Commit 22f7496f authored by Yafang Shao's avatar Yafang Shao Committed by Linus Torvalds

mm, memcg: avoid stale protection values when cgroup is above protection

Patch series "mm, memcg: memory.{low,min} reclaim fix & cleanup", v4.

This series contains a fix for a edge case in my earlier protection
calculation patches, and a patch to make the area overall a little more
robust to hopefully help avoid this in future.

This patch (of 2):

A cgroup can have both memory protection and a memory limit to isolate it
from its siblings in both directions - for example, to prevent it from
being shrunk below 2G under high pressure from outside, but also from
growing beyond 4G under low pressure.

Commit 9783aa99 ("mm, memcg: proportional memory.{low,min} reclaim")
implemented proportional scan pressure so that multiple siblings in excess
of their protection settings don't get reclaimed equally but instead in
accordance to their unprotected portion.

During limit reclaim, this proportionality shouldn't apply of course:
there is no competition, all pressure is from within the cgroup and should
be applied as such.  Reclaim should operate at full efficiency.

However, mem_cgroup_protected() never expected anybody to look at the
effective protection values when it indicated that the cgroup is above its
protection.  As a result, a query during limit reclaim may return stale
protection values that were calculated by a previous reclaim cycle in
which the cgroup did have siblings.

When this happens, reclaim is unnecessarily hesitant and potentially slow
to meet the desired limit.  In theory this could lead to premature OOM
kills, although it's not obvious this has occurred in practice.

Workaround the problem by special casing reclaim roots in
mem_cgroup_protection.  These memcgs are never participating in the
reclaim protection because the reclaim is internal.

We have to ignore effective protection values for reclaim roots because
mem_cgroup_protected might be called from racing reclaim contexts with
different roots.  Calculation is relying on root -> leaf tree traversal
therefore top-down reclaim protection invariants should hold.  The only
exception is the reclaim root which should have effective protection set
to 0 but that would be problematic for the following setup:

 Let's have global and A's reclaim in parallel:
  |
  A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
  |\
  | C (low = 1G, usage = 2.5G)
  B (low = 1G, usage = 0.5G)

 for A reclaim we have
 B.elow = B.low
 C.elow = C.low

 For the global reclaim
 A.elow = A.low
 B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
 C.elow = min(C.usage, C.low)

 With the effective values resetting we have A reclaim
 A.elow = 0
 B.elow = B.low
 C.elow = C.low

 and global reclaim could see the above and then
 B.elow = C.elow = 0 because children_low_usage > A.elow

Which means that protected memcgs would get reclaimed.

In future we would like to make mem_cgroup_protected more robust against
racing reclaim contexts but that is likely more complex solution than this
simple workaround.

[hannes@cmpxchg.org - large part of the changelog]
[mhocko@suse.com - workaround explanation]
[chris@chrisdown.name - retitle]

Fixes: 9783aa99 ("mm, memcg: proportional memory.{low,min} reclaim")
Signed-off-by: default avatarYafang Shao <laoar.shao@gmail.com>
Signed-off-by: default avatarChris Down <chris@chrisdown.name>
Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
Acked-by: default avatarMichal Hocko <mhocko@suse.com>
Acked-by: default avatarJohannes Weiner <hannes@cmpxchg.org>
Acked-by: default avatarChris Down <chris@chrisdown.name>
Acked-by: default avatarRoman Gushchin <guro@fb.com>
Link: http://lkml.kernel.org/r/cover.1594638158.git.chris@chrisdown.name
Link: http://lkml.kernel.org/r/044fb8ecffd001c7905d27c0c2ad998069fdc396.1594638158.git.chris@chrisdown.nameSigned-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
parent d977aa93
...@@ -355,12 +355,49 @@ static inline bool mem_cgroup_disabled(void) ...@@ -355,12 +355,49 @@ static inline bool mem_cgroup_disabled(void)
return !cgroup_subsys_enabled(memory_cgrp_subsys); return !cgroup_subsys_enabled(memory_cgrp_subsys);
} }
static inline unsigned long mem_cgroup_protection(struct mem_cgroup *memcg, static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root,
struct mem_cgroup *memcg,
bool in_low_reclaim) bool in_low_reclaim)
{ {
if (mem_cgroup_disabled()) if (mem_cgroup_disabled())
return 0; return 0;
/*
* There is no reclaim protection applied to a targeted reclaim.
* We are special casing this specific case here because
* mem_cgroup_protected calculation is not robust enough to keep
* the protection invariant for calculated effective values for
* parallel reclaimers with different reclaim target. This is
* especially a problem for tail memcgs (as they have pages on LRU)
* which would want to have effective values 0 for targeted reclaim
* but a different value for external reclaim.
*
* Example
* Let's have global and A's reclaim in parallel:
* |
* A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
* |\
* | C (low = 1G, usage = 2.5G)
* B (low = 1G, usage = 0.5G)
*
* For the global reclaim
* A.elow = A.low
* B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
* C.elow = min(C.usage, C.low)
*
* With the effective values resetting we have A reclaim
* A.elow = 0
* B.elow = B.low
* C.elow = C.low
*
* If the global reclaim races with A's reclaim then
* B.elow = C.elow = 0 because children_low_usage > A.elow)
* is possible and reclaiming B would be violating the protection.
*
*/
if (root == memcg)
return 0;
if (in_low_reclaim) if (in_low_reclaim)
return READ_ONCE(memcg->memory.emin); return READ_ONCE(memcg->memory.emin);
...@@ -891,7 +928,8 @@ static inline void memcg_memory_event_mm(struct mm_struct *mm, ...@@ -891,7 +928,8 @@ static inline void memcg_memory_event_mm(struct mm_struct *mm,
{ {
} }
static inline unsigned long mem_cgroup_protection(struct mem_cgroup *memcg, static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root,
struct mem_cgroup *memcg,
bool in_low_reclaim) bool in_low_reclaim)
{ {
return 0; return 0;
......
...@@ -6605,6 +6605,14 @@ enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root, ...@@ -6605,6 +6605,14 @@ enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
if (!root) if (!root)
root = root_mem_cgroup; root = root_mem_cgroup;
/*
* Effective values of the reclaim targets are ignored so they
* can be stale. Have a look at mem_cgroup_protection for more
* details.
* TODO: calculation should be more robust so that we do not need
* that special casing.
*/
if (memcg == root) if (memcg == root)
return MEMCG_PROT_NONE; return MEMCG_PROT_NONE;
......
...@@ -2331,7 +2331,8 @@ static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, ...@@ -2331,7 +2331,8 @@ static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
unsigned long protection; unsigned long protection;
lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
protection = mem_cgroup_protection(memcg, protection = mem_cgroup_protection(sc->target_mem_cgroup,
memcg,
sc->memcg_low_reclaim); sc->memcg_low_reclaim);
if (protection) { if (protection) {
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment