Commit 21351013 authored by Geert Uytterhoeven's avatar Geert Uytterhoeven Committed by James Bottomley

[SCSI] a3000: Reindentation

Signed-off-by: default avatarGeert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: default avatarJames Bottomley <James.Bottomley@suse.de>
parent be4540db
...@@ -19,26 +19,26 @@ ...@@ -19,26 +19,26 @@
#include "wd33c93.h" #include "wd33c93.h"
#include "a3000.h" #include "a3000.h"
#include<linux/stat.h> #include <linux/stat.h>
#define DMA(ptr) ((a3000_scsiregs *)((ptr)->base))
#define HDATA(ptr) ((struct WD33C93_hostdata *)((ptr)->hostdata)) #define DMA(ptr) ((a3000_scsiregs *)((ptr)->base))
#define HDATA(ptr) ((struct WD33C93_hostdata *)((ptr)->hostdata))
static struct Scsi_Host *a3000_host = NULL; static struct Scsi_Host *a3000_host = NULL;
static int a3000_release(struct Scsi_Host *instance); static int a3000_release(struct Scsi_Host *instance);
static irqreturn_t a3000_intr (int irq, void *dummy) static irqreturn_t a3000_intr(int irq, void *dummy)
{ {
unsigned long flags; unsigned long flags;
unsigned int status = DMA(a3000_host)->ISTR; unsigned int status = DMA(a3000_host)->ISTR;
if (!(status & ISTR_INT_P)) if (!(status & ISTR_INT_P))
return IRQ_NONE; return IRQ_NONE;
if (status & ISTR_INTS) if (status & ISTR_INTS) {
{
spin_lock_irqsave(a3000_host->host_lock, flags); spin_lock_irqsave(a3000_host->host_lock, flags);
wd33c93_intr (a3000_host); wd33c93_intr(a3000_host);
spin_unlock_irqrestore(a3000_host->host_lock, flags); spin_unlock_irqrestore(a3000_host->host_lock, flags);
return IRQ_HANDLED; return IRQ_HANDLED;
} }
...@@ -48,161 +48,161 @@ static irqreturn_t a3000_intr (int irq, void *dummy) ...@@ -48,161 +48,161 @@ static irqreturn_t a3000_intr (int irq, void *dummy)
static int dma_setup(struct scsi_cmnd *cmd, int dir_in) static int dma_setup(struct scsi_cmnd *cmd, int dir_in)
{ {
unsigned short cntr = CNTR_PDMD | CNTR_INTEN; unsigned short cntr = CNTR_PDMD | CNTR_INTEN;
unsigned long addr = virt_to_bus(cmd->SCp.ptr); unsigned long addr = virt_to_bus(cmd->SCp.ptr);
/* /*
* if the physical address has the wrong alignment, or if * if the physical address has the wrong alignment, or if
* physical address is bad, or if it is a write and at the * physical address is bad, or if it is a write and at the
* end of a physical memory chunk, then allocate a bounce * end of a physical memory chunk, then allocate a bounce
* buffer * buffer
*/ */
if (addr & A3000_XFER_MASK) if (addr & A3000_XFER_MASK) {
{ HDATA(a3000_host)->dma_bounce_len =
HDATA(a3000_host)->dma_bounce_len = (cmd->SCp.this_residual + 511) (cmd->SCp.this_residual + 511) & ~0x1ff;
& ~0x1ff; HDATA(a3000_host)->dma_bounce_buffer =
HDATA(a3000_host)->dma_bounce_buffer = kmalloc(HDATA(a3000_host)->dma_bounce_len, GFP_KERNEL);
kmalloc (HDATA(a3000_host)->dma_bounce_len, GFP_KERNEL);
/* can't allocate memory; use PIO */
/* can't allocate memory; use PIO */ if (!HDATA(a3000_host)->dma_bounce_buffer) {
if (!HDATA(a3000_host)->dma_bounce_buffer) { HDATA(a3000_host)->dma_bounce_len = 0;
HDATA(a3000_host)->dma_bounce_len = 0; return 1;
return 1; }
}
if (!dir_in) {
if (!dir_in) { /* copy to bounce buffer for a write */
/* copy to bounce buffer for a write */ memcpy(HDATA(a3000_host)->dma_bounce_buffer,
memcpy (HDATA(a3000_host)->dma_bounce_buffer, cmd->SCp.ptr, cmd->SCp.this_residual);
cmd->SCp.ptr, cmd->SCp.this_residual); }
addr = virt_to_bus(HDATA(a3000_host)->dma_bounce_buffer);
} }
addr = virt_to_bus(HDATA(a3000_host)->dma_bounce_buffer); /* setup dma direction */
} if (!dir_in)
cntr |= CNTR_DDIR;
/* setup dma direction */
if (!dir_in)
cntr |= CNTR_DDIR;
/* remember direction */ /* remember direction */
HDATA(a3000_host)->dma_dir = dir_in; HDATA(a3000_host)->dma_dir = dir_in;
DMA(a3000_host)->CNTR = cntr; DMA(a3000_host)->CNTR = cntr;
/* setup DMA *physical* address */ /* setup DMA *physical* address */
DMA(a3000_host)->ACR = addr; DMA(a3000_host)->ACR = addr;
if (dir_in) if (dir_in) {
/* invalidate any cache */ /* invalidate any cache */
cache_clear (addr, cmd->SCp.this_residual); cache_clear(addr, cmd->SCp.this_residual);
else } else {
/* push any dirty cache */ /* push any dirty cache */
cache_push (addr, cmd->SCp.this_residual); cache_push(addr, cmd->SCp.this_residual);
}
/* start DMA */ /* start DMA */
mb(); /* make sure setup is completed */ mb(); /* make sure setup is completed */
DMA(a3000_host)->ST_DMA = 1; DMA(a3000_host)->ST_DMA = 1;
mb(); /* make sure DMA has started before next IO */ mb(); /* make sure DMA has started before next IO */
/* return success */ /* return success */
return 0; return 0;
} }
static void dma_stop(struct Scsi_Host *instance, struct scsi_cmnd *SCpnt, static void dma_stop(struct Scsi_Host *instance, struct scsi_cmnd *SCpnt,
int status) int status)
{ {
/* disable SCSI interrupts */ /* disable SCSI interrupts */
unsigned short cntr = CNTR_PDMD; unsigned short cntr = CNTR_PDMD;
if (!HDATA(instance)->dma_dir) if (!HDATA(instance)->dma_dir)
cntr |= CNTR_DDIR; cntr |= CNTR_DDIR;
DMA(instance)->CNTR = cntr; DMA(instance)->CNTR = cntr;
mb(); /* make sure CNTR is updated before next IO */ mb(); /* make sure CNTR is updated before next IO */
/* flush if we were reading */ /* flush if we were reading */
if (HDATA(instance)->dma_dir) { if (HDATA(instance)->dma_dir) {
DMA(instance)->FLUSH = 1; DMA(instance)->FLUSH = 1;
mb(); /* don't allow prefetch */ mb(); /* don't allow prefetch */
while (!(DMA(instance)->ISTR & ISTR_FE_FLG)) while (!(DMA(instance)->ISTR & ISTR_FE_FLG))
barrier(); barrier();
mb(); /* no IO until FLUSH is done */ mb(); /* no IO until FLUSH is done */
} }
/* clear a possible interrupt */ /* clear a possible interrupt */
/* I think that this CINT is only necessary if you are /* I think that this CINT is only necessary if you are
* using the terminal count features. HM 7 Mar 1994 * using the terminal count features. HM 7 Mar 1994
*/ */
DMA(instance)->CINT = 1; DMA(instance)->CINT = 1;
/* stop DMA */ /* stop DMA */
DMA(instance)->SP_DMA = 1; DMA(instance)->SP_DMA = 1;
mb(); /* make sure DMA is stopped before next IO */ mb(); /* make sure DMA is stopped before next IO */
/* restore the CONTROL bits (minus the direction flag) */ /* restore the CONTROL bits (minus the direction flag) */
DMA(instance)->CNTR = CNTR_PDMD | CNTR_INTEN; DMA(instance)->CNTR = CNTR_PDMD | CNTR_INTEN;
mb(); /* make sure CNTR is updated before next IO */ mb(); /* make sure CNTR is updated before next IO */
/* copy from a bounce buffer, if necessary */ /* copy from a bounce buffer, if necessary */
if (status && HDATA(instance)->dma_bounce_buffer) { if (status && HDATA(instance)->dma_bounce_buffer) {
if (SCpnt) { if (SCpnt) {
if (HDATA(instance)->dma_dir && SCpnt) if (HDATA(instance)->dma_dir && SCpnt)
memcpy (SCpnt->SCp.ptr, memcpy(SCpnt->SCp.ptr,
HDATA(instance)->dma_bounce_buffer, HDATA(instance)->dma_bounce_buffer,
SCpnt->SCp.this_residual); SCpnt->SCp.this_residual);
kfree (HDATA(instance)->dma_bounce_buffer); kfree(HDATA(instance)->dma_bounce_buffer);
HDATA(instance)->dma_bounce_buffer = NULL; HDATA(instance)->dma_bounce_buffer = NULL;
HDATA(instance)->dma_bounce_len = 0; HDATA(instance)->dma_bounce_len = 0;
} else { } else {
kfree (HDATA(instance)->dma_bounce_buffer); kfree(HDATA(instance)->dma_bounce_buffer);
HDATA(instance)->dma_bounce_buffer = NULL; HDATA(instance)->dma_bounce_buffer = NULL;
HDATA(instance)->dma_bounce_len = 0; HDATA(instance)->dma_bounce_len = 0;
}
} }
}
} }
static int __init a3000_detect(struct scsi_host_template *tpnt) static int __init a3000_detect(struct scsi_host_template *tpnt)
{ {
wd33c93_regs regs; wd33c93_regs regs;
if (!MACH_IS_AMIGA || !AMIGAHW_PRESENT(A3000_SCSI)) if (!MACH_IS_AMIGA || !AMIGAHW_PRESENT(A3000_SCSI))
return 0; return 0;
if (!request_mem_region(0xDD0000, 256, "wd33c93")) if (!request_mem_region(0xDD0000, 256, "wd33c93"))
return 0; return 0;
tpnt->proc_name = "A3000"; tpnt->proc_name = "A3000";
tpnt->proc_info = &wd33c93_proc_info; tpnt->proc_info = &wd33c93_proc_info;
a3000_host = scsi_register (tpnt, sizeof(struct WD33C93_hostdata)); a3000_host = scsi_register(tpnt, sizeof(struct WD33C93_hostdata));
if (a3000_host == NULL) if (a3000_host == NULL)
goto fail_register; goto fail_register;
a3000_host->base = ZTWO_VADDR(0xDD0000); a3000_host->base = ZTWO_VADDR(0xDD0000);
a3000_host->irq = IRQ_AMIGA_PORTS; a3000_host->irq = IRQ_AMIGA_PORTS;
DMA(a3000_host)->DAWR = DAWR_A3000; DMA(a3000_host)->DAWR = DAWR_A3000;
regs.SASR = &(DMA(a3000_host)->SASR); regs.SASR = &(DMA(a3000_host)->SASR);
regs.SCMD = &(DMA(a3000_host)->SCMD); regs.SCMD = &(DMA(a3000_host)->SCMD);
HDATA(a3000_host)->no_sync = 0xff; HDATA(a3000_host)->no_sync = 0xff;
HDATA(a3000_host)->fast = 0; HDATA(a3000_host)->fast = 0;
HDATA(a3000_host)->dma_mode = CTRL_DMA; HDATA(a3000_host)->dma_mode = CTRL_DMA;
wd33c93_init(a3000_host, regs, dma_setup, dma_stop, WD33C93_FS_12_15); wd33c93_init(a3000_host, regs, dma_setup, dma_stop, WD33C93_FS_12_15);
if (request_irq(IRQ_AMIGA_PORTS, a3000_intr, IRQF_SHARED, "A3000 SCSI", if (request_irq(IRQ_AMIGA_PORTS, a3000_intr, IRQF_SHARED, "A3000 SCSI",
a3000_intr)) a3000_intr))
goto fail_irq; goto fail_irq;
DMA(a3000_host)->CNTR = CNTR_PDMD | CNTR_INTEN; DMA(a3000_host)->CNTR = CNTR_PDMD | CNTR_INTEN;
return 1; return 1;
fail_irq: fail_irq:
scsi_unregister(a3000_host); scsi_unregister(a3000_host);
fail_register: fail_register:
release_mem_region(0xDD0000, 256); release_mem_region(0xDD0000, 256);
return 0; return 0;
} }
static int a3000_bus_reset(struct scsi_cmnd *cmd) static int a3000_bus_reset(struct scsi_cmnd *cmd)
{ {
/* FIXME perform bus-specific reset */ /* FIXME perform bus-specific reset */
/* FIXME 2: kill this entire function, which should /* FIXME 2: kill this entire function, which should
cause mid-layer to call wd33c93_host_reset anyway? */ cause mid-layer to call wd33c93_host_reset anyway? */
...@@ -236,10 +236,10 @@ static struct scsi_host_template driver_template = { ...@@ -236,10 +236,10 @@ static struct scsi_host_template driver_template = {
static int a3000_release(struct Scsi_Host *instance) static int a3000_release(struct Scsi_Host *instance)
{ {
DMA(instance)->CNTR = 0; DMA(instance)->CNTR = 0;
release_mem_region(0xDD0000, 256); release_mem_region(0xDD0000, 256);
free_irq(IRQ_AMIGA_PORTS, a3000_intr); free_irq(IRQ_AMIGA_PORTS, a3000_intr);
return 1; return 1;
} }
MODULE_LICENSE("GPL"); MODULE_LICENSE("GPL");
...@@ -12,40 +12,40 @@ ...@@ -12,40 +12,40 @@
#include <linux/types.h> #include <linux/types.h>
#ifndef CMD_PER_LUN #ifndef CMD_PER_LUN
#define CMD_PER_LUN 2 #define CMD_PER_LUN 2
#endif #endif
#ifndef CAN_QUEUE #ifndef CAN_QUEUE
#define CAN_QUEUE 16 #define CAN_QUEUE 16
#endif #endif
/* /*
* if the transfer address ANDed with this results in a non-zero * if the transfer address ANDed with this results in a non-zero
* result, then we can't use DMA. * result, then we can't use DMA.
*/ */
#define A3000_XFER_MASK (0x00000003) #define A3000_XFER_MASK (0x00000003)
typedef struct { typedef struct {
unsigned char pad1[2]; unsigned char pad1[2];
volatile unsigned short DAWR; volatile unsigned short DAWR;
volatile unsigned int WTC; volatile unsigned int WTC;
unsigned char pad2[2]; unsigned char pad2[2];
volatile unsigned short CNTR; volatile unsigned short CNTR;
volatile unsigned long ACR; volatile unsigned long ACR;
unsigned char pad3[2]; unsigned char pad3[2];
volatile unsigned short ST_DMA; volatile unsigned short ST_DMA;
unsigned char pad4[2]; unsigned char pad4[2];
volatile unsigned short FLUSH; volatile unsigned short FLUSH;
unsigned char pad5[2]; unsigned char pad5[2];
volatile unsigned short CINT; volatile unsigned short CINT;
unsigned char pad6[2]; unsigned char pad6[2];
volatile unsigned short ISTR; volatile unsigned short ISTR;
unsigned char pad7[30]; unsigned char pad7[30];
volatile unsigned short SP_DMA; volatile unsigned short SP_DMA;
unsigned char pad8; unsigned char pad8;
volatile unsigned char SASR; volatile unsigned char SASR;
unsigned char pad9; unsigned char pad9;
volatile unsigned char SCMD; volatile unsigned char SCMD;
} a3000_scsiregs; } a3000_scsiregs;
#define DAWR_A3000 (3) #define DAWR_A3000 (3)
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment