Commit 1c287992 authored by Mathieu Othacehe's avatar Mathieu Othacehe Committed by Jonathan Cameron

iio: light: isl29501: Add support for the ISL29501 ToF sensor.

This patch adds support for the ISL29501 Time of Flight sensor.
Signed-off-by: default avatarMathieu Othacehe <m.othacehe@gmail.com>
Signed-off-by: default avatarJonathan Cameron <Jonathan.Cameron@huawei.com>
parent c73314e6
What: /sys/bus/iio/devices/iio:deviceX/in_proximity0_agc_gain
What: /sys/bus/iio/devices/iio:deviceX/in_proximity0_agc_gain_bias
KernelVersion: 4.18
Contact: linux-iio@vger.kernel.org
Description:
This sensor has an automatic gain control (agc) loop
which sets the analog signal levels at an optimum
level by controlling programmable gain amplifiers. The
criteria for optimal gain is determined by the sensor.
Return the actual gain value as an integer in [0; 65536]
range when read from.
The agc gain read when measuring crosstalk shall be
written into in_proximity0_agc_gain_bias.
What: /sys/bus/iio/devices/iio:deviceX/in_proximity0_calib_phase_temp_a
What: /sys/bus/iio/devices/iio:deviceX/in_proximity0_calib_phase_temp_b
What: /sys/bus/iio/devices/iio:deviceX/in_proximity0_calib_phase_light_a
What: /sys/bus/iio/devices/iio:deviceX/in_proximity0_calib_phase_light_b
KernelVersion: 4.18
Contact: linux-iio@vger.kernel.org
Description:
The sensor is able to perform correction of distance
measurements due to changing temperature and ambient
light conditions. It can be programmed to correct for
a second order error polynomial.
Phase data has to be collected when temperature and
ambient light are modulated independently.
Then a least squares curve fit to a second order
polynomial has to be generated from the data. The
resultant curves have the form ax^2 + bx + c.
From those two curves, a and b coefficients shall be
stored in in_proximity0_calib_phase_temp_a and
in_proximity0_calib_phase_temp_b for temperature and
in in_proximity0_calib_phase_light_a and
in_proximity0_calib_phase_light_b for ambient light.
Those values must be integer in [0; 8355840] range.
Finally, the c constant is set by the sensor
internally.
The value stored in sensor is displayed when read from.
* ISL29501 Time-of-flight sensor.
Required properties:
- compatible : should be "renesas,isl29501"
- reg : the I2C address of the sensor
Example:
isl29501@57 {
compatible = "renesas,isl29501";
reg = <0x57>;
};
......@@ -20,6 +20,19 @@ endmenu
menu "Proximity and distance sensors"
config ISL29501
tristate "Intersil ISL29501 Time Of Flight sensor"
depends on I2C
select IIO_BUFFER
select IIO_TRIGGERED_BUFFER
select IIO_KFIFO_BUF
help
Say Y here if you want to build a driver for the Intersil ISL29501
Time of Flight sensor.
To compile this driver as a module, choose M here: the module will be
called isl29501.
config LIDAR_LITE_V2
tristate "PulsedLight LIDAR sensor"
select IIO_BUFFER
......
......@@ -5,6 +5,7 @@
# When adding new entries keep the list in alphabetical order
obj-$(CONFIG_AS3935) += as3935.o
obj-$(CONFIG_ISL29501) += isl29501.o
obj-$(CONFIG_LIDAR_LITE_V2) += pulsedlight-lidar-lite-v2.o
obj-$(CONFIG_RFD77402) += rfd77402.o
obj-$(CONFIG_SRF04) += srf04.o
......
// SPDX-License-Identifier: GPL-2.0
/*
* isl29501.c: ISL29501 Time of Flight sensor driver.
*
* Copyright (C) 2018
* Author: Mathieu Othacehe <m.othacehe@gmail.com>
*
* 7-bit I2C slave address: 0x57
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/err.h>
#include <linux/of_device.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/buffer.h>
#include <linux/iio/triggered_buffer.h>
/* Control, setting and status registers */
#define ISL29501_DEVICE_ID 0x00
#define ISL29501_ID 0x0A
/* Sampling control registers */
#define ISL29501_INTEGRATION_PERIOD 0x10
#define ISL29501_SAMPLE_PERIOD 0x11
/* Closed loop calibration registers */
#define ISL29501_CROSSTALK_I_MSB 0x24
#define ISL29501_CROSSTALK_I_LSB 0x25
#define ISL29501_CROSSTALK_I_EXPONENT 0x26
#define ISL29501_CROSSTALK_Q_MSB 0x27
#define ISL29501_CROSSTALK_Q_LSB 0x28
#define ISL29501_CROSSTALK_Q_EXPONENT 0x29
#define ISL29501_CROSSTALK_GAIN_MSB 0x2A
#define ISL29501_CROSSTALK_GAIN_LSB 0x2B
#define ISL29501_MAGNITUDE_REF_EXP 0x2C
#define ISL29501_MAGNITUDE_REF_MSB 0x2D
#define ISL29501_MAGNITUDE_REF_LSB 0x2E
#define ISL29501_PHASE_OFFSET_MSB 0x2F
#define ISL29501_PHASE_OFFSET_LSB 0x30
/* Analog control registers */
#define ISL29501_DRIVER_RANGE 0x90
#define ISL29501_EMITTER_DAC 0x91
#define ISL29501_COMMAND_REGISTER 0xB0
/* Commands */
#define ISL29501_EMUL_SAMPLE_START_PIN 0x49
#define ISL29501_RESET_ALL_REGISTERS 0xD7
#define ISL29501_RESET_INT_SM 0xD1
/* Ambiant light and temperature corrections */
#define ISL29501_TEMP_REFERENCE 0x31
#define ISL29501_PHASE_EXPONENT 0x33
#define ISL29501_TEMP_COEFF_A 0x34
#define ISL29501_TEMP_COEFF_B 0x39
#define ISL29501_AMBIANT_COEFF_A 0x36
#define ISL29501_AMBIANT_COEFF_B 0x3B
/* Data output registers */
#define ISL29501_DISTANCE_MSB_DATA 0xD1
#define ISL29501_DISTANCE_LSB_DATA 0xD2
#define ISL29501_PRECISION_MSB 0xD3
#define ISL29501_PRECISION_LSB 0xD4
#define ISL29501_MAGNITUDE_EXPONENT 0xD5
#define ISL29501_MAGNITUDE_MSB 0xD6
#define ISL29501_MAGNITUDE_LSB 0xD7
#define ISL29501_PHASE_MSB 0xD8
#define ISL29501_PHASE_LSB 0xD9
#define ISL29501_I_RAW_EXPONENT 0xDA
#define ISL29501_I_RAW_MSB 0xDB
#define ISL29501_I_RAW_LSB 0xDC
#define ISL29501_Q_RAW_EXPONENT 0xDD
#define ISL29501_Q_RAW_MSB 0xDE
#define ISL29501_Q_RAW_LSB 0xDF
#define ISL29501_DIE_TEMPERATURE 0xE2
#define ISL29501_AMBIENT_LIGHT 0xE3
#define ISL29501_GAIN_MSB 0xE6
#define ISL29501_GAIN_LSB 0xE7
#define ISL29501_MAX_EXP_VAL 15
#define ISL29501_INT_TIME_AVAILABLE \
"0.00007 0.00014 0.00028 0.00057 0.00114 " \
"0.00228 0.00455 0.00910 0.01820 0.03640 " \
"0.07281 0.14561"
#define ISL29501_CURRENT_SCALE_AVAILABLE \
"0.0039 0.0078 0.0118 0.0157 0.0196 " \
"0.0235 0.0275 0.0314 0.0352 0.0392 " \
"0.0431 0.0471 0.0510 0.0549 0.0588"
enum isl29501_correction_coeff {
COEFF_TEMP_A,
COEFF_TEMP_B,
COEFF_LIGHT_A,
COEFF_LIGHT_B,
COEFF_MAX,
};
struct isl29501_private {
struct i2c_client *client;
struct mutex lock;
/* Exact representation of correction coefficients. */
unsigned int shadow_coeffs[COEFF_MAX];
};
enum isl29501_register_name {
REG_DISTANCE,
REG_PHASE,
REG_TEMPERATURE,
REG_AMBIENT_LIGHT,
REG_GAIN,
REG_GAIN_BIAS,
REG_PHASE_EXP,
REG_CALIB_PHASE_TEMP_A,
REG_CALIB_PHASE_TEMP_B,
REG_CALIB_PHASE_LIGHT_A,
REG_CALIB_PHASE_LIGHT_B,
REG_DISTANCE_BIAS,
REG_TEMPERATURE_BIAS,
REG_INT_TIME,
REG_SAMPLE_TIME,
REG_DRIVER_RANGE,
REG_EMITTER_DAC,
};
struct isl29501_register_desc {
u8 msb;
u8 lsb;
};
static const struct isl29501_register_desc isl29501_registers[] = {
[REG_DISTANCE] = {
.msb = ISL29501_DISTANCE_MSB_DATA,
.lsb = ISL29501_DISTANCE_LSB_DATA,
},
[REG_PHASE] = {
.msb = ISL29501_PHASE_MSB,
.lsb = ISL29501_PHASE_LSB,
},
[REG_TEMPERATURE] = {
.lsb = ISL29501_DIE_TEMPERATURE,
},
[REG_AMBIENT_LIGHT] = {
.lsb = ISL29501_AMBIENT_LIGHT,
},
[REG_GAIN] = {
.msb = ISL29501_GAIN_MSB,
.lsb = ISL29501_GAIN_LSB,
},
[REG_GAIN_BIAS] = {
.msb = ISL29501_CROSSTALK_GAIN_MSB,
.lsb = ISL29501_CROSSTALK_GAIN_LSB,
},
[REG_PHASE_EXP] = {
.lsb = ISL29501_PHASE_EXPONENT,
},
[REG_CALIB_PHASE_TEMP_A] = {
.lsb = ISL29501_TEMP_COEFF_A,
},
[REG_CALIB_PHASE_TEMP_B] = {
.lsb = ISL29501_TEMP_COEFF_B,
},
[REG_CALIB_PHASE_LIGHT_A] = {
.lsb = ISL29501_AMBIANT_COEFF_A,
},
[REG_CALIB_PHASE_LIGHT_B] = {
.lsb = ISL29501_AMBIANT_COEFF_B,
},
[REG_DISTANCE_BIAS] = {
.msb = ISL29501_PHASE_OFFSET_MSB,
.lsb = ISL29501_PHASE_OFFSET_LSB,
},
[REG_TEMPERATURE_BIAS] = {
.lsb = ISL29501_TEMP_REFERENCE,
},
[REG_INT_TIME] = {
.lsb = ISL29501_INTEGRATION_PERIOD,
},
[REG_SAMPLE_TIME] = {
.lsb = ISL29501_SAMPLE_PERIOD,
},
[REG_DRIVER_RANGE] = {
.lsb = ISL29501_DRIVER_RANGE,
},
[REG_EMITTER_DAC] = {
.lsb = ISL29501_EMITTER_DAC,
},
};
static int isl29501_register_read(struct isl29501_private *isl29501,
enum isl29501_register_name name,
u32 *val)
{
const struct isl29501_register_desc *reg = &isl29501_registers[name];
u8 msb = 0, lsb = 0;
s32 ret;
mutex_lock(&isl29501->lock);
if (reg->msb) {
ret = i2c_smbus_read_byte_data(isl29501->client, reg->msb);
if (ret < 0)
goto err;
msb = ret;
}
if (reg->lsb) {
ret = i2c_smbus_read_byte_data(isl29501->client, reg->lsb);
if (ret < 0)
goto err;
lsb = ret;
}
mutex_unlock(&isl29501->lock);
*val = (msb << 8) + lsb;
return 0;
err:
mutex_unlock(&isl29501->lock);
return ret;
}
static u32 isl29501_register_write(struct isl29501_private *isl29501,
enum isl29501_register_name name,
u32 value)
{
const struct isl29501_register_desc *reg = &isl29501_registers[name];
u8 msb, lsb;
int ret;
if (!reg->msb && value > U8_MAX)
return -ERANGE;
if (value > U16_MAX)
return -ERANGE;
if (!reg->msb) {
lsb = value & 0xFF;
} else {
msb = (value >> 8) & 0xFF;
lsb = value & 0xFF;
}
mutex_lock(&isl29501->lock);
if (reg->msb) {
ret = i2c_smbus_write_byte_data(isl29501->client,
reg->msb, msb);
if (ret < 0)
goto err;
}
ret = i2c_smbus_write_byte_data(isl29501->client, reg->lsb, lsb);
err:
mutex_unlock(&isl29501->lock);
return ret;
}
static ssize_t isl29501_read_ext(struct iio_dev *indio_dev,
uintptr_t private,
const struct iio_chan_spec *chan,
char *buf)
{
struct isl29501_private *isl29501 = iio_priv(indio_dev);
enum isl29501_register_name reg = private;
int ret;
u32 value, gain, coeff, exp;
switch (reg) {
case REG_GAIN:
case REG_GAIN_BIAS:
ret = isl29501_register_read(isl29501, reg, &gain);
if (ret < 0)
return ret;
value = gain;
break;
case REG_CALIB_PHASE_TEMP_A:
case REG_CALIB_PHASE_TEMP_B:
case REG_CALIB_PHASE_LIGHT_A:
case REG_CALIB_PHASE_LIGHT_B:
ret = isl29501_register_read(isl29501, REG_PHASE_EXP, &exp);
if (ret < 0)
return ret;
ret = isl29501_register_read(isl29501, reg, &coeff);
if (ret < 0)
return ret;
value = coeff << exp;
break;
default:
return -EINVAL;
}
return sprintf(buf, "%u\n", value);
}
static int isl29501_set_shadow_coeff(struct isl29501_private *isl29501,
enum isl29501_register_name reg,
unsigned int val)
{
enum isl29501_correction_coeff coeff;
switch (reg) {
case REG_CALIB_PHASE_TEMP_A:
coeff = COEFF_TEMP_A;
break;
case REG_CALIB_PHASE_TEMP_B:
coeff = COEFF_TEMP_B;
break;
case REG_CALIB_PHASE_LIGHT_A:
coeff = COEFF_LIGHT_A;
break;
case REG_CALIB_PHASE_LIGHT_B:
coeff = COEFF_LIGHT_B;
break;
default:
return -EINVAL;
}
isl29501->shadow_coeffs[coeff] = val;
return 0;
}
static int isl29501_write_coeff(struct isl29501_private *isl29501,
enum isl29501_correction_coeff coeff,
int val)
{
enum isl29501_register_name reg;
switch (coeff) {
case COEFF_TEMP_A:
reg = REG_CALIB_PHASE_TEMP_A;
break;
case COEFF_TEMP_B:
reg = REG_CALIB_PHASE_TEMP_B;
break;
case COEFF_LIGHT_A:
reg = REG_CALIB_PHASE_LIGHT_A;
break;
case COEFF_LIGHT_B:
reg = REG_CALIB_PHASE_LIGHT_B;
break;
default:
return -EINVAL;
}
return isl29501_register_write(isl29501, reg, val);
}
static unsigned int isl29501_find_corr_exp(unsigned int val,
unsigned int max_exp,
unsigned int max_mantissa)
{
unsigned int exp = 1;
/*
* Correction coefficients are represented under
* mantissa * 2^exponent form, where mantissa and exponent
* are stored in two separate registers of the sensor.
*
* Compute and return the lowest exponent such as:
* mantissa = value / 2^exponent
*
* where mantissa < max_mantissa.
*/
if (val <= max_mantissa)
return 0;
while ((val >> exp) > max_mantissa) {
exp++;
if (exp > max_exp)
return max_exp;
}
return exp;
}
static ssize_t isl29501_write_ext(struct iio_dev *indio_dev,
uintptr_t private,
const struct iio_chan_spec *chan,
const char *buf, size_t len)
{
struct isl29501_private *isl29501 = iio_priv(indio_dev);
enum isl29501_register_name reg = private;
unsigned int val;
int max_exp = 0;
int ret;
int i;
ret = kstrtouint(buf, 10, &val);
if (ret)
return ret;
switch (reg) {
case REG_GAIN_BIAS:
if (val > U16_MAX)
return -ERANGE;
ret = isl29501_register_write(isl29501, reg, val);
if (ret < 0)
return ret;
break;
case REG_CALIB_PHASE_TEMP_A:
case REG_CALIB_PHASE_TEMP_B:
case REG_CALIB_PHASE_LIGHT_A:
case REG_CALIB_PHASE_LIGHT_B:
if (val > (U8_MAX << ISL29501_MAX_EXP_VAL))
return -ERANGE;
/* Store the correction coefficient under its exact form. */
ret = isl29501_set_shadow_coeff(isl29501, reg, val);
if (ret < 0)
return ret;
/*
* Find the highest exponent needed to represent
* correction coefficients.
*/
for (i = 0; i < COEFF_MAX; i++) {
int corr;
int corr_exp;
corr = isl29501->shadow_coeffs[i];
corr_exp = isl29501_find_corr_exp(corr,
ISL29501_MAX_EXP_VAL,
U8_MAX / 2);
dev_dbg(&isl29501->client->dev,
"found exp of corr(%d) = %d\n", corr, corr_exp);
max_exp = max(max_exp, corr_exp);
}
/*
* Represent every correction coefficient under
* mantissa * 2^max_exponent form and force the
* writing of those coefficients on the sensor.
*/
for (i = 0; i < COEFF_MAX; i++) {
int corr;
int mantissa;
corr = isl29501->shadow_coeffs[i];
if (!corr)
continue;
mantissa = corr >> max_exp;
ret = isl29501_write_coeff(isl29501, i, mantissa);
if (ret < 0)
return ret;
}
ret = isl29501_register_write(isl29501, REG_PHASE_EXP, max_exp);
if (ret < 0)
return ret;
break;
default:
return -EINVAL;
}
return len;
}
#define _ISL29501_EXT_INFO(_name, _ident) { \
.name = _name, \
.read = isl29501_read_ext, \
.write = isl29501_write_ext, \
.private = _ident, \
.shared = IIO_SEPARATE, \
}
static const struct iio_chan_spec_ext_info isl29501_ext_info[] = {
_ISL29501_EXT_INFO("agc_gain", REG_GAIN),
_ISL29501_EXT_INFO("agc_gain_bias", REG_GAIN_BIAS),
_ISL29501_EXT_INFO("calib_phase_temp_a", REG_CALIB_PHASE_TEMP_A),
_ISL29501_EXT_INFO("calib_phase_temp_b", REG_CALIB_PHASE_TEMP_B),
_ISL29501_EXT_INFO("calib_phase_light_a", REG_CALIB_PHASE_LIGHT_A),
_ISL29501_EXT_INFO("calib_phase_light_b", REG_CALIB_PHASE_LIGHT_B),
{ },
};
#define ISL29501_DISTANCE_SCAN_INDEX 0
#define ISL29501_TIMESTAMP_SCAN_INDEX 1
static const struct iio_chan_spec isl29501_channels[] = {
{
.type = IIO_PROXIMITY,
.scan_index = ISL29501_DISTANCE_SCAN_INDEX,
.info_mask_separate =
BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE) |
BIT(IIO_CHAN_INFO_CALIBBIAS),
.scan_type = {
.sign = 'u',
.realbits = 16,
.storagebits = 16,
.endianness = IIO_CPU,
},
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_INT_TIME) |
BIT(IIO_CHAN_INFO_SAMP_FREQ),
.ext_info = isl29501_ext_info,
},
{
.type = IIO_PHASE,
.scan_index = -1,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE),
},
{
.type = IIO_CURRENT,
.scan_index = -1,
.output = 1,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE),
},
{
.type = IIO_TEMP,
.scan_index = -1,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE) |
BIT(IIO_CHAN_INFO_CALIBBIAS),
},
{
.type = IIO_INTENSITY,
.scan_index = -1,
.modified = 1,
.channel2 = IIO_MOD_LIGHT_CLEAR,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE),
},
IIO_CHAN_SOFT_TIMESTAMP(ISL29501_TIMESTAMP_SCAN_INDEX),
};
static int isl29501_reset_registers(struct isl29501_private *isl29501)
{
int ret;
ret = i2c_smbus_write_byte_data(isl29501->client,
ISL29501_COMMAND_REGISTER,
ISL29501_RESET_ALL_REGISTERS);
if (ret < 0) {
dev_err(&isl29501->client->dev,
"cannot reset registers %d\n", ret);
return ret;
}
ret = i2c_smbus_write_byte_data(isl29501->client,
ISL29501_COMMAND_REGISTER,
ISL29501_RESET_INT_SM);
if (ret < 0)
dev_err(&isl29501->client->dev,
"cannot reset state machine %d\n", ret);
return ret;
}
static int isl29501_begin_acquisition(struct isl29501_private *isl29501)
{
int ret;
ret = i2c_smbus_write_byte_data(isl29501->client,
ISL29501_COMMAND_REGISTER,
ISL29501_EMUL_SAMPLE_START_PIN);
if (ret < 0)
dev_err(&isl29501->client->dev,
"cannot begin acquisition %d\n", ret);
return ret;
}
static IIO_CONST_ATTR_INT_TIME_AVAIL(ISL29501_INT_TIME_AVAILABLE);
static IIO_CONST_ATTR(out_current_scale_available,
ISL29501_CURRENT_SCALE_AVAILABLE);
static struct attribute *isl29501_attributes[] = {
&iio_const_attr_integration_time_available.dev_attr.attr,
&iio_const_attr_out_current_scale_available.dev_attr.attr,
NULL
};
static const struct attribute_group isl29501_attribute_group = {
.attrs = isl29501_attributes,
};
static const int isl29501_current_scale_table[][2] = {
{0, 3900}, {0, 7800}, {0, 11800}, {0, 15700},
{0, 19600}, {0, 23500}, {0, 27500}, {0, 31400},
{0, 35200}, {0, 39200}, {0, 43100}, {0, 47100},
{0, 51000}, {0, 54900}, {0, 58800},
};
static const int isl29501_int_time[][2] = {
{0, 70}, /* 0.07 ms */
{0, 140}, /* 0.14 ms */
{0, 280}, /* 0.28 ms */
{0, 570}, /* 0.57 ms */
{0, 1140}, /* 1.14 ms */
{0, 2280}, /* 2.28 ms */
{0, 4550}, /* 4.55 ms */
{0, 9100}, /* 9.11 ms */
{0, 18200}, /* 18.2 ms */
{0, 36400}, /* 36.4 ms */
{0, 72810}, /* 72.81 ms */
{0, 145610} /* 145.28 ms */
};
static int isl29501_get_raw(struct isl29501_private *isl29501,
const struct iio_chan_spec *chan,
int *raw)
{
int ret;
switch (chan->type) {
case IIO_PROXIMITY:
ret = isl29501_register_read(isl29501, REG_DISTANCE, raw);
if (ret < 0)
return ret;
return IIO_VAL_INT;
case IIO_INTENSITY:
ret = isl29501_register_read(isl29501,
REG_AMBIENT_LIGHT,
raw);
if (ret < 0)
return ret;
return IIO_VAL_INT;
case IIO_PHASE:
ret = isl29501_register_read(isl29501, REG_PHASE, raw);
if (ret < 0)
return ret;
return IIO_VAL_INT;
case IIO_CURRENT:
ret = isl29501_register_read(isl29501, REG_EMITTER_DAC, raw);
if (ret < 0)
return ret;
return IIO_VAL_INT;
case IIO_TEMP:
ret = isl29501_register_read(isl29501, REG_TEMPERATURE, raw);
if (ret < 0)
return ret;
return IIO_VAL_INT;
default:
return -EINVAL;
}
}
static int isl29501_get_scale(struct isl29501_private *isl29501,
const struct iio_chan_spec *chan,
int *val, int *val2)
{
int ret;
u32 current_scale;
switch (chan->type) {
case IIO_PROXIMITY:
/* distance = raw_distance * 33.31 / 65536 (m) */
*val = 3331;
*val2 = 6553600;
return IIO_VAL_FRACTIONAL;
case IIO_PHASE:
/* phase = raw_phase * 2pi / 65536 (rad) */
*val = 0;
*val2 = 95874;
return IIO_VAL_INT_PLUS_NANO;
case IIO_INTENSITY:
/* light = raw_light * 35 / 10000 (mA) */
*val = 35;
*val2 = 10000;
return IIO_VAL_FRACTIONAL;
case IIO_CURRENT:
ret = isl29501_register_read(isl29501,
REG_DRIVER_RANGE,
&current_scale);
if (ret < 0)
return ret;
if (current_scale > ARRAY_SIZE(isl29501_current_scale_table))
return -EINVAL;
if (!current_scale) {
*val = 0;
*val2 = 0;
return IIO_VAL_INT;
}
*val = isl29501_current_scale_table[current_scale - 1][0];
*val2 = isl29501_current_scale_table[current_scale - 1][1];
return IIO_VAL_INT_PLUS_MICRO;
case IIO_TEMP:
/* temperature = raw_temperature * 125 / 100000 (milli °C) */
*val = 125;
*val2 = 100000;
return IIO_VAL_FRACTIONAL;
default:
return -EINVAL;
}
}
static int isl29501_get_calibbias(struct isl29501_private *isl29501,
const struct iio_chan_spec *chan,
int *bias)
{
switch (chan->type) {
case IIO_PROXIMITY:
return isl29501_register_read(isl29501,
REG_DISTANCE_BIAS,
bias);
case IIO_TEMP:
return isl29501_register_read(isl29501,
REG_TEMPERATURE_BIAS,
bias);
default:
return -EINVAL;
}
}
static int isl29501_get_inttime(struct isl29501_private *isl29501,
int *val, int *val2)
{
int ret;
u32 inttime;
ret = isl29501_register_read(isl29501, REG_INT_TIME, &inttime);
if (ret < 0)
return ret;
if (inttime >= ARRAY_SIZE(isl29501_int_time))
return -EINVAL;
*val = isl29501_int_time[inttime][0];
*val2 = isl29501_int_time[inttime][1];
return IIO_VAL_INT_PLUS_MICRO;
}
static int isl29501_get_freq(struct isl29501_private *isl29501,
int *val, int *val2)
{
int ret;
int sample_time;
unsigned long long freq;
u32 temp;
ret = isl29501_register_read(isl29501, REG_SAMPLE_TIME, &sample_time);
if (ret < 0)
return ret;
/* freq = 1 / (0.000450 * (sample_time + 1) * 10^-6) */
freq = 1000000ULL * 1000000ULL;
do_div(freq, 450 * (sample_time + 1));
temp = do_div(freq, 1000000);
*val = freq;
*val2 = temp;
return IIO_VAL_INT_PLUS_MICRO;
}
static int isl29501_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int *val,
int *val2, long mask)
{
struct isl29501_private *isl29501 = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_RAW:
return isl29501_get_raw(isl29501, chan, val);
case IIO_CHAN_INFO_SCALE:
return isl29501_get_scale(isl29501, chan, val, val2);
case IIO_CHAN_INFO_INT_TIME:
return isl29501_get_inttime(isl29501, val, val2);
case IIO_CHAN_INFO_SAMP_FREQ:
return isl29501_get_freq(isl29501, val, val2);
case IIO_CHAN_INFO_CALIBBIAS:
return isl29501_get_calibbias(isl29501, chan, val);
default:
return -EINVAL;
}
}
static int isl29501_set_raw(struct isl29501_private *isl29501,
const struct iio_chan_spec *chan,
int raw)
{
switch (chan->type) {
case IIO_CURRENT:
return isl29501_register_write(isl29501, REG_EMITTER_DAC, raw);
default:
return -EINVAL;
}
}
static int isl29501_set_inttime(struct isl29501_private *isl29501,
int val, int val2)
{
int i;
for (i = 0; i < ARRAY_SIZE(isl29501_int_time); i++) {
if (isl29501_int_time[i][0] == val &&
isl29501_int_time[i][1] == val2) {
return isl29501_register_write(isl29501,
REG_INT_TIME,
i);
}
}
return -EINVAL;
}
static int isl29501_set_scale(struct isl29501_private *isl29501,
const struct iio_chan_spec *chan,
int val, int val2)
{
int i;
if (chan->type != IIO_CURRENT)
return -EINVAL;
for (i = 0; i < ARRAY_SIZE(isl29501_current_scale_table); i++) {
if (isl29501_current_scale_table[i][0] == val &&
isl29501_current_scale_table[i][1] == val2) {
return isl29501_register_write(isl29501,
REG_DRIVER_RANGE,
i + 1);
}
}
return -EINVAL;
}
static int isl29501_set_calibbias(struct isl29501_private *isl29501,
const struct iio_chan_spec *chan,
int bias)
{
switch (chan->type) {
case IIO_PROXIMITY:
return isl29501_register_write(isl29501,
REG_DISTANCE_BIAS,
bias);
case IIO_TEMP:
return isl29501_register_write(isl29501,
REG_TEMPERATURE_BIAS,
bias);
default:
return -EINVAL;
}
}
static int isl29501_set_freq(struct isl29501_private *isl29501,
int val, int val2)
{
int freq;
unsigned long long sample_time;
/* sample_freq = 1 / (0.000450 * (sample_time + 1) * 10^-6) */
freq = val * 1000000 + val2 % 1000000;
sample_time = 2222ULL * 1000000ULL;
do_div(sample_time, freq);
sample_time -= 1;
if (sample_time > 255)
return -ERANGE;
return isl29501_register_write(isl29501, REG_SAMPLE_TIME, sample_time);
}
static int isl29501_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct isl29501_private *isl29501 = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_RAW:
return isl29501_set_raw(isl29501, chan, val);
case IIO_CHAN_INFO_INT_TIME:
return isl29501_set_inttime(isl29501, val, val2);
case IIO_CHAN_INFO_SAMP_FREQ:
return isl29501_set_freq(isl29501, val, val2);
case IIO_CHAN_INFO_SCALE:
return isl29501_set_scale(isl29501, chan, val, val2);
case IIO_CHAN_INFO_CALIBBIAS:
return isl29501_set_calibbias(isl29501, chan, val);
default:
return -EINVAL;
}
}
static const struct iio_info isl29501_info = {
.read_raw = &isl29501_read_raw,
.write_raw = &isl29501_write_raw,
.attrs = &isl29501_attribute_group,
};
static int isl29501_init_chip(struct isl29501_private *isl29501)
{
int ret;
ret = i2c_smbus_read_byte_data(isl29501->client, ISL29501_DEVICE_ID);
if (ret < 0) {
dev_err(&isl29501->client->dev, "Error reading device id\n");
return ret;
}
if (ret != ISL29501_ID) {
dev_err(&isl29501->client->dev,
"Wrong chip id, got %x expected %x\n",
ret, ISL29501_DEVICE_ID);
return -ENODEV;
}
ret = isl29501_reset_registers(isl29501);
if (ret < 0)
return ret;
return isl29501_begin_acquisition(isl29501);
}
static irqreturn_t isl29501_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct isl29501_private *isl29501 = iio_priv(indio_dev);
const unsigned long *active_mask = indio_dev->active_scan_mask;
u32 buffer[4] = {}; /* 1x16-bit + ts */
if (test_bit(ISL29501_DISTANCE_SCAN_INDEX, active_mask))
isl29501_register_read(isl29501, REG_DISTANCE, buffer);
iio_push_to_buffers_with_timestamp(indio_dev, buffer, pf->timestamp);
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
static int isl29501_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct iio_dev *indio_dev;
struct isl29501_private *isl29501;
int ret;
indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*isl29501));
if (!indio_dev)
return -ENOMEM;
isl29501 = iio_priv(indio_dev);
i2c_set_clientdata(client, indio_dev);
isl29501->client = client;
mutex_init(&isl29501->lock);
ret = isl29501_init_chip(isl29501);
if (ret < 0)
return ret;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->dev.parent = &client->dev;
indio_dev->channels = isl29501_channels;
indio_dev->num_channels = ARRAY_SIZE(isl29501_channels);
indio_dev->name = client->name;
indio_dev->info = &isl29501_info;
ret = devm_iio_triggered_buffer_setup(&client->dev, indio_dev,
iio_pollfunc_store_time,
isl29501_trigger_handler,
NULL);
if (ret < 0) {
dev_err(&client->dev, "unable to setup iio triggered buffer\n");
return ret;
}
return devm_iio_device_register(&client->dev, indio_dev);
}
static const struct i2c_device_id isl29501_id[] = {
{"isl29501", 0},
{}
};
MODULE_DEVICE_TABLE(i2c, isl29501_id);
#if defined(CONFIG_OF)
static const struct of_device_id isl29501_i2c_matches[] = {
{ .compatible = "renesas,isl29501" },
{ }
};
MODULE_DEVICE_TABLE(of, isl29501_i2c_matches);
#endif
static struct i2c_driver isl29501_driver = {
.driver = {
.name = "isl29501",
},
.id_table = isl29501_id,
.probe = isl29501_probe,
};
module_i2c_driver(isl29501_driver);
MODULE_AUTHOR("Mathieu Othacehe <m.othacehe@gmail.com>");
MODULE_DESCRIPTION("ISL29501 Time of Flight sensor driver");
MODULE_LICENSE("GPL v2");
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment