Commit 1fef62c1 authored by Boris BREZILLON's avatar Boris BREZILLON Committed by Brian Norris

mtd: nand: add sunxi NAND flash controller support

Add support for the sunxi NAND Flash Controller (NFC).
Signed-off-by: default avatarBoris Brezillon <boris.brezillon@free-electrons.com>
[Brian: tweaked to fix ecc->steps issue]
Signed-off-by: default avatarBrian Norris <computersforpeace@gmail.com>
parent b00358a5
...@@ -516,4 +516,10 @@ config MTD_NAND_XWAY ...@@ -516,4 +516,10 @@ config MTD_NAND_XWAY
Enables support for NAND Flash chips on Lantiq XWAY SoCs. NAND is attached Enables support for NAND Flash chips on Lantiq XWAY SoCs. NAND is attached
to the External Bus Unit (EBU). to the External Bus Unit (EBU).
config MTD_NAND_SUNXI
tristate "Support for NAND on Allwinner SoCs"
depends on ARCH_SUNXI
help
Enables support for NAND Flash chips on Allwinner SoCs.
endif # MTD_NAND endif # MTD_NAND
...@@ -50,5 +50,6 @@ obj-$(CONFIG_MTD_NAND_JZ4740) += jz4740_nand.o ...@@ -50,5 +50,6 @@ obj-$(CONFIG_MTD_NAND_JZ4740) += jz4740_nand.o
obj-$(CONFIG_MTD_NAND_GPMI_NAND) += gpmi-nand/ obj-$(CONFIG_MTD_NAND_GPMI_NAND) += gpmi-nand/
obj-$(CONFIG_MTD_NAND_XWAY) += xway_nand.o obj-$(CONFIG_MTD_NAND_XWAY) += xway_nand.o
obj-$(CONFIG_MTD_NAND_BCM47XXNFLASH) += bcm47xxnflash/ obj-$(CONFIG_MTD_NAND_BCM47XXNFLASH) += bcm47xxnflash/
obj-$(CONFIG_MTD_NAND_SUNXI) += sunxi_nand.o
nand-objs := nand_base.o nand_bbt.o nand_timings.o nand-objs := nand_base.o nand_bbt.o nand_timings.o
/*
* Copyright (C) 2013 Boris BREZILLON <b.brezillon.dev@gmail.com>
*
* Derived from:
* https://github.com/yuq/sunxi-nfc-mtd
* Copyright (C) 2013 Qiang Yu <yuq825@gmail.com>
*
* https://github.com/hno/Allwinner-Info
* Copyright (C) 2013 Henrik Nordström <Henrik Nordström>
*
* Copyright (C) 2013 Dmitriy B. <rzk333@gmail.com>
* Copyright (C) 2013 Sergey Lapin <slapin@ossfans.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_gpio.h>
#include <linux/of_mtd.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/gpio.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#define NFC_REG_CTL 0x0000
#define NFC_REG_ST 0x0004
#define NFC_REG_INT 0x0008
#define NFC_REG_TIMING_CTL 0x000C
#define NFC_REG_TIMING_CFG 0x0010
#define NFC_REG_ADDR_LOW 0x0014
#define NFC_REG_ADDR_HIGH 0x0018
#define NFC_REG_SECTOR_NUM 0x001C
#define NFC_REG_CNT 0x0020
#define NFC_REG_CMD 0x0024
#define NFC_REG_RCMD_SET 0x0028
#define NFC_REG_WCMD_SET 0x002C
#define NFC_REG_IO_DATA 0x0030
#define NFC_REG_ECC_CTL 0x0034
#define NFC_REG_ECC_ST 0x0038
#define NFC_REG_DEBUG 0x003C
#define NFC_REG_ECC_CNT0 0x0040
#define NFC_REG_ECC_CNT1 0x0044
#define NFC_REG_ECC_CNT2 0x0048
#define NFC_REG_ECC_CNT3 0x004c
#define NFC_REG_USER_DATA_BASE 0x0050
#define NFC_REG_SPARE_AREA 0x00A0
#define NFC_RAM0_BASE 0x0400
#define NFC_RAM1_BASE 0x0800
/* define bit use in NFC_CTL */
#define NFC_EN BIT(0)
#define NFC_RESET BIT(1)
#define NFC_BUS_WIDYH BIT(2)
#define NFC_RB_SEL BIT(3)
#define NFC_CE_SEL GENMASK(26, 24)
#define NFC_CE_CTL BIT(6)
#define NFC_CE_CTL1 BIT(7)
#define NFC_PAGE_SIZE GENMASK(11, 8)
#define NFC_SAM BIT(12)
#define NFC_RAM_METHOD BIT(14)
#define NFC_DEBUG_CTL BIT(31)
/* define bit use in NFC_ST */
#define NFC_RB_B2R BIT(0)
#define NFC_CMD_INT_FLAG BIT(1)
#define NFC_DMA_INT_FLAG BIT(2)
#define NFC_CMD_FIFO_STATUS BIT(3)
#define NFC_STA BIT(4)
#define NFC_NATCH_INT_FLAG BIT(5)
#define NFC_RB_STATE0 BIT(8)
#define NFC_RB_STATE1 BIT(9)
#define NFC_RB_STATE2 BIT(10)
#define NFC_RB_STATE3 BIT(11)
/* define bit use in NFC_INT */
#define NFC_B2R_INT_ENABLE BIT(0)
#define NFC_CMD_INT_ENABLE BIT(1)
#define NFC_DMA_INT_ENABLE BIT(2)
#define NFC_INT_MASK (NFC_B2R_INT_ENABLE | \
NFC_CMD_INT_ENABLE | \
NFC_DMA_INT_ENABLE)
/* define bit use in NFC_CMD */
#define NFC_CMD_LOW_BYTE GENMASK(7, 0)
#define NFC_CMD_HIGH_BYTE GENMASK(15, 8)
#define NFC_ADR_NUM GENMASK(18, 16)
#define NFC_SEND_ADR BIT(19)
#define NFC_ACCESS_DIR BIT(20)
#define NFC_DATA_TRANS BIT(21)
#define NFC_SEND_CMD1 BIT(22)
#define NFC_WAIT_FLAG BIT(23)
#define NFC_SEND_CMD2 BIT(24)
#define NFC_SEQ BIT(25)
#define NFC_DATA_SWAP_METHOD BIT(26)
#define NFC_ROW_AUTO_INC BIT(27)
#define NFC_SEND_CMD3 BIT(28)
#define NFC_SEND_CMD4 BIT(29)
#define NFC_CMD_TYPE GENMASK(31, 30)
/* define bit use in NFC_RCMD_SET */
#define NFC_READ_CMD GENMASK(7, 0)
#define NFC_RANDOM_READ_CMD0 GENMASK(15, 8)
#define NFC_RANDOM_READ_CMD1 GENMASK(23, 16)
/* define bit use in NFC_WCMD_SET */
#define NFC_PROGRAM_CMD GENMASK(7, 0)
#define NFC_RANDOM_WRITE_CMD GENMASK(15, 8)
#define NFC_READ_CMD0 GENMASK(23, 16)
#define NFC_READ_CMD1 GENMASK(31, 24)
/* define bit use in NFC_ECC_CTL */
#define NFC_ECC_EN BIT(0)
#define NFC_ECC_PIPELINE BIT(3)
#define NFC_ECC_EXCEPTION BIT(4)
#define NFC_ECC_BLOCK_SIZE BIT(5)
#define NFC_RANDOM_EN BIT(9)
#define NFC_RANDOM_DIRECTION BIT(10)
#define NFC_ECC_MODE_SHIFT 12
#define NFC_ECC_MODE GENMASK(15, 12)
#define NFC_RANDOM_SEED GENMASK(30, 16)
#define NFC_DEFAULT_TIMEOUT_MS 1000
#define NFC_SRAM_SIZE 1024
#define NFC_MAX_CS 7
/*
* Ready/Busy detection type: describes the Ready/Busy detection modes
*
* @RB_NONE: no external detection available, rely on STATUS command
* and software timeouts
* @RB_NATIVE: use sunxi NAND controller Ready/Busy support. The Ready/Busy
* pin of the NAND flash chip must be connected to one of the
* native NAND R/B pins (those which can be muxed to the NAND
* Controller)
* @RB_GPIO: use a simple GPIO to handle Ready/Busy status. The Ready/Busy
* pin of the NAND flash chip must be connected to a GPIO capable
* pin.
*/
enum sunxi_nand_rb_type {
RB_NONE,
RB_NATIVE,
RB_GPIO,
};
/*
* Ready/Busy structure: stores information related to Ready/Busy detection
*
* @type: the Ready/Busy detection mode
* @info: information related to the R/B detection mode. Either a gpio
* id or a native R/B id (those supported by the NAND controller).
*/
struct sunxi_nand_rb {
enum sunxi_nand_rb_type type;
union {
int gpio;
int nativeid;
} info;
};
/*
* Chip Select structure: stores information related to NAND Chip Select
*
* @cs: the NAND CS id used to communicate with a NAND Chip
* @rb: the Ready/Busy description
*/
struct sunxi_nand_chip_sel {
u8 cs;
struct sunxi_nand_rb rb;
};
/*
* sunxi HW ECC infos: stores information related to HW ECC support
*
* @mode: the sunxi ECC mode field deduced from ECC requirements
* @layout: the OOB layout depending on the ECC requirements and the
* selected ECC mode
*/
struct sunxi_nand_hw_ecc {
int mode;
struct nand_ecclayout layout;
};
/*
* NAND chip structure: stores NAND chip device related information
*
* @node: used to store NAND chips into a list
* @nand: base NAND chip structure
* @mtd: base MTD structure
* @clk_rate: clk_rate required for this NAND chip
* @selected: current active CS
* @nsels: number of CS lines required by the NAND chip
* @sels: array of CS lines descriptions
*/
struct sunxi_nand_chip {
struct list_head node;
struct nand_chip nand;
struct mtd_info mtd;
unsigned long clk_rate;
int selected;
int nsels;
struct sunxi_nand_chip_sel sels[0];
};
static inline struct sunxi_nand_chip *to_sunxi_nand(struct nand_chip *nand)
{
return container_of(nand, struct sunxi_nand_chip, nand);
}
/*
* NAND Controller structure: stores sunxi NAND controller information
*
* @controller: base controller structure
* @dev: parent device (used to print error messages)
* @regs: NAND controller registers
* @ahb_clk: NAND Controller AHB clock
* @mod_clk: NAND Controller mod clock
* @assigned_cs: bitmask describing already assigned CS lines
* @clk_rate: NAND controller current clock rate
* @chips: a list containing all the NAND chips attached to
* this NAND controller
* @complete: a completion object used to wait for NAND
* controller events
*/
struct sunxi_nfc {
struct nand_hw_control controller;
struct device *dev;
void __iomem *regs;
struct clk *ahb_clk;
struct clk *mod_clk;
unsigned long assigned_cs;
unsigned long clk_rate;
struct list_head chips;
struct completion complete;
};
static inline struct sunxi_nfc *to_sunxi_nfc(struct nand_hw_control *ctrl)
{
return container_of(ctrl, struct sunxi_nfc, controller);
}
static irqreturn_t sunxi_nfc_interrupt(int irq, void *dev_id)
{
struct sunxi_nfc *nfc = dev_id;
u32 st = readl(nfc->regs + NFC_REG_ST);
u32 ien = readl(nfc->regs + NFC_REG_INT);
if (!(ien & st))
return IRQ_NONE;
if ((ien & st) == ien)
complete(&nfc->complete);
writel(st & NFC_INT_MASK, nfc->regs + NFC_REG_ST);
writel(~st & ien & NFC_INT_MASK, nfc->regs + NFC_REG_INT);
return IRQ_HANDLED;
}
static int sunxi_nfc_wait_int(struct sunxi_nfc *nfc, u32 flags,
unsigned int timeout_ms)
{
init_completion(&nfc->complete);
writel(flags, nfc->regs + NFC_REG_INT);
if (!timeout_ms)
timeout_ms = NFC_DEFAULT_TIMEOUT_MS;
if (!wait_for_completion_timeout(&nfc->complete,
msecs_to_jiffies(timeout_ms))) {
dev_err(nfc->dev, "wait interrupt timedout\n");
return -ETIMEDOUT;
}
return 0;
}
static int sunxi_nfc_wait_cmd_fifo_empty(struct sunxi_nfc *nfc)
{
unsigned long timeout = jiffies +
msecs_to_jiffies(NFC_DEFAULT_TIMEOUT_MS);
do {
if (!(readl(nfc->regs + NFC_REG_ST) & NFC_CMD_FIFO_STATUS))
return 0;
} while (time_before(jiffies, timeout));
dev_err(nfc->dev, "wait for empty cmd FIFO timedout\n");
return -ETIMEDOUT;
}
static int sunxi_nfc_rst(struct sunxi_nfc *nfc)
{
unsigned long timeout = jiffies +
msecs_to_jiffies(NFC_DEFAULT_TIMEOUT_MS);
writel(0, nfc->regs + NFC_REG_ECC_CTL);
writel(NFC_RESET, nfc->regs + NFC_REG_CTL);
do {
if (!(readl(nfc->regs + NFC_REG_CTL) & NFC_RESET))
return 0;
} while (time_before(jiffies, timeout));
dev_err(nfc->dev, "wait for NAND controller reset timedout\n");
return -ETIMEDOUT;
}
static int sunxi_nfc_dev_ready(struct mtd_info *mtd)
{
struct nand_chip *nand = mtd->priv;
struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
struct sunxi_nand_rb *rb;
unsigned long timeo = (sunxi_nand->nand.state == FL_ERASING ? 400 : 20);
int ret;
if (sunxi_nand->selected < 0)
return 0;
rb = &sunxi_nand->sels[sunxi_nand->selected].rb;
switch (rb->type) {
case RB_NATIVE:
ret = !!(readl(nfc->regs + NFC_REG_ST) &
(NFC_RB_STATE0 << rb->info.nativeid));
if (ret)
break;
sunxi_nfc_wait_int(nfc, NFC_RB_B2R, timeo);
ret = !!(readl(nfc->regs + NFC_REG_ST) &
(NFC_RB_STATE0 << rb->info.nativeid));
break;
case RB_GPIO:
ret = gpio_get_value(rb->info.gpio);
break;
case RB_NONE:
default:
ret = 0;
dev_err(nfc->dev, "cannot check R/B NAND status!\n");
break;
}
return ret;
}
static void sunxi_nfc_select_chip(struct mtd_info *mtd, int chip)
{
struct nand_chip *nand = mtd->priv;
struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
struct sunxi_nand_chip_sel *sel;
u32 ctl;
if (chip > 0 && chip >= sunxi_nand->nsels)
return;
if (chip == sunxi_nand->selected)
return;
ctl = readl(nfc->regs + NFC_REG_CTL) &
~(NFC_CE_SEL | NFC_RB_SEL | NFC_EN);
if (chip >= 0) {
sel = &sunxi_nand->sels[chip];
ctl |= (sel->cs << 24) | NFC_EN |
(((nand->page_shift - 10) & 0xf) << 8);
if (sel->rb.type == RB_NONE) {
nand->dev_ready = NULL;
} else {
nand->dev_ready = sunxi_nfc_dev_ready;
if (sel->rb.type == RB_NATIVE)
ctl |= (sel->rb.info.nativeid << 3);
}
writel(mtd->writesize, nfc->regs + NFC_REG_SPARE_AREA);
if (nfc->clk_rate != sunxi_nand->clk_rate) {
clk_set_rate(nfc->mod_clk, sunxi_nand->clk_rate);
nfc->clk_rate = sunxi_nand->clk_rate;
}
}
writel(ctl, nfc->regs + NFC_REG_CTL);
sunxi_nand->selected = chip;
}
static void sunxi_nfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
struct nand_chip *nand = mtd->priv;
struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
int ret;
int cnt;
int offs = 0;
u32 tmp;
while (len > offs) {
cnt = min(len - offs, NFC_SRAM_SIZE);
ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
if (ret)
break;
writel(cnt, nfc->regs + NFC_REG_CNT);
tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD;
writel(tmp, nfc->regs + NFC_REG_CMD);
ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
if (ret)
break;
if (buf)
memcpy_fromio(buf + offs, nfc->regs + NFC_RAM0_BASE,
cnt);
offs += cnt;
}
}
static void sunxi_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
int len)
{
struct nand_chip *nand = mtd->priv;
struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
int ret;
int cnt;
int offs = 0;
u32 tmp;
while (len > offs) {
cnt = min(len - offs, NFC_SRAM_SIZE);
ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
if (ret)
break;
writel(cnt, nfc->regs + NFC_REG_CNT);
memcpy_toio(nfc->regs + NFC_RAM0_BASE, buf + offs, cnt);
tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD |
NFC_ACCESS_DIR;
writel(tmp, nfc->regs + NFC_REG_CMD);
ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
if (ret)
break;
offs += cnt;
}
}
static uint8_t sunxi_nfc_read_byte(struct mtd_info *mtd)
{
uint8_t ret;
sunxi_nfc_read_buf(mtd, &ret, 1);
return ret;
}
static void sunxi_nfc_cmd_ctrl(struct mtd_info *mtd, int dat,
unsigned int ctrl)
{
struct nand_chip *nand = mtd->priv;
struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
int ret;
u32 tmp;
ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
if (ret)
return;
if (ctrl & NAND_CTRL_CHANGE) {
tmp = readl(nfc->regs + NFC_REG_CTL);
if (ctrl & NAND_NCE)
tmp |= NFC_CE_CTL;
else
tmp &= ~NFC_CE_CTL;
writel(tmp, nfc->regs + NFC_REG_CTL);
}
if (dat == NAND_CMD_NONE)
return;
if (ctrl & NAND_CLE) {
writel(NFC_SEND_CMD1 | dat, nfc->regs + NFC_REG_CMD);
} else {
writel(dat, nfc->regs + NFC_REG_ADDR_LOW);
writel(NFC_SEND_ADR, nfc->regs + NFC_REG_CMD);
}
sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
}
static int sunxi_nfc_hw_ecc_read_page(struct mtd_info *mtd,
struct nand_chip *chip, uint8_t *buf,
int oob_required, int page)
{
struct sunxi_nfc *nfc = to_sunxi_nfc(chip->controller);
struct nand_ecc_ctrl *ecc = &chip->ecc;
struct nand_ecclayout *layout = ecc->layout;
struct sunxi_nand_hw_ecc *data = ecc->priv;
unsigned int max_bitflips = 0;
int offset;
int ret;
u32 tmp;
int i;
int cnt;
tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
tmp &= ~(NFC_ECC_MODE | NFC_ECC_PIPELINE | NFC_ECC_BLOCK_SIZE);
tmp |= NFC_ECC_EN | (data->mode << NFC_ECC_MODE_SHIFT) |
NFC_ECC_EXCEPTION;
writel(tmp, nfc->regs + NFC_REG_ECC_CTL);
for (i = 0; i < ecc->steps; i++) {
if (i)
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, i * ecc->size, -1);
offset = mtd->writesize + layout->eccpos[i * ecc->bytes] - 4;
chip->read_buf(mtd, NULL, ecc->size);
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1);
ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
if (ret)
return ret;
tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | (1 << 30);
writel(tmp, nfc->regs + NFC_REG_CMD);
ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
if (ret)
return ret;
memcpy_fromio(buf + (i * ecc->size),
nfc->regs + NFC_RAM0_BASE, ecc->size);
if (readl(nfc->regs + NFC_REG_ECC_ST) & 0x1) {
mtd->ecc_stats.failed++;
} else {
tmp = readl(nfc->regs + NFC_REG_ECC_CNT0) & 0xff;
mtd->ecc_stats.corrected += tmp;
max_bitflips = max_t(unsigned int, max_bitflips, tmp);
}
if (oob_required) {
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1);
ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
if (ret)
return ret;
offset -= mtd->writesize;
chip->read_buf(mtd, chip->oob_poi + offset,
ecc->bytes + 4);
}
}
if (oob_required) {
cnt = ecc->layout->oobfree[ecc->steps].length;
if (cnt > 0) {
offset = mtd->writesize +
ecc->layout->oobfree[ecc->steps].offset;
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1);
offset -= mtd->writesize;
chip->read_buf(mtd, chip->oob_poi + offset, cnt);
}
}
tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
tmp &= ~NFC_ECC_EN;
writel(tmp, nfc->regs + NFC_REG_ECC_CTL);
return max_bitflips;
}
static int sunxi_nfc_hw_ecc_write_page(struct mtd_info *mtd,
struct nand_chip *chip,
const uint8_t *buf, int oob_required)
{
struct sunxi_nfc *nfc = to_sunxi_nfc(chip->controller);
struct nand_ecc_ctrl *ecc = &chip->ecc;
struct nand_ecclayout *layout = ecc->layout;
struct sunxi_nand_hw_ecc *data = ecc->priv;
int offset;
int ret;
u32 tmp;
int i;
int cnt;
tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
tmp &= ~(NFC_ECC_MODE | NFC_ECC_PIPELINE | NFC_ECC_BLOCK_SIZE);
tmp |= NFC_ECC_EN | (data->mode << NFC_ECC_MODE_SHIFT) |
NFC_ECC_EXCEPTION;
writel(tmp, nfc->regs + NFC_REG_ECC_CTL);
for (i = 0; i < ecc->steps; i++) {
if (i)
chip->cmdfunc(mtd, NAND_CMD_RNDIN, i * ecc->size, -1);
chip->write_buf(mtd, buf + (i * ecc->size), ecc->size);
offset = layout->eccpos[i * ecc->bytes] - 4 + mtd->writesize;
/* Fill OOB data in */
if (oob_required) {
tmp = 0xffffffff;
memcpy_toio(nfc->regs + NFC_REG_USER_DATA_BASE, &tmp,
4);
} else {
memcpy_toio(nfc->regs + NFC_REG_USER_DATA_BASE,
chip->oob_poi + offset - mtd->writesize,
4);
}
chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset, -1);
ret = sunxi_nfc_wait_cmd_fifo_empty(nfc);
if (ret)
return ret;
tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ACCESS_DIR |
(1 << 30);
writel(tmp, nfc->regs + NFC_REG_CMD);
ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
if (ret)
return ret;
}
if (oob_required) {
cnt = ecc->layout->oobfree[i].length;
if (cnt > 0) {
offset = mtd->writesize +
ecc->layout->oobfree[i].offset;
chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset, -1);
offset -= mtd->writesize;
chip->write_buf(mtd, chip->oob_poi + offset, cnt);
}
}
tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
tmp &= ~NFC_ECC_EN;
writel(tmp, nfc->regs + NFC_REG_ECC_CTL);
return 0;
}
static int sunxi_nfc_hw_syndrome_ecc_read_page(struct mtd_info *mtd,
struct nand_chip *chip,
uint8_t *buf, int oob_required,
int page)
{
struct sunxi_nfc *nfc = to_sunxi_nfc(chip->controller);
struct nand_ecc_ctrl *ecc = &chip->ecc;
struct sunxi_nand_hw_ecc *data = ecc->priv;
unsigned int max_bitflips = 0;
uint8_t *oob = chip->oob_poi;
int offset = 0;
int ret;
int cnt;
u32 tmp;
int i;
tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
tmp &= ~(NFC_ECC_MODE | NFC_ECC_PIPELINE | NFC_ECC_BLOCK_SIZE);
tmp |= NFC_ECC_EN | (data->mode << NFC_ECC_MODE_SHIFT) |
NFC_ECC_EXCEPTION;
writel(tmp, nfc->regs + NFC_REG_ECC_CTL);
for (i = 0; i < ecc->steps; i++) {
chip->read_buf(mtd, NULL, ecc->size);
tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | (1 << 30);
writel(tmp, nfc->regs + NFC_REG_CMD);
ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
if (ret)
return ret;
memcpy_fromio(buf, nfc->regs + NFC_RAM0_BASE, ecc->size);
buf += ecc->size;
offset += ecc->size;
if (readl(nfc->regs + NFC_REG_ECC_ST) & 0x1) {
mtd->ecc_stats.failed++;
} else {
tmp = readl(nfc->regs + NFC_REG_ECC_CNT0) & 0xff;
mtd->ecc_stats.corrected += tmp;
max_bitflips = max_t(unsigned int, max_bitflips, tmp);
}
if (oob_required) {
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1);
chip->read_buf(mtd, oob, ecc->bytes + ecc->prepad);
oob += ecc->bytes + ecc->prepad;
}
offset += ecc->bytes + ecc->prepad;
}
if (oob_required) {
cnt = mtd->oobsize - (oob - chip->oob_poi);
if (cnt > 0) {
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset, -1);
chip->read_buf(mtd, oob, cnt);
}
}
writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_ECC_EN,
nfc->regs + NFC_REG_ECC_CTL);
return max_bitflips;
}
static int sunxi_nfc_hw_syndrome_ecc_write_page(struct mtd_info *mtd,
struct nand_chip *chip,
const uint8_t *buf,
int oob_required)
{
struct sunxi_nfc *nfc = to_sunxi_nfc(chip->controller);
struct nand_ecc_ctrl *ecc = &chip->ecc;
struct sunxi_nand_hw_ecc *data = ecc->priv;
uint8_t *oob = chip->oob_poi;
int offset = 0;
int ret;
int cnt;
u32 tmp;
int i;
tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
tmp &= ~(NFC_ECC_MODE | NFC_ECC_PIPELINE | NFC_ECC_BLOCK_SIZE);
tmp |= NFC_ECC_EN | (data->mode << NFC_ECC_MODE_SHIFT) |
NFC_ECC_EXCEPTION;
writel(tmp, nfc->regs + NFC_REG_ECC_CTL);
for (i = 0; i < ecc->steps; i++) {
chip->write_buf(mtd, buf + (i * ecc->size), ecc->size);
offset += ecc->size;
/* Fill OOB data in */
if (oob_required) {
tmp = 0xffffffff;
memcpy_toio(nfc->regs + NFC_REG_USER_DATA_BASE, &tmp,
4);
} else {
memcpy_toio(nfc->regs + NFC_REG_USER_DATA_BASE, oob,
4);
}
tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ACCESS_DIR |
(1 << 30);
writel(tmp, nfc->regs + NFC_REG_CMD);
ret = sunxi_nfc_wait_int(nfc, NFC_CMD_INT_FLAG, 0);
if (ret)
return ret;
offset += ecc->bytes + ecc->prepad;
oob += ecc->bytes + ecc->prepad;
}
if (oob_required) {
cnt = mtd->oobsize - (oob - chip->oob_poi);
if (cnt > 0) {
chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset, -1);
chip->write_buf(mtd, oob, cnt);
}
}
tmp = readl(nfc->regs + NFC_REG_ECC_CTL);
tmp &= ~NFC_ECC_EN;
writel(tmp, nfc->regs + NFC_REG_ECC_CTL);
return 0;
}
static int sunxi_nand_chip_set_timings(struct sunxi_nand_chip *chip,
const struct nand_sdr_timings *timings)
{
u32 min_clk_period = 0;
/* T1 <=> tCLS */
if (timings->tCLS_min > min_clk_period)
min_clk_period = timings->tCLS_min;
/* T2 <=> tCLH */
if (timings->tCLH_min > min_clk_period)
min_clk_period = timings->tCLH_min;
/* T3 <=> tCS */
if (timings->tCS_min > min_clk_period)
min_clk_period = timings->tCS_min;
/* T4 <=> tCH */
if (timings->tCH_min > min_clk_period)
min_clk_period = timings->tCH_min;
/* T5 <=> tWP */
if (timings->tWP_min > min_clk_period)
min_clk_period = timings->tWP_min;
/* T6 <=> tWH */
if (timings->tWH_min > min_clk_period)
min_clk_period = timings->tWH_min;
/* T7 <=> tALS */
if (timings->tALS_min > min_clk_period)
min_clk_period = timings->tALS_min;
/* T8 <=> tDS */
if (timings->tDS_min > min_clk_period)
min_clk_period = timings->tDS_min;
/* T9 <=> tDH */
if (timings->tDH_min > min_clk_period)
min_clk_period = timings->tDH_min;
/* T10 <=> tRR */
if (timings->tRR_min > (min_clk_period * 3))
min_clk_period = DIV_ROUND_UP(timings->tRR_min, 3);
/* T11 <=> tALH */
if (timings->tALH_min > min_clk_period)
min_clk_period = timings->tALH_min;
/* T12 <=> tRP */
if (timings->tRP_min > min_clk_period)
min_clk_period = timings->tRP_min;
/* T13 <=> tREH */
if (timings->tREH_min > min_clk_period)
min_clk_period = timings->tREH_min;
/* T14 <=> tRC */
if (timings->tRC_min > (min_clk_period * 2))
min_clk_period = DIV_ROUND_UP(timings->tRC_min, 2);
/* T15 <=> tWC */
if (timings->tWC_min > (min_clk_period * 2))
min_clk_period = DIV_ROUND_UP(timings->tWC_min, 2);
/* Convert min_clk_period from picoseconds to nanoseconds */
min_clk_period = DIV_ROUND_UP(min_clk_period, 1000);
/*
* Convert min_clk_period into a clk frequency, then get the
* appropriate rate for the NAND controller IP given this formula
* (specified in the datasheet):
* nand clk_rate = 2 * min_clk_rate
*/
chip->clk_rate = (2 * NSEC_PER_SEC) / min_clk_period;
/* TODO: configure T16-T19 */
return 0;
}
static int sunxi_nand_chip_init_timings(struct sunxi_nand_chip *chip,
struct device_node *np)
{
const struct nand_sdr_timings *timings;
int ret;
int mode;
mode = onfi_get_async_timing_mode(&chip->nand);
if (mode == ONFI_TIMING_MODE_UNKNOWN) {
mode = chip->nand.onfi_timing_mode_default;
} else {
uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {};
mode = fls(mode) - 1;
if (mode < 0)
mode = 0;
feature[0] = mode;
ret = chip->nand.onfi_set_features(&chip->mtd, &chip->nand,
ONFI_FEATURE_ADDR_TIMING_MODE,
feature);
if (ret)
return ret;
}
timings = onfi_async_timing_mode_to_sdr_timings(mode);
if (IS_ERR(timings))
return PTR_ERR(timings);
return sunxi_nand_chip_set_timings(chip, timings);
}
static int sunxi_nand_hw_common_ecc_ctrl_init(struct mtd_info *mtd,
struct nand_ecc_ctrl *ecc,
struct device_node *np)
{
static const u8 strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 };
struct nand_chip *nand = mtd->priv;
struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand);
struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller);
struct sunxi_nand_hw_ecc *data;
struct nand_ecclayout *layout;
int nsectors;
int ret;
int i;
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
/* Add ECC info retrieval from DT */
for (i = 0; i < ARRAY_SIZE(strengths); i++) {
if (ecc->strength <= strengths[i])
break;
}
if (i >= ARRAY_SIZE(strengths)) {
dev_err(nfc->dev, "unsupported strength\n");
ret = -ENOTSUPP;
goto err;
}
data->mode = i;
/* HW ECC always request ECC bytes for 1024 bytes blocks */
ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * 1024), 8);
/* HW ECC always work with even numbers of ECC bytes */
ecc->bytes = ALIGN(ecc->bytes, 2);
layout = &data->layout;
nsectors = mtd->writesize / ecc->size;
if (mtd->oobsize < ((ecc->bytes + 4) * nsectors)) {
ret = -EINVAL;
goto err;
}
layout->eccbytes = (ecc->bytes * nsectors);
ecc->layout = layout;
ecc->priv = data;
return 0;
err:
kfree(data);
return ret;
}
static void sunxi_nand_hw_common_ecc_ctrl_cleanup(struct nand_ecc_ctrl *ecc)
{
kfree(ecc->priv);
}
static int sunxi_nand_hw_ecc_ctrl_init(struct mtd_info *mtd,
struct nand_ecc_ctrl *ecc,
struct device_node *np)
{
struct nand_ecclayout *layout;
int nsectors;
int i, j;
int ret;
ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np);
if (ret)
return ret;
ecc->read_page = sunxi_nfc_hw_ecc_read_page;
ecc->write_page = sunxi_nfc_hw_ecc_write_page;
layout = ecc->layout;
nsectors = mtd->writesize / ecc->size;
for (i = 0; i < nsectors; i++) {
if (i) {
layout->oobfree[i].offset =
layout->oobfree[i - 1].offset +
layout->oobfree[i - 1].length +
ecc->bytes;
layout->oobfree[i].length = 4;
} else {
/*
* The first 2 bytes are used for BB markers, hence we
* only have 2 bytes available in the first user data
* section.
*/
layout->oobfree[i].length = 2;
layout->oobfree[i].offset = 2;
}
for (j = 0; j < ecc->bytes; j++)
layout->eccpos[(ecc->bytes * i) + j] =
layout->oobfree[i].offset +
layout->oobfree[i].length + j;
}
if (mtd->oobsize > (ecc->bytes + 4) * nsectors) {
layout->oobfree[nsectors].offset =
layout->oobfree[nsectors - 1].offset +
layout->oobfree[nsectors - 1].length +
ecc->bytes;
layout->oobfree[nsectors].length = mtd->oobsize -
((ecc->bytes + 4) * nsectors);
}
return 0;
}
static int sunxi_nand_hw_syndrome_ecc_ctrl_init(struct mtd_info *mtd,
struct nand_ecc_ctrl *ecc,
struct device_node *np)
{
struct nand_ecclayout *layout;
int nsectors;
int i;
int ret;
ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np);
if (ret)
return ret;
ecc->prepad = 4;
ecc->read_page = sunxi_nfc_hw_syndrome_ecc_read_page;
ecc->write_page = sunxi_nfc_hw_syndrome_ecc_write_page;
layout = ecc->layout;
nsectors = mtd->writesize / ecc->size;
for (i = 0; i < (ecc->bytes * nsectors); i++)
layout->eccpos[i] = i;
layout->oobfree[0].length = mtd->oobsize - i;
layout->oobfree[0].offset = i;
return 0;
}
static void sunxi_nand_ecc_cleanup(struct nand_ecc_ctrl *ecc)
{
switch (ecc->mode) {
case NAND_ECC_HW:
case NAND_ECC_HW_SYNDROME:
sunxi_nand_hw_common_ecc_ctrl_cleanup(ecc);
break;
case NAND_ECC_NONE:
kfree(ecc->layout);
default:
break;
}
}
static int sunxi_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc,
struct device_node *np)
{
struct nand_chip *nand = mtd->priv;
int strength;
int blk_size;
int ret;
blk_size = of_get_nand_ecc_step_size(np);
strength = of_get_nand_ecc_strength(np);
if (blk_size > 0 && strength > 0) {
ecc->size = blk_size;
ecc->strength = strength;
} else {
ecc->size = nand->ecc_step_ds;
ecc->strength = nand->ecc_strength_ds;
}
if (!ecc->size || !ecc->strength)
return -EINVAL;
ecc->mode = NAND_ECC_HW;
ret = of_get_nand_ecc_mode(np);
if (ret >= 0)
ecc->mode = ret;
switch (ecc->mode) {
case NAND_ECC_SOFT_BCH:
ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * ecc->size),
8);
break;
case NAND_ECC_HW:
ret = sunxi_nand_hw_ecc_ctrl_init(mtd, ecc, np);
if (ret)
return ret;
break;
case NAND_ECC_HW_SYNDROME:
ret = sunxi_nand_hw_syndrome_ecc_ctrl_init(mtd, ecc, np);
if (ret)
return ret;
break;
case NAND_ECC_NONE:
ecc->layout = kzalloc(sizeof(*ecc->layout), GFP_KERNEL);
if (!ecc->layout)
return -ENOMEM;
ecc->layout->oobfree[0].length = mtd->oobsize;
case NAND_ECC_SOFT:
break;
default:
return -EINVAL;
}
return 0;
}
static int sunxi_nand_chip_init(struct device *dev, struct sunxi_nfc *nfc,
struct device_node *np)
{
const struct nand_sdr_timings *timings;
struct sunxi_nand_chip *chip;
struct mtd_part_parser_data ppdata;
struct mtd_info *mtd;
struct nand_chip *nand;
int nsels;
int ret;
int i;
u32 tmp;
if (!of_get_property(np, "reg", &nsels))
return -EINVAL;
nsels /= sizeof(u32);
if (!nsels) {
dev_err(dev, "invalid reg property size\n");
return -EINVAL;
}
chip = devm_kzalloc(dev,
sizeof(*chip) +
(nsels * sizeof(struct sunxi_nand_chip_sel)),
GFP_KERNEL);
if (!chip) {
dev_err(dev, "could not allocate chip\n");
return -ENOMEM;
}
chip->nsels = nsels;
chip->selected = -1;
for (i = 0; i < nsels; i++) {
ret = of_property_read_u32_index(np, "reg", i, &tmp);
if (ret) {
dev_err(dev, "could not retrieve reg property: %d\n",
ret);
return ret;
}
if (tmp > NFC_MAX_CS) {
dev_err(dev,
"invalid reg value: %u (max CS = 7)\n",
tmp);
return -EINVAL;
}
if (test_and_set_bit(tmp, &nfc->assigned_cs)) {
dev_err(dev, "CS %d already assigned\n", tmp);
return -EINVAL;
}
chip->sels[i].cs = tmp;
if (!of_property_read_u32_index(np, "allwinner,rb", i, &tmp) &&
tmp < 2) {
chip->sels[i].rb.type = RB_NATIVE;
chip->sels[i].rb.info.nativeid = tmp;
} else {
ret = of_get_named_gpio(np, "rb-gpios", i);
if (ret >= 0) {
tmp = ret;
chip->sels[i].rb.type = RB_GPIO;
chip->sels[i].rb.info.gpio = tmp;
ret = devm_gpio_request(dev, tmp, "nand-rb");
if (ret)
return ret;
ret = gpio_direction_input(tmp);
if (ret)
return ret;
} else {
chip->sels[i].rb.type = RB_NONE;
}
}
}
timings = onfi_async_timing_mode_to_sdr_timings(0);
if (IS_ERR(timings)) {
ret = PTR_ERR(timings);
dev_err(dev,
"could not retrieve timings for ONFI mode 0: %d\n",
ret);
return ret;
}
ret = sunxi_nand_chip_set_timings(chip, timings);
if (ret) {
dev_err(dev, "could not configure chip timings: %d\n", ret);
return ret;
}
nand = &chip->nand;
/* Default tR value specified in the ONFI spec (chapter 4.15.1) */
nand->chip_delay = 200;
nand->controller = &nfc->controller;
nand->select_chip = sunxi_nfc_select_chip;
nand->cmd_ctrl = sunxi_nfc_cmd_ctrl;
nand->read_buf = sunxi_nfc_read_buf;
nand->write_buf = sunxi_nfc_write_buf;
nand->read_byte = sunxi_nfc_read_byte;
if (of_get_nand_on_flash_bbt(np))
nand->bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB;
mtd = &chip->mtd;
mtd->dev.parent = dev;
mtd->priv = nand;
mtd->owner = THIS_MODULE;
ret = nand_scan_ident(mtd, nsels, NULL);
if (ret)
return ret;
ret = sunxi_nand_chip_init_timings(chip, np);
if (ret) {
dev_err(dev, "could not configure chip timings: %d\n", ret);
return ret;
}
ret = sunxi_nand_ecc_init(mtd, &nand->ecc, np);
if (ret) {
dev_err(dev, "ECC init failed: %d\n", ret);
return ret;
}
ret = nand_scan_tail(mtd);
if (ret) {
dev_err(dev, "nand_scan_tail failed: %d\n", ret);
return ret;
}
ppdata.of_node = np;
ret = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
if (ret) {
dev_err(dev, "failed to register mtd device: %d\n", ret);
nand_release(mtd);
return ret;
}
list_add_tail(&chip->node, &nfc->chips);
return 0;
}
static int sunxi_nand_chips_init(struct device *dev, struct sunxi_nfc *nfc)
{
struct device_node *np = dev->of_node;
struct device_node *nand_np;
int nchips = of_get_child_count(np);
int ret;
if (nchips > 8) {
dev_err(dev, "too many NAND chips: %d (max = 8)\n", nchips);
return -EINVAL;
}
for_each_child_of_node(np, nand_np) {
ret = sunxi_nand_chip_init(dev, nfc, nand_np);
if (ret)
return ret;
}
return 0;
}
static void sunxi_nand_chips_cleanup(struct sunxi_nfc *nfc)
{
struct sunxi_nand_chip *chip;
while (!list_empty(&nfc->chips)) {
chip = list_first_entry(&nfc->chips, struct sunxi_nand_chip,
node);
nand_release(&chip->mtd);
sunxi_nand_ecc_cleanup(&chip->nand.ecc);
}
}
static int sunxi_nfc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct resource *r;
struct sunxi_nfc *nfc;
int irq;
int ret;
nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
if (!nfc)
return -ENOMEM;
nfc->dev = dev;
spin_lock_init(&nfc->controller.lock);
init_waitqueue_head(&nfc->controller.wq);
INIT_LIST_HEAD(&nfc->chips);
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
nfc->regs = devm_ioremap_resource(dev, r);
if (IS_ERR(nfc->regs))
return PTR_ERR(nfc->regs);
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(dev, "failed to retrieve irq\n");
return irq;
}
nfc->ahb_clk = devm_clk_get(dev, "ahb");
if (IS_ERR(nfc->ahb_clk)) {
dev_err(dev, "failed to retrieve ahb clk\n");
return PTR_ERR(nfc->ahb_clk);
}
ret = clk_prepare_enable(nfc->ahb_clk);
if (ret)
return ret;
nfc->mod_clk = devm_clk_get(dev, "mod");
if (IS_ERR(nfc->mod_clk)) {
dev_err(dev, "failed to retrieve mod clk\n");
ret = PTR_ERR(nfc->mod_clk);
goto out_ahb_clk_unprepare;
}
ret = clk_prepare_enable(nfc->mod_clk);
if (ret)
goto out_ahb_clk_unprepare;
ret = sunxi_nfc_rst(nfc);
if (ret)
goto out_mod_clk_unprepare;
writel(0, nfc->regs + NFC_REG_INT);
ret = devm_request_irq(dev, irq, sunxi_nfc_interrupt,
0, "sunxi-nand", nfc);
if (ret)
goto out_mod_clk_unprepare;
platform_set_drvdata(pdev, nfc);
/*
* TODO: replace these magic values with proper flags as soon as we
* know what they are encoding.
*/
writel(0x100, nfc->regs + NFC_REG_TIMING_CTL);
writel(0x7ff, nfc->regs + NFC_REG_TIMING_CFG);
ret = sunxi_nand_chips_init(dev, nfc);
if (ret) {
dev_err(dev, "failed to init nand chips\n");
goto out_mod_clk_unprepare;
}
return 0;
out_mod_clk_unprepare:
clk_disable_unprepare(nfc->mod_clk);
out_ahb_clk_unprepare:
clk_disable_unprepare(nfc->ahb_clk);
return ret;
}
static int sunxi_nfc_remove(struct platform_device *pdev)
{
struct sunxi_nfc *nfc = platform_get_drvdata(pdev);
sunxi_nand_chips_cleanup(nfc);
return 0;
}
static const struct of_device_id sunxi_nfc_ids[] = {
{ .compatible = "allwinner,sun4i-a10-nand" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, sunxi_nfc_ids);
static struct platform_driver sunxi_nfc_driver = {
.driver = {
.name = "sunxi_nand",
.of_match_table = sunxi_nfc_ids,
},
.probe = sunxi_nfc_probe,
.remove = sunxi_nfc_remove,
};
module_platform_driver(sunxi_nfc_driver);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Boris BREZILLON");
MODULE_DESCRIPTION("Allwinner NAND Flash Controller driver");
MODULE_ALIAS("platform:sunxi_nand");
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment