit arches here
* because we register with BITS_PER_LONG
*/
return (u64)(jiffies - INITIAL_JIFFIES);
}
static u32 __read_mostly (*read_sched_clock)(void) = jiffy_sched_clock_read;
static u32 __read_mostly (*read_sched_clock_32)(void);
static u64 notrace read_sched_clock_32_wrapper(void)
{
return read_sched_clock_32();
}
static u64 __read_mostly (*read_sched_clock)(void) = jiffy_sched_clock_read;
static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift)
{
......@@ -52,25 +66,18 @@ static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift)
static unsigned long long notrace sched_clock_32(void)
{
u64 epoch_ns;
u32 epoch_cyc;
u32 cyc;
u64 epoch_cyc;
u64 cyc;
unsigned long seq;
if (cd.suspended)
return cd.epoch_ns;
/*
* Load the epoch_cyc and epoch_ns atomically. We do this by
* ensuring that we always write epoch_cyc, epoch_ns and
* epoch_cyc_copy in strict order, and read them in strict order.
* If epoch_cyc and epoch_cyc_copy are not equal, then we're in
* the middle of an update, and we should repeat the load.
*/
do {
seq = read_seqcount_begin(&cd.seq);
epoch_cyc = cd.epoch_cyc;
smp_rmb();
epoch_ns = cd.epoch_ns;
smp_rmb();
} while (epoch_cyc != cd.epoch_cyc_copy);
} while (read_seqcount_retry(&cd.seq, seq));
cyc = read_sched_clock();
cyc = (cyc - epoch_cyc) & sched_clock_mask;
......@@ -83,49 +90,46 @@ static unsigned long long notrace sched_clock_32(void)
static void notrace update_sched_clock(void)
{
unsigned long flags;
u32 cyc;
u64 cyc;
u64 ns;
cyc = read_sched_clock();
ns = cd.epoch_ns +
cyc_to_ns((cyc - cd.epoch_cyc) & sched_clock_mask,
cd.mult, cd.shift);
/*
* Write epoch_cyc and epoch_ns in a way that the update is
* detectable in cyc_to_fixed_sched_clock().
*/
raw_local_irq_save(flags);
cd.epoch_cyc_copy = cyc;
smp_wmb();
write_seqcount_begin(&cd.seq);
cd.epoch_ns = ns;
smp_wmb();
cd.epoch_cyc = cyc;
write_seqcount_end(&cd.seq);
raw_local_irq_restore(flags);
}
static void sched_clock_poll(unsigned long wrap_ticks)
static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt)
{
mod_timer(&sched_clock_timer, round_jiffies(jiffies + wrap_ticks));
update_sched_clock();
hrtimer_forward_now(hrt, cd.wrap_kt);
return HRTIMER_RESTART;
}
void __init setup_sched_clock(u32 (*read)(void), int bits, unsigned long rate)
void __init sched_clock_register(u64 (*read)(void), int bits,
unsigned long rate)
{
unsigned long r, w;
unsigned long r;
u64 res, wrap;
char r_unit;
if (cd.rate > rate)
return;
BUG_ON(bits > 32);
WARN_ON(!irqs_disabled());
read_sched_clock = read;
sched_clock_mask = (1ULL << bits) - 1;
sched_clock_mask = CLOCKSOURCE_MASK(bits);
cd.rate = rate;
/* calculate the mult/shift to convert counter ticks to ns. */
clocks_calc_mult_shift(&cd.mult, &cd.shift, rate, NSEC_PER_SEC, 0);
clocks_calc_mult_shift(&cd.mult, &cd.shift, rate, NSEC_PER_SEC, 3600);
r = rate;
if (r >= 4000000) {
......@@ -138,20 +142,14 @@ void __init setup_sched_clock(u32 (*read)(void), int bits, unsigned long rate)
r_unit = ' ';
/* calculate how many ns until we wrap */
wrap = cyc_to_ns((1ULL << bits) - 1, cd.mult, cd.shift);
do_div(wrap, NSEC_PER_MSEC);
w = wrap;
wrap = clocks_calc_max_nsecs(cd.mult, cd.shift, 0, sched_clock_mask);
cd.wrap_kt = ns_to_ktime(wrap - (wrap >> 3));
/* calculate the ns resolution of this counter */
res = cyc_to_ns(1ULL, cd.mult, cd.shift);
pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lums\n",
bits, r, r_unit, res, w);
pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n",
bits, r, r_unit, res, wrap);
/*
* Start the timer to keep sched_clock() properly updated and
* sets the initial epoch.
*/
sched_clock_timer.data = msecs_to_jiffies(w - (w / 10));
update_sched_clock();
/*
......@@ -166,6 +164,12 @@ void __init setup_sched_clock(u32 (*read)(void), int bits, unsigned long rate)
pr_debug("Registered %pF as sched_clock source\n", read);
}
void __init setup_sched_clock(u32 (*read)(void), int bits, unsigned long rate)
{
read_sched_clock_32 = read;
sched_clock_register(read_sched_clock_32_wrapper, bits, rate);
}
unsigned long long __read_mostly (*sched_clock_func)(void) = sched_clock_32;
unsigned long long notrace sched_clock(void)
......@@ -180,14 +184,22 @@ void __init sched_clock_postinit(void)
* make it the final one one.
*/
if (read_sched_clock == jiffy_sched_clock_read)
setup_sched_clock(jiffy_sched_clock_read, 32, HZ);
sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ);
sched_clock_poll(sched_clock_timer.data);
update_sched_clock();
/*
* Start the timer to keep sched_clock() properly updated and
* sets the initial epoch.
*/
hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
sched_clock_timer.function = sched_clock_poll;
hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
}
static int sched_clock_suspend(void)
{
sched_clock_poll(sched_clock_timer.data);
sched_clock_poll(&sched_clock_timer);
cd.suspended = true;
return 0;
}
......@@ -195,7 +207,6 @@ static int sched_clock_suspend(void)
static void sched_clock_resume(void)
{
cd.epoch_cyc = read_sched_clock();
cd.epoch_cyc_copy = cd.epoch_cyc;
cd.suspended = false;
}
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment