Commit 2e0f2394 authored by Marc Zyngier's avatar Marc Zyngier

Merge branch kvm-arm64/nv-at-pan into kvmarm-master/next

* kvm-arm64/nv-at-pan:
  : .
  : Add NV support for the AT family of instructions, which mostly results
  : in adding a page table walker that deals with most of the complexity
  : of the architecture.
  :
  : From the cover letter:
  :
  : "Another task that a hypervisor supporting NV on arm64 has to deal with
  : is to emulate the AT instruction, because we multiplex all the S1
  : translations on a single set of registers, and the guest S2 is never
  : truly resident on the CPU.
  :
  : So given that we lie about page tables, we also have to lie about
  : translation instructions, hence the emulation. Things are made
  : complicated by the fact that guest S1 page tables can be swapped out,
  : and that our shadow S2 is likely to be incomplete. So while using AT
  : to emulate AT is tempting (and useful), it is not going to always
  : work, and we thus need a fallback in the shape of a SW S1 walker."
  : .
  KVM: arm64: nv: Add support for FEAT_ATS1A
  KVM: arm64: nv: Plumb handling of AT S1* traps from EL2
  KVM: arm64: nv: Make AT+PAN instructions aware of FEAT_PAN3
  KVM: arm64: nv: Sanitise SCTLR_EL1.EPAN according to VM configuration
  KVM: arm64: nv: Add SW walker for AT S1 emulation
  KVM: arm64: nv: Make ps_to_output_size() generally available
  KVM: arm64: nv: Add emulation of AT S12E{0,1}{R,W}
  KVM: arm64: nv: Add basic emulation of AT S1E2{R,W}
  KVM: arm64: nv: Add basic emulation of AT S1E1{R,W}P
  KVM: arm64: nv: Add basic emulation of AT S1E{0,1}{R,W}
  KVM: arm64: nv: Honor absence of FEAT_PAN2
  KVM: arm64: nv: Turn upper_attr for S2 walk into the full descriptor
  KVM: arm64: nv: Enforce S2 alignment when contiguous bit is set
  arm64: Add ESR_ELx_FSC_ADDRSZ_L() helper
  arm64: Add system register encoding for PSTATE.PAN
  arm64: Add PAR_EL1 field description
  arm64: Add missing APTable and TCR_ELx.HPD masks
  KVM: arm64: Make kvm_at() take an OP_AT_*
Signed-off-by: default avatarMarc Zyngier <maz@kernel.org>

# Conflicts:
#	arch/arm64/kvm/nested.c
parents f77e63e2 ff987ffc
...@@ -122,8 +122,8 @@ ...@@ -122,8 +122,8 @@
#define ESR_ELx_FSC_SECC_TTW(n) (0x1c + (n)) #define ESR_ELx_FSC_SECC_TTW(n) (0x1c + (n))
/* Status codes for individual page table levels */ /* Status codes for individual page table levels */
#define ESR_ELx_FSC_ACCESS_L(n) (ESR_ELx_FSC_ACCESS + n) #define ESR_ELx_FSC_ACCESS_L(n) (ESR_ELx_FSC_ACCESS + (n))
#define ESR_ELx_FSC_PERM_L(n) (ESR_ELx_FSC_PERM + n) #define ESR_ELx_FSC_PERM_L(n) (ESR_ELx_FSC_PERM + (n))
#define ESR_ELx_FSC_FAULT_nL (0x2C) #define ESR_ELx_FSC_FAULT_nL (0x2C)
#define ESR_ELx_FSC_FAULT_L(n) (((n) < 0 ? ESR_ELx_FSC_FAULT_nL : \ #define ESR_ELx_FSC_FAULT_L(n) (((n) < 0 ? ESR_ELx_FSC_FAULT_nL : \
...@@ -161,6 +161,7 @@ ...@@ -161,6 +161,7 @@
/* ISS field definitions for exceptions taken in to Hyp */ /* ISS field definitions for exceptions taken in to Hyp */
#define ESR_ELx_FSC_ADDRSZ (0x00) #define ESR_ELx_FSC_ADDRSZ (0x00)
#define ESR_ELx_FSC_ADDRSZ_L(n) (ESR_ELx_FSC_ADDRSZ + (n))
#define ESR_ELx_CV (UL(1) << 24) #define ESR_ELx_CV (UL(1) << 24)
#define ESR_ELx_COND_SHIFT (20) #define ESR_ELx_COND_SHIFT (20)
#define ESR_ELx_COND_MASK (UL(0xF) << ESR_ELx_COND_SHIFT) #define ESR_ELx_COND_MASK (UL(0xF) << ESR_ELx_COND_SHIFT)
......
...@@ -107,6 +107,7 @@ ...@@ -107,6 +107,7 @@
/* TCR_EL2 Registers bits */ /* TCR_EL2 Registers bits */
#define TCR_EL2_DS (1UL << 32) #define TCR_EL2_DS (1UL << 32)
#define TCR_EL2_RES1 ((1U << 31) | (1 << 23)) #define TCR_EL2_RES1 ((1U << 31) | (1 << 23))
#define TCR_EL2_HPD (1 << 24)
#define TCR_EL2_TBI (1 << 20) #define TCR_EL2_TBI (1 << 20)
#define TCR_EL2_PS_SHIFT 16 #define TCR_EL2_PS_SHIFT 16
#define TCR_EL2_PS_MASK (7 << TCR_EL2_PS_SHIFT) #define TCR_EL2_PS_MASK (7 << TCR_EL2_PS_SHIFT)
......
...@@ -10,6 +10,7 @@ ...@@ -10,6 +10,7 @@
#include <asm/hyp_image.h> #include <asm/hyp_image.h>
#include <asm/insn.h> #include <asm/insn.h>
#include <asm/virt.h> #include <asm/virt.h>
#include <asm/sysreg.h>
#define ARM_EXIT_WITH_SERROR_BIT 31 #define ARM_EXIT_WITH_SERROR_BIT 31
#define ARM_EXCEPTION_CODE(x) ((x) & ~(1U << ARM_EXIT_WITH_SERROR_BIT)) #define ARM_EXCEPTION_CODE(x) ((x) & ~(1U << ARM_EXIT_WITH_SERROR_BIT))
...@@ -235,6 +236,9 @@ extern void __kvm_tlb_flush_vmid(struct kvm_s2_mmu *mmu); ...@@ -235,6 +236,9 @@ extern void __kvm_tlb_flush_vmid(struct kvm_s2_mmu *mmu);
extern int __kvm_tlbi_s1e2(struct kvm_s2_mmu *mmu, u64 va, u64 sys_encoding); extern int __kvm_tlbi_s1e2(struct kvm_s2_mmu *mmu, u64 va, u64 sys_encoding);
extern void __kvm_timer_set_cntvoff(u64 cntvoff); extern void __kvm_timer_set_cntvoff(u64 cntvoff);
extern void __kvm_at_s1e01(struct kvm_vcpu *vcpu, u32 op, u64 vaddr);
extern void __kvm_at_s1e2(struct kvm_vcpu *vcpu, u32 op, u64 vaddr);
extern void __kvm_at_s12(struct kvm_vcpu *vcpu, u32 op, u64 vaddr);
extern int __kvm_vcpu_run(struct kvm_vcpu *vcpu); extern int __kvm_vcpu_run(struct kvm_vcpu *vcpu);
...@@ -259,7 +263,7 @@ extern u64 __kvm_get_mdcr_el2(void); ...@@ -259,7 +263,7 @@ extern u64 __kvm_get_mdcr_el2(void);
asm volatile( \ asm volatile( \
" mrs %1, spsr_el2\n" \ " mrs %1, spsr_el2\n" \
" mrs %2, elr_el2\n" \ " mrs %2, elr_el2\n" \
"1: at "at_op", %3\n" \ "1: " __msr_s(at_op, "%3") "\n" \
" isb\n" \ " isb\n" \
" b 9f\n" \ " b 9f\n" \
"2: msr spsr_el2, %1\n" \ "2: msr spsr_el2, %1\n" \
......
...@@ -85,7 +85,7 @@ struct kvm_s2_trans { ...@@ -85,7 +85,7 @@ struct kvm_s2_trans {
bool readable; bool readable;
int level; int level;
u32 esr; u32 esr;
u64 upper_attr; u64 desc;
}; };
static inline phys_addr_t kvm_s2_trans_output(struct kvm_s2_trans *trans) static inline phys_addr_t kvm_s2_trans_output(struct kvm_s2_trans *trans)
...@@ -115,7 +115,7 @@ static inline bool kvm_s2_trans_writable(struct kvm_s2_trans *trans) ...@@ -115,7 +115,7 @@ static inline bool kvm_s2_trans_writable(struct kvm_s2_trans *trans)
static inline bool kvm_s2_trans_executable(struct kvm_s2_trans *trans) static inline bool kvm_s2_trans_executable(struct kvm_s2_trans *trans)
{ {
return !(trans->upper_attr & BIT(54)); return !(trans->desc & BIT(54));
} }
extern int kvm_walk_nested_s2(struct kvm_vcpu *vcpu, phys_addr_t gipa, extern int kvm_walk_nested_s2(struct kvm_vcpu *vcpu, phys_addr_t gipa,
...@@ -205,4 +205,40 @@ static inline u64 kvm_encode_nested_level(struct kvm_s2_trans *trans) ...@@ -205,4 +205,40 @@ static inline u64 kvm_encode_nested_level(struct kvm_s2_trans *trans)
return FIELD_PREP(KVM_NV_GUEST_MAP_SZ, trans->level); return FIELD_PREP(KVM_NV_GUEST_MAP_SZ, trans->level);
} }
/* Adjust alignment for the contiguous bit as per StageOA() */
#define contiguous_bit_shift(d, wi, l) \
({ \
u8 shift = 0; \
\
if ((d) & PTE_CONT) { \
switch (BIT((wi)->pgshift)) { \
case SZ_4K: \
shift = 4; \
break; \
case SZ_16K: \
shift = (l) == 2 ? 5 : 7; \
break; \
case SZ_64K: \
shift = 5; \
break; \
} \
} \
\
shift; \
})
static inline unsigned int ps_to_output_size(unsigned int ps)
{
switch (ps) {
case 0: return 32;
case 1: return 36;
case 2: return 40;
case 3: return 42;
case 4: return 44;
case 5:
default:
return 48;
}
}
#endif /* __ARM64_KVM_NESTED_H */ #endif /* __ARM64_KVM_NESTED_H */
...@@ -204,6 +204,11 @@ ...@@ -204,6 +204,11 @@
*/ */
#define PTE_S2_MEMATTR(t) (_AT(pteval_t, (t)) << 2) #define PTE_S2_MEMATTR(t) (_AT(pteval_t, (t)) << 2)
/*
* Hierarchical permission for Stage-1 tables
*/
#define S1_TABLE_AP (_AT(pmdval_t, 3) << 61)
/* /*
* Highest possible physical address supported. * Highest possible physical address supported.
*/ */
...@@ -298,6 +303,10 @@ ...@@ -298,6 +303,10 @@
#define TCR_TBI1 (UL(1) << 38) #define TCR_TBI1 (UL(1) << 38)
#define TCR_HA (UL(1) << 39) #define TCR_HA (UL(1) << 39)
#define TCR_HD (UL(1) << 40) #define TCR_HD (UL(1) << 40)
#define TCR_HPD0_SHIFT 41
#define TCR_HPD0 (UL(1) << TCR_HPD0_SHIFT)
#define TCR_HPD1_SHIFT 42
#define TCR_HPD1 (UL(1) << TCR_HPD1_SHIFT)
#define TCR_TBID0 (UL(1) << 51) #define TCR_TBID0 (UL(1) << 51)
#define TCR_TBID1 (UL(1) << 52) #define TCR_TBID1 (UL(1) << 52)
#define TCR_NFD0 (UL(1) << 53) #define TCR_NFD0 (UL(1) << 53)
......
...@@ -109,6 +109,9 @@ ...@@ -109,6 +109,9 @@
#define set_pstate_ssbs(x) asm volatile(SET_PSTATE_SSBS(x)) #define set_pstate_ssbs(x) asm volatile(SET_PSTATE_SSBS(x))
#define set_pstate_dit(x) asm volatile(SET_PSTATE_DIT(x)) #define set_pstate_dit(x) asm volatile(SET_PSTATE_DIT(x))
/* Register-based PAN access, for save/restore purposes */
#define SYS_PSTATE_PAN sys_reg(3, 0, 4, 2, 3)
#define __SYS_BARRIER_INSN(CRm, op2, Rt) \ #define __SYS_BARRIER_INSN(CRm, op2, Rt) \
__emit_inst(0xd5000000 | sys_insn(0, 3, 3, (CRm), (op2)) | ((Rt) & 0x1f)) __emit_inst(0xd5000000 | sys_insn(0, 3, 3, (CRm), (op2)) | ((Rt) & 0x1f))
...@@ -325,7 +328,25 @@ ...@@ -325,7 +328,25 @@
#define SYS_PAR_EL1 sys_reg(3, 0, 7, 4, 0) #define SYS_PAR_EL1 sys_reg(3, 0, 7, 4, 0)
#define SYS_PAR_EL1_F BIT(0) #define SYS_PAR_EL1_F BIT(0)
/* When PAR_EL1.F == 1 */
#define SYS_PAR_EL1_FST GENMASK(6, 1) #define SYS_PAR_EL1_FST GENMASK(6, 1)
#define SYS_PAR_EL1_PTW BIT(8)
#define SYS_PAR_EL1_S BIT(9)
#define SYS_PAR_EL1_AssuredOnly BIT(12)
#define SYS_PAR_EL1_TopLevel BIT(13)
#define SYS_PAR_EL1_Overlay BIT(14)
#define SYS_PAR_EL1_DirtyBit BIT(15)
#define SYS_PAR_EL1_F1_IMPDEF GENMASK_ULL(63, 48)
#define SYS_PAR_EL1_F1_RES0 (BIT(7) | BIT(10) | GENMASK_ULL(47, 16))
#define SYS_PAR_EL1_RES1 BIT(11)
/* When PAR_EL1.F == 0 */
#define SYS_PAR_EL1_SH GENMASK_ULL(8, 7)
#define SYS_PAR_EL1_NS BIT(9)
#define SYS_PAR_EL1_F0_IMPDEF BIT(10)
#define SYS_PAR_EL1_NSE BIT(11)
#define SYS_PAR_EL1_PA GENMASK_ULL(51, 12)
#define SYS_PAR_EL1_ATTR GENMASK_ULL(63, 56)
#define SYS_PAR_EL1_F0_RES0 (GENMASK_ULL(6, 1) | GENMASK_ULL(55, 52))
/*** Statistical Profiling Extension ***/ /*** Statistical Profiling Extension ***/
#define PMSEVFR_EL1_RES0_IMP \ #define PMSEVFR_EL1_RES0_IMP \
...@@ -652,6 +673,7 @@ ...@@ -652,6 +673,7 @@
#define OP_AT_S12E1W sys_insn(AT_Op0, 4, AT_CRn, 8, 5) #define OP_AT_S12E1W sys_insn(AT_Op0, 4, AT_CRn, 8, 5)
#define OP_AT_S12E0R sys_insn(AT_Op0, 4, AT_CRn, 8, 6) #define OP_AT_S12E0R sys_insn(AT_Op0, 4, AT_CRn, 8, 6)
#define OP_AT_S12E0W sys_insn(AT_Op0, 4, AT_CRn, 8, 7) #define OP_AT_S12E0W sys_insn(AT_Op0, 4, AT_CRn, 8, 7)
#define OP_AT_S1E2A sys_insn(AT_Op0, 4, AT_CRn, 9, 2)
/* TLBI instructions */ /* TLBI instructions */
#define TLBI_Op0 1 #define TLBI_Op0 1
......
...@@ -17,7 +17,7 @@ kvm-y += arm.o mmu.o mmio.o psci.o hypercalls.o pvtime.o \ ...@@ -17,7 +17,7 @@ kvm-y += arm.o mmu.o mmio.o psci.o hypercalls.o pvtime.o \
inject_fault.o va_layout.o handle_exit.o \ inject_fault.o va_layout.o handle_exit.o \
guest.o debug.o reset.o sys_regs.o stacktrace.o \ guest.o debug.o reset.o sys_regs.o stacktrace.o \
vgic-sys-reg-v3.o fpsimd.o pkvm.o \ vgic-sys-reg-v3.o fpsimd.o pkvm.o \
arch_timer.o trng.o vmid.o emulate-nested.o nested.o \ arch_timer.o trng.o vmid.o emulate-nested.o nested.o at.o \
vgic/vgic.o vgic/vgic-init.o \ vgic/vgic.o vgic/vgic-init.o \
vgic/vgic-irqfd.o vgic/vgic-v2.o \ vgic/vgic-irqfd.o vgic/vgic-v2.o \
vgic/vgic-v3.o vgic/vgic-v4.o \ vgic/vgic-v3.o vgic/vgic-v4.o \
......
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2017 - Linaro Ltd
* Author: Jintack Lim <jintack.lim@linaro.org>
*/
#include <linux/kvm_host.h>
#include <asm/esr.h>
#include <asm/kvm_hyp.h>
#include <asm/kvm_mmu.h>
enum trans_regime {
TR_EL10,
TR_EL20,
TR_EL2,
};
struct s1_walk_info {
u64 baddr;
enum trans_regime regime;
unsigned int max_oa_bits;
unsigned int pgshift;
unsigned int txsz;
int sl;
bool hpd;
bool be;
bool s2;
};
struct s1_walk_result {
union {
struct {
u64 desc;
u64 pa;
s8 level;
u8 APTable;
bool UXNTable;
bool PXNTable;
};
struct {
u8 fst;
bool ptw;
bool s2;
};
};
bool failed;
};
static void fail_s1_walk(struct s1_walk_result *wr, u8 fst, bool ptw, bool s2)
{
wr->fst = fst;
wr->ptw = ptw;
wr->s2 = s2;
wr->failed = true;
}
#define S1_MMU_DISABLED (-127)
static int get_ia_size(struct s1_walk_info *wi)
{
return 64 - wi->txsz;
}
/* Return true if the IPA is out of the OA range */
static bool check_output_size(u64 ipa, struct s1_walk_info *wi)
{
return wi->max_oa_bits < 48 && (ipa & GENMASK_ULL(47, wi->max_oa_bits));
}
/* Return the translation regime that applies to an AT instruction */
static enum trans_regime compute_translation_regime(struct kvm_vcpu *vcpu, u32 op)
{
/*
* We only get here from guest EL2, so the translation
* regime AT applies to is solely defined by {E2H,TGE}.
*/
switch (op) {
case OP_AT_S1E2R:
case OP_AT_S1E2W:
case OP_AT_S1E2A:
return vcpu_el2_e2h_is_set(vcpu) ? TR_EL20 : TR_EL2;
break;
default:
return (vcpu_el2_e2h_is_set(vcpu) &&
vcpu_el2_tge_is_set(vcpu)) ? TR_EL20 : TR_EL10;
}
}
static int setup_s1_walk(struct kvm_vcpu *vcpu, u32 op, struct s1_walk_info *wi,
struct s1_walk_result *wr, u64 va)
{
u64 hcr, sctlr, tcr, tg, ps, ia_bits, ttbr;
unsigned int stride, x;
bool va55, tbi, lva, as_el0;
hcr = __vcpu_sys_reg(vcpu, HCR_EL2);
wi->regime = compute_translation_regime(vcpu, op);
as_el0 = (op == OP_AT_S1E0R || op == OP_AT_S1E0W);
va55 = va & BIT(55);
if (wi->regime == TR_EL2 && va55)
goto addrsz;
wi->s2 = wi->regime == TR_EL10 && (hcr & (HCR_VM | HCR_DC));
switch (wi->regime) {
case TR_EL10:
sctlr = vcpu_read_sys_reg(vcpu, SCTLR_EL1);
tcr = vcpu_read_sys_reg(vcpu, TCR_EL1);
ttbr = (va55 ?
vcpu_read_sys_reg(vcpu, TTBR1_EL1) :
vcpu_read_sys_reg(vcpu, TTBR0_EL1));
break;
case TR_EL2:
case TR_EL20:
sctlr = vcpu_read_sys_reg(vcpu, SCTLR_EL2);
tcr = vcpu_read_sys_reg(vcpu, TCR_EL2);
ttbr = (va55 ?
vcpu_read_sys_reg(vcpu, TTBR1_EL2) :
vcpu_read_sys_reg(vcpu, TTBR0_EL2));
break;
default:
BUG();
}
tbi = (wi->regime == TR_EL2 ?
FIELD_GET(TCR_EL2_TBI, tcr) :
(va55 ?
FIELD_GET(TCR_TBI1, tcr) :
FIELD_GET(TCR_TBI0, tcr)));
if (!tbi && (u64)sign_extend64(va, 55) != va)
goto addrsz;
va = (u64)sign_extend64(va, 55);
/* Let's put the MMU disabled case aside immediately */
switch (wi->regime) {
case TR_EL10:
/*
* If dealing with the EL1&0 translation regime, 3 things
* can disable the S1 translation:
*
* - HCR_EL2.DC = 1
* - HCR_EL2.{E2H,TGE} = {0,1}
* - SCTLR_EL1.M = 0
*
* The TGE part is interesting. If we have decided that this
* is EL1&0, then it means that either {E2H,TGE} == {1,0} or
* {0,x}, and we only need to test for TGE == 1.
*/
if (hcr & (HCR_DC | HCR_TGE)) {
wr->level = S1_MMU_DISABLED;
break;
}
fallthrough;
case TR_EL2:
case TR_EL20:
if (!(sctlr & SCTLR_ELx_M))
wr->level = S1_MMU_DISABLED;
break;
}
if (wr->level == S1_MMU_DISABLED) {
if (va >= BIT(kvm_get_pa_bits(vcpu->kvm)))
goto addrsz;
wr->pa = va;
return 0;
}
wi->be = sctlr & SCTLR_ELx_EE;
wi->hpd = kvm_has_feat(vcpu->kvm, ID_AA64MMFR1_EL1, HPDS, IMP);
wi->hpd &= (wi->regime == TR_EL2 ?
FIELD_GET(TCR_EL2_HPD, tcr) :
(va55 ?
FIELD_GET(TCR_HPD1, tcr) :
FIELD_GET(TCR_HPD0, tcr)));
/* Someone was silly enough to encode TG0/TG1 differently */
if (va55) {
wi->txsz = FIELD_GET(TCR_T1SZ_MASK, tcr);
tg = FIELD_GET(TCR_TG1_MASK, tcr);
switch (tg << TCR_TG1_SHIFT) {
case TCR_TG1_4K:
wi->pgshift = 12; break;
case TCR_TG1_16K:
wi->pgshift = 14; break;
case TCR_TG1_64K:
default: /* IMPDEF: treat any other value as 64k */
wi->pgshift = 16; break;
}
} else {
wi->txsz = FIELD_GET(TCR_T0SZ_MASK, tcr);
tg = FIELD_GET(TCR_TG0_MASK, tcr);
switch (tg << TCR_TG0_SHIFT) {
case TCR_TG0_4K:
wi->pgshift = 12; break;
case TCR_TG0_16K:
wi->pgshift = 14; break;
case TCR_TG0_64K:
default: /* IMPDEF: treat any other value as 64k */
wi->pgshift = 16; break;
}
}
/* R_PLCGL, R_YXNYW */
if (!kvm_has_feat_enum(vcpu->kvm, ID_AA64MMFR2_EL1, ST, 48_47)) {
if (wi->txsz > 39)
goto transfault_l0;
} else {
if (wi->txsz > 48 || (BIT(wi->pgshift) == SZ_64K && wi->txsz > 47))
goto transfault_l0;
}
/* R_GTJBY, R_SXWGM */
switch (BIT(wi->pgshift)) {
case SZ_4K:
lva = kvm_has_feat(vcpu->kvm, ID_AA64MMFR0_EL1, TGRAN4, 52_BIT);
lva &= tcr & (wi->regime == TR_EL2 ? TCR_EL2_DS : TCR_DS);
break;
case SZ_16K:
lva = kvm_has_feat(vcpu->kvm, ID_AA64MMFR0_EL1, TGRAN16, 52_BIT);
lva &= tcr & (wi->regime == TR_EL2 ? TCR_EL2_DS : TCR_DS);
break;
case SZ_64K:
lva = kvm_has_feat(vcpu->kvm, ID_AA64MMFR2_EL1, VARange, 52);
break;
}
if ((lva && wi->txsz < 12) || (!lva && wi->txsz < 16))
goto transfault_l0;
ia_bits = get_ia_size(wi);
/* R_YYVYV, I_THCZK */
if ((!va55 && va > GENMASK(ia_bits - 1, 0)) ||
(va55 && va < GENMASK(63, ia_bits)))
goto transfault_l0;
/* I_ZFSYQ */
if (wi->regime != TR_EL2 &&
(tcr & (va55 ? TCR_EPD1_MASK : TCR_EPD0_MASK)))
goto transfault_l0;
/* R_BNDVG and following statements */
if (kvm_has_feat(vcpu->kvm, ID_AA64MMFR2_EL1, E0PD, IMP) &&
as_el0 && (tcr & (va55 ? TCR_E0PD1 : TCR_E0PD0)))
goto transfault_l0;
/* AArch64.S1StartLevel() */
stride = wi->pgshift - 3;
wi->sl = 3 - (((ia_bits - 1) - wi->pgshift) / stride);
ps = (wi->regime == TR_EL2 ?
FIELD_GET(TCR_EL2_PS_MASK, tcr) : FIELD_GET(TCR_IPS_MASK, tcr));
wi->max_oa_bits = min(get_kvm_ipa_limit(), ps_to_output_size(ps));
/* Compute minimal alignment */
x = 3 + ia_bits - ((3 - wi->sl) * stride + wi->pgshift);
wi->baddr = ttbr & TTBRx_EL1_BADDR;
/* R_VPBBF */
if (check_output_size(wi->baddr, wi))
goto addrsz;
wi->baddr &= GENMASK_ULL(wi->max_oa_bits - 1, x);
return 0;
addrsz: /* Address Size Fault level 0 */
fail_s1_walk(wr, ESR_ELx_FSC_ADDRSZ_L(0), false, false);
return -EFAULT;
transfault_l0: /* Translation Fault level 0 */
fail_s1_walk(wr, ESR_ELx_FSC_FAULT_L(0), false, false);
return -EFAULT;
}
static int walk_s1(struct kvm_vcpu *vcpu, struct s1_walk_info *wi,
struct s1_walk_result *wr, u64 va)
{
u64 va_top, va_bottom, baddr, desc;
int level, stride, ret;
level = wi->sl;
stride = wi->pgshift - 3;
baddr = wi->baddr;
va_top = get_ia_size(wi) - 1;
while (1) {
u64 index, ipa;
va_bottom = (3 - level) * stride + wi->pgshift;
index = (va & GENMASK_ULL(va_top, va_bottom)) >> (va_bottom - 3);
ipa = baddr | index;
if (wi->s2) {
struct kvm_s2_trans s2_trans = {};
ret = kvm_walk_nested_s2(vcpu, ipa, &s2_trans);
if (ret) {
fail_s1_walk(wr,
(s2_trans.esr & ~ESR_ELx_FSC_LEVEL) | level,
true, true);
return ret;
}
if (!kvm_s2_trans_readable(&s2_trans)) {
fail_s1_walk(wr, ESR_ELx_FSC_PERM_L(level),
true, true);
return -EPERM;
}
ipa = kvm_s2_trans_output(&s2_trans);
}
ret = kvm_read_guest(vcpu->kvm, ipa, &desc, sizeof(desc));
if (ret) {
fail_s1_walk(wr, ESR_ELx_FSC_SEA_TTW(level),
true, false);
return ret;
}
if (wi->be)
desc = be64_to_cpu((__force __be64)desc);
else
desc = le64_to_cpu((__force __le64)desc);
/* Invalid descriptor */
if (!(desc & BIT(0)))
goto transfault;
/* Block mapping, check validity down the line */
if (!(desc & BIT(1)))
break;
/* Page mapping */
if (level == 3)
break;
/* Table handling */
if (!wi->hpd) {
wr->APTable |= FIELD_GET(S1_TABLE_AP, desc);
wr->UXNTable |= FIELD_GET(PMD_TABLE_UXN, desc);
wr->PXNTable |= FIELD_GET(PMD_TABLE_PXN, desc);
}
baddr = desc & GENMASK_ULL(47, wi->pgshift);
/* Check for out-of-range OA */
if (check_output_size(baddr, wi))
goto addrsz;
/* Prepare for next round */
va_top = va_bottom - 1;
level++;
}
/* Block mapping, check the validity of the level */
if (!(desc & BIT(1))) {
bool valid_block = false;
switch (BIT(wi->pgshift)) {
case SZ_4K:
valid_block = level == 1 || level == 2;
break;
case SZ_16K:
case SZ_64K:
valid_block = level == 2;
break;
}
if (!valid_block)
goto transfault;
}
if (check_output_size(desc & GENMASK(47, va_bottom), wi))
goto addrsz;
va_bottom += contiguous_bit_shift(desc, wi, level);
wr->failed = false;
wr->level = level;
wr->desc = desc;
wr->pa = desc & GENMASK(47, va_bottom);
wr->pa |= va & GENMASK_ULL(va_bottom - 1, 0);
return 0;
addrsz:
fail_s1_walk(wr, ESR_ELx_FSC_ADDRSZ_L(level), true, false);
return -EINVAL;
transfault:
fail_s1_walk(wr, ESR_ELx_FSC_FAULT_L(level), true, false);
return -ENOENT;
}
struct mmu_config {
u64 ttbr0;
u64 ttbr1;
u64 tcr;
u64 mair;
u64 sctlr;
u64 vttbr;
u64 vtcr;
u64 hcr;
};
static void __mmu_config_save(struct mmu_config *config)
{
config->ttbr0 = read_sysreg_el1(SYS_TTBR0);
config->ttbr1 = read_sysreg_el1(SYS_TTBR1);
config->tcr = read_sysreg_el1(SYS_TCR);
config->mair = read_sysreg_el1(SYS_MAIR);
config->sctlr = read_sysreg_el1(SYS_SCTLR);
config->vttbr = read_sysreg(vttbr_el2);
config->vtcr = read_sysreg(vtcr_el2);
config->hcr = read_sysreg(hcr_el2);
}
static void __mmu_config_restore(struct mmu_config *config)
{
write_sysreg(config->hcr, hcr_el2);
/*
* ARM errata 1165522 and 1530923 require TGE to be 1 before
* we update the guest state.
*/
asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_SPECULATIVE_AT));
write_sysreg_el1(config->ttbr0, SYS_TTBR0);
write_sysreg_el1(config->ttbr1, SYS_TTBR1);
write_sysreg_el1(config->tcr, SYS_TCR);
write_sysreg_el1(config->mair, SYS_MAIR);
write_sysreg_el1(config->sctlr, SYS_SCTLR);
write_sysreg(config->vttbr, vttbr_el2);
write_sysreg(config->vtcr, vtcr_el2);
}
static bool at_s1e1p_fast(struct kvm_vcpu *vcpu, u32 op, u64 vaddr)
{
u64 host_pan;
bool fail;
host_pan = read_sysreg_s(SYS_PSTATE_PAN);
write_sysreg_s(*vcpu_cpsr(vcpu) & PSTATE_PAN, SYS_PSTATE_PAN);
switch (op) {
case OP_AT_S1E1RP:
fail = __kvm_at(OP_AT_S1E1RP, vaddr);
break;
case OP_AT_S1E1WP:
fail = __kvm_at(OP_AT_S1E1WP, vaddr);
break;
}
write_sysreg_s(host_pan, SYS_PSTATE_PAN);
return fail;
}
#define MEMATTR(ic, oc) (MEMATTR_##oc << 4 | MEMATTR_##ic)
#define MEMATTR_NC 0b0100
#define MEMATTR_Wt 0b1000
#define MEMATTR_Wb 0b1100
#define MEMATTR_WbRaWa 0b1111
#define MEMATTR_IS_DEVICE(m) (((m) & GENMASK(7, 4)) == 0)
static u8 s2_memattr_to_attr(u8 memattr)
{
memattr &= 0b1111;
switch (memattr) {
case 0b0000:
case 0b0001:
case 0b0010:
case 0b0011:
return memattr << 2;
case 0b0100:
return MEMATTR(Wb, Wb);
case 0b0101:
return MEMATTR(NC, NC);
case 0b0110:
return MEMATTR(Wt, NC);
case 0b0111:
return MEMATTR(Wb, NC);
case 0b1000:
/* Reserved, assume NC */
return MEMATTR(NC, NC);
case 0b1001:
return MEMATTR(NC, Wt);
case 0b1010:
return MEMATTR(Wt, Wt);
case 0b1011:
return MEMATTR(Wb, Wt);
case 0b1100:
/* Reserved, assume NC */
return MEMATTR(NC, NC);
case 0b1101:
return MEMATTR(NC, Wb);
case 0b1110:
return MEMATTR(Wt, Wb);
case 0b1111:
return MEMATTR(Wb, Wb);
default:
unreachable();
}
}
static u8 combine_s1_s2_attr(u8 s1, u8 s2)
{
bool transient;
u8 final = 0;
/* Upgrade transient s1 to non-transient to simplify things */
switch (s1) {
case 0b0001 ... 0b0011: /* Normal, Write-Through Transient */
transient = true;
s1 = MEMATTR_Wt | (s1 & GENMASK(1,0));
break;
case 0b0101 ... 0b0111: /* Normal, Write-Back Transient */
transient = true;
s1 = MEMATTR_Wb | (s1 & GENMASK(1,0));
break;
default:
transient = false;
}
/* S2CombineS1AttrHints() */
if ((s1 & GENMASK(3, 2)) == MEMATTR_NC ||
(s2 & GENMASK(3, 2)) == MEMATTR_NC)
final = MEMATTR_NC;
else if ((s1 & GENMASK(3, 2)) == MEMATTR_Wt ||
(s2 & GENMASK(3, 2)) == MEMATTR_Wt)
final = MEMATTR_Wt;
else
final = MEMATTR_Wb;
if (final != MEMATTR_NC) {
/* Inherit RaWa hints form S1 */
if (transient) {
switch (s1 & GENMASK(3, 2)) {
case MEMATTR_Wt:
final = 0;
break;
case MEMATTR_Wb:
final = MEMATTR_NC;
break;
}
}
final |= s1 & GENMASK(1, 0);
}
return final;
}
#define ATTR_NSH 0b00
#define ATTR_RSV 0b01
#define ATTR_OSH 0b10
#define ATTR_ISH 0b11
static u8 compute_sh(u8 attr, u64 desc)
{
u8 sh;
/* Any form of device, as well as NC has SH[1:0]=0b10 */
if (MEMATTR_IS_DEVICE(attr) || attr == MEMATTR(NC, NC))
return ATTR_OSH;
sh = FIELD_GET(PTE_SHARED, desc);
if (sh == ATTR_RSV) /* Reserved, mapped to NSH */
sh = ATTR_NSH;
return sh;
}
static u8 combine_sh(u8 s1_sh, u8 s2_sh)
{
if (s1_sh == ATTR_OSH || s2_sh == ATTR_OSH)
return ATTR_OSH;
if (s1_sh == ATTR_ISH || s2_sh == ATTR_ISH)
return ATTR_ISH;
return ATTR_NSH;
}
static u64 compute_par_s12(struct kvm_vcpu *vcpu, u64 s1_par,
struct kvm_s2_trans *tr)
{
u8 s1_parattr, s2_memattr, final_attr;
u64 par;
/* If S2 has failed to translate, report the damage */
if (tr->esr) {
par = SYS_PAR_EL1_RES1;
par |= SYS_PAR_EL1_F;
par |= SYS_PAR_EL1_S;
par |= FIELD_PREP(SYS_PAR_EL1_FST, tr->esr);
return par;
}
s1_parattr = FIELD_GET(SYS_PAR_EL1_ATTR, s1_par);
s2_memattr = FIELD_GET(GENMASK(5, 2), tr->desc);
if (__vcpu_sys_reg(vcpu, HCR_EL2) & HCR_FWB) {
if (!kvm_has_feat(vcpu->kvm, ID_AA64PFR2_EL1, MTEPERM, IMP))
s2_memattr &= ~BIT(3);
/* Combination of R_VRJSW and R_RHWZM */
switch (s2_memattr) {
case 0b0101:
if (MEMATTR_IS_DEVICE(s1_parattr))
final_attr = s1_parattr;
else
final_attr = MEMATTR(NC, NC);
break;
case 0b0110:
case 0b1110:
final_attr = MEMATTR(WbRaWa, WbRaWa);
break;
case 0b0111:
case 0b1111:
/* Preserve S1 attribute */
final_attr = s1_parattr;
break;
case 0b0100:
case 0b1100:
case 0b1101:
/* Reserved, do something non-silly */
final_attr = s1_parattr;
break;
default:
/* MemAttr[2]=0, Device from S2 */
final_attr = s2_memattr & GENMASK(1,0) << 2;
}
} else {
/* Combination of R_HMNDG, R_TNHFM and R_GQFSF */
u8 s2_parattr = s2_memattr_to_attr(s2_memattr);
if (MEMATTR_IS_DEVICE(s1_parattr) ||
MEMATTR_IS_DEVICE(s2_parattr)) {
final_attr = min(s1_parattr, s2_parattr);
} else {
/* At this stage, this is memory vs memory */
final_attr = combine_s1_s2_attr(s1_parattr & 0xf,
s2_parattr & 0xf);
final_attr |= combine_s1_s2_attr(s1_parattr >> 4,
s2_parattr >> 4) << 4;
}
}
if ((__vcpu_sys_reg(vcpu, HCR_EL2) & HCR_CD) &&
!MEMATTR_IS_DEVICE(final_attr))
final_attr = MEMATTR(NC, NC);
par = FIELD_PREP(SYS_PAR_EL1_ATTR, final_attr);
par |= tr->output & GENMASK(47, 12);
par |= FIELD_PREP(SYS_PAR_EL1_SH,
combine_sh(FIELD_GET(SYS_PAR_EL1_SH, s1_par),
compute_sh(final_attr, tr->desc)));
return par;
}
static u64 compute_par_s1(struct kvm_vcpu *vcpu, struct s1_walk_result *wr,
enum trans_regime regime)
{
u64 par;
if (wr->failed) {
par = SYS_PAR_EL1_RES1;
par |= SYS_PAR_EL1_F;
par |= FIELD_PREP(SYS_PAR_EL1_FST, wr->fst);
par |= wr->ptw ? SYS_PAR_EL1_PTW : 0;
par |= wr->s2 ? SYS_PAR_EL1_S : 0;
} else if (wr->level == S1_MMU_DISABLED) {
/* MMU off or HCR_EL2.DC == 1 */
par = SYS_PAR_EL1_NSE;
par |= wr->pa & GENMASK_ULL(47, 12);
if (regime == TR_EL10 &&
(__vcpu_sys_reg(vcpu, HCR_EL2) & HCR_DC)) {
par |= FIELD_PREP(SYS_PAR_EL1_ATTR,
MEMATTR(WbRaWa, WbRaWa));
par |= FIELD_PREP(SYS_PAR_EL1_SH, ATTR_NSH);
} else {
par |= FIELD_PREP(SYS_PAR_EL1_ATTR, 0); /* nGnRnE */
par |= FIELD_PREP(SYS_PAR_EL1_SH, ATTR_OSH);
}
} else {
u64 mair, sctlr;
u8 sh;
par = SYS_PAR_EL1_NSE;
mair = (regime == TR_EL10 ?
vcpu_read_sys_reg(vcpu, MAIR_EL1) :
vcpu_read_sys_reg(vcpu, MAIR_EL2));
mair >>= FIELD_GET(PTE_ATTRINDX_MASK, wr->desc) * 8;
mair &= 0xff;
sctlr = (regime == TR_EL10 ?
vcpu_read_sys_reg(vcpu, SCTLR_EL1) :
vcpu_read_sys_reg(vcpu, SCTLR_EL2));
/* Force NC for memory if SCTLR_ELx.C is clear */
if (!(sctlr & SCTLR_EL1_C) && !MEMATTR_IS_DEVICE(mair))
mair = MEMATTR(NC, NC);
par |= FIELD_PREP(SYS_PAR_EL1_ATTR, mair);
par |= wr->pa & GENMASK_ULL(47, 12);
sh = compute_sh(mair, wr->desc);
par |= FIELD_PREP(SYS_PAR_EL1_SH, sh);
}
return par;
}
static bool pan3_enabled(struct kvm_vcpu *vcpu, enum trans_regime regime)
{
u64 sctlr;
if (!kvm_has_feat(vcpu->kvm, ID_AA64MMFR1_EL1, PAN, PAN3))
return false;
if (regime == TR_EL10)
sctlr = vcpu_read_sys_reg(vcpu, SCTLR_EL1);
else
sctlr = vcpu_read_sys_reg(vcpu, SCTLR_EL2);
return sctlr & SCTLR_EL1_EPAN;
}
static u64 handle_at_slow(struct kvm_vcpu *vcpu, u32 op, u64 vaddr)
{
bool perm_fail, ur, uw, ux, pr, pw, px;
struct s1_walk_result wr = {};
struct s1_walk_info wi = {};
int ret, idx;
ret = setup_s1_walk(vcpu, op, &wi, &wr, vaddr);
if (ret)
goto compute_par;
if (wr.level == S1_MMU_DISABLED)
goto compute_par;
idx = srcu_read_lock(&vcpu->kvm->srcu);
ret = walk_s1(vcpu, &wi, &wr, vaddr);
srcu_read_unlock(&vcpu->kvm->srcu, idx);
if (ret)
goto compute_par;
/* FIXME: revisit when adding indirect permission support */
/* AArch64.S1DirectBasePermissions() */
if (wi.regime != TR_EL2) {
switch (FIELD_GET(PTE_USER | PTE_RDONLY, wr.desc)) {
case 0b00:
pr = pw = true;
ur = uw = false;
break;
case 0b01:
pr = pw = ur = uw = true;
break;
case 0b10:
pr = true;
pw = ur = uw = false;
break;
case 0b11:
pr = ur = true;
pw = uw = false;
break;
}
switch (wr.APTable) {
case 0b00:
break;
case 0b01:
ur = uw = false;
break;
case 0b10:
pw = uw = false;
break;
case 0b11:
pw = ur = uw = false;
break;
}
/* We don't use px for anything yet, but hey... */
px = !((wr.desc & PTE_PXN) || wr.PXNTable || uw);
ux = !((wr.desc & PTE_UXN) || wr.UXNTable);
if (op == OP_AT_S1E1RP || op == OP_AT_S1E1WP) {
bool pan;
pan = *vcpu_cpsr(vcpu) & PSR_PAN_BIT;
pan &= ur || uw || (pan3_enabled(vcpu, wi.regime) && ux);
pw &= !pan;
pr &= !pan;
}
} else {
ur = uw = ux = false;
if (!(wr.desc & PTE_RDONLY)) {
pr = pw = true;
} else {
pr = true;
pw = false;
}
if (wr.APTable & BIT(1))
pw = false;
/* XN maps to UXN */
px = !((wr.desc & PTE_UXN) || wr.UXNTable);
}
perm_fail = false;
switch (op) {
case OP_AT_S1E1RP:
case OP_AT_S1E1R:
case OP_AT_S1E2R:
perm_fail = !pr;
break;
case OP_AT_S1E1WP:
case OP_AT_S1E1W:
case OP_AT_S1E2W:
perm_fail = !pw;
break;
case OP_AT_S1E0R:
perm_fail = !ur;
break;
case OP_AT_S1E0W:
perm_fail = !uw;
break;
case OP_AT_S1E1A:
case OP_AT_S1E2A:
break;
default:
BUG();
}
if (perm_fail)
fail_s1_walk(&wr, ESR_ELx_FSC_PERM_L(wr.level), false, false);
compute_par:
return compute_par_s1(vcpu, &wr, wi.regime);
}
/*
* Return the PAR_EL1 value as the result of a valid translation.
*
* If the translation is unsuccessful, the value may only contain
* PAR_EL1.F, and cannot be taken at face value. It isn't an
* indication of the translation having failed, only that the fast
* path did not succeed, *unless* it indicates a S1 permission fault.
*/
static u64 __kvm_at_s1e01_fast(struct kvm_vcpu *vcpu, u32 op, u64 vaddr)
{
struct mmu_config config;
struct kvm_s2_mmu *mmu;
bool fail;
u64 par;
par = SYS_PAR_EL1_F;
/*
* We've trapped, so everything is live on the CPU. As we will
* be switching contexts behind everybody's back, disable
* interrupts while holding the mmu lock.
*/
guard(write_lock_irqsave)(&vcpu->kvm->mmu_lock);
/*
* If HCR_EL2.{E2H,TGE} == {1,1}, the MMU context is already
* the right one (as we trapped from vEL2). If not, save the
* full MMU context.
*/
if (vcpu_el2_e2h_is_set(vcpu) && vcpu_el2_tge_is_set(vcpu))
goto skip_mmu_switch;
/*
* Obtaining the S2 MMU for a L2 is horribly racy, and we may not
* find it (recycled by another vcpu, for example). When this
* happens, admit defeat immediately and use the SW (slow) path.
*/
mmu = lookup_s2_mmu(vcpu);
if (!mmu)
return par;
__mmu_config_save(&config);
write_sysreg_el1(vcpu_read_sys_reg(vcpu, TTBR0_EL1), SYS_TTBR0);
write_sysreg_el1(vcpu_read_sys_reg(vcpu, TTBR1_EL1), SYS_TTBR1);
write_sysreg_el1(vcpu_read_sys_reg(vcpu, TCR_EL1), SYS_TCR);
write_sysreg_el1(vcpu_read_sys_reg(vcpu, MAIR_EL1), SYS_MAIR);
write_sysreg_el1(vcpu_read_sys_reg(vcpu, SCTLR_EL1), SYS_SCTLR);
__load_stage2(mmu, mmu->arch);
skip_mmu_switch:
/* Clear TGE, enable S2 translation, we're rolling */
write_sysreg((config.hcr & ~HCR_TGE) | HCR_VM, hcr_el2);
isb();
switch (op) {
case OP_AT_S1E1RP:
case OP_AT_S1E1WP:
fail = at_s1e1p_fast(vcpu, op, vaddr);
break;
case OP_AT_S1E1R:
fail = __kvm_at(OP_AT_S1E1R, vaddr);
break;
case OP_AT_S1E1W:
fail = __kvm_at(OP_AT_S1E1W, vaddr);
break;
case OP_AT_S1E0R:
fail = __kvm_at(OP_AT_S1E0R, vaddr);
break;
case OP_AT_S1E0W:
fail = __kvm_at(OP_AT_S1E0W, vaddr);
break;
case OP_AT_S1E1A:
fail = __kvm_at(OP_AT_S1E1A, vaddr);
break;
default:
WARN_ON_ONCE(1);
fail = true;
break;
}
if (!fail)
par = read_sysreg_par();
if (!(vcpu_el2_e2h_is_set(vcpu) && vcpu_el2_tge_is_set(vcpu)))
__mmu_config_restore(&config);
return par;
}
static bool par_check_s1_perm_fault(u64 par)
{
u8 fst = FIELD_GET(SYS_PAR_EL1_FST, par);
return ((fst & ESR_ELx_FSC_TYPE) == ESR_ELx_FSC_PERM &&
!(par & SYS_PAR_EL1_S));
}
void __kvm_at_s1e01(struct kvm_vcpu *vcpu, u32 op, u64 vaddr)
{
u64 par = __kvm_at_s1e01_fast(vcpu, op, vaddr);
/*
* If PAR_EL1 reports that AT failed on a S1 permission fault, we
* know for sure that the PTW was able to walk the S1 tables and
* there's nothing else to do.
*
* If AT failed for any other reason, then we must walk the guest S1
* to emulate the instruction.
*/
if ((par & SYS_PAR_EL1_F) && !par_check_s1_perm_fault(par))
par = handle_at_slow(vcpu, op, vaddr);
vcpu_write_sys_reg(vcpu, par, PAR_EL1);
}
void __kvm_at_s1e2(struct kvm_vcpu *vcpu, u32 op, u64 vaddr)
{
u64 par;
/*
* We've trapped, so everything is live on the CPU. As we will be
* switching context behind everybody's back, disable interrupts...
*/
scoped_guard(write_lock_irqsave, &vcpu->kvm->mmu_lock) {
struct kvm_s2_mmu *mmu;
u64 val, hcr;
bool fail;
mmu = &vcpu->kvm->arch.mmu;
val = hcr = read_sysreg(hcr_el2);
val &= ~HCR_TGE;
val |= HCR_VM;
if (!vcpu_el2_e2h_is_set(vcpu))
val |= HCR_NV | HCR_NV1;
write_sysreg(val, hcr_el2);
isb();
par = SYS_PAR_EL1_F;
switch (op) {
case OP_AT_S1E2R:
fail = __kvm_at(OP_AT_S1E1R, vaddr);
break;
case OP_AT_S1E2W:
fail = __kvm_at(OP_AT_S1E1W, vaddr);
break;
case OP_AT_S1E2A:
fail = __kvm_at(OP_AT_S1E1A, vaddr);
break;
default:
WARN_ON_ONCE(1);
fail = true;
}
isb();
if (!fail)
par = read_sysreg_par();
write_sysreg(hcr, hcr_el2);
isb();
}
/* We failed the translation, let's replay it in slow motion */
if ((par & SYS_PAR_EL1_F) && !par_check_s1_perm_fault(par))
par = handle_at_slow(vcpu, op, vaddr);
vcpu_write_sys_reg(vcpu, par, PAR_EL1);
}
void __kvm_at_s12(struct kvm_vcpu *vcpu, u32 op, u64 vaddr)
{
struct kvm_s2_trans out = {};
u64 ipa, par;
bool write;
int ret;
/* Do the stage-1 translation */
switch (op) {
case OP_AT_S12E1R:
op = OP_AT_S1E1R;
write = false;
break;
case OP_AT_S12E1W:
op = OP_AT_S1E1W;
write = true;
break;
case OP_AT_S12E0R:
op = OP_AT_S1E0R;
write = false;
break;
case OP_AT_S12E0W:
op = OP_AT_S1E0W;
write = true;
break;
default:
WARN_ON_ONCE(1);
return;
}
__kvm_at_s1e01(vcpu, op, vaddr);
par = vcpu_read_sys_reg(vcpu, PAR_EL1);
if (par & SYS_PAR_EL1_F)
return;
/*
* If we only have a single stage of translation (E2H=0 or
* TGE=1), exit early. Same thing if {VM,DC}=={0,0}.
*/
if (!vcpu_el2_e2h_is_set(vcpu) || vcpu_el2_tge_is_set(vcpu) ||
!(vcpu_read_sys_reg(vcpu, HCR_EL2) & (HCR_VM | HCR_DC)))
return;
/* Do the stage-2 translation */
ipa = (par & GENMASK_ULL(47, 12)) | (vaddr & GENMASK_ULL(11, 0));
out.esr = 0;
ret = kvm_walk_nested_s2(vcpu, ipa, &out);
if (ret < 0)
return;
/* Check the access permission */
if (!out.esr &&
((!write && !out.readable) || (write && !out.writable)))
out.esr = ESR_ELx_FSC_PERM_L(out.level & 0x3);
par = compute_par_s12(vcpu, par, &out);
vcpu_write_sys_reg(vcpu, par, PAR_EL1);
}
...@@ -826,6 +826,7 @@ static const struct encoding_to_trap_config encoding_to_cgt[] __initconst = { ...@@ -826,6 +826,7 @@ static const struct encoding_to_trap_config encoding_to_cgt[] __initconst = {
SR_TRAP(OP_AT_S12E1W, CGT_HCR_NV), SR_TRAP(OP_AT_S12E1W, CGT_HCR_NV),
SR_TRAP(OP_AT_S12E0R, CGT_HCR_NV), SR_TRAP(OP_AT_S12E0R, CGT_HCR_NV),
SR_TRAP(OP_AT_S12E0W, CGT_HCR_NV), SR_TRAP(OP_AT_S12E0W, CGT_HCR_NV),
SR_TRAP(OP_AT_S1E2A, CGT_HCR_NV),
SR_TRAP(OP_TLBI_IPAS2E1, CGT_HCR_NV), SR_TRAP(OP_TLBI_IPAS2E1, CGT_HCR_NV),
SR_TRAP(OP_TLBI_RIPAS2E1, CGT_HCR_NV), SR_TRAP(OP_TLBI_RIPAS2E1, CGT_HCR_NV),
SR_TRAP(OP_TLBI_IPAS2LE1, CGT_HCR_NV), SR_TRAP(OP_TLBI_IPAS2LE1, CGT_HCR_NV),
...@@ -907,6 +908,7 @@ static const struct encoding_to_trap_config encoding_to_cgt[] __initconst = { ...@@ -907,6 +908,7 @@ static const struct encoding_to_trap_config encoding_to_cgt[] __initconst = {
SR_TRAP(OP_AT_S1E0W, CGT_HCR_AT), SR_TRAP(OP_AT_S1E0W, CGT_HCR_AT),
SR_TRAP(OP_AT_S1E1RP, CGT_HCR_AT), SR_TRAP(OP_AT_S1E1RP, CGT_HCR_AT),
SR_TRAP(OP_AT_S1E1WP, CGT_HCR_AT), SR_TRAP(OP_AT_S1E1WP, CGT_HCR_AT),
SR_TRAP(OP_AT_S1E1A, CGT_HCR_AT),
SR_TRAP(SYS_ERXPFGF_EL1, CGT_HCR_nFIEN), SR_TRAP(SYS_ERXPFGF_EL1, CGT_HCR_nFIEN),
SR_TRAP(SYS_ERXPFGCTL_EL1, CGT_HCR_nFIEN), SR_TRAP(SYS_ERXPFGCTL_EL1, CGT_HCR_nFIEN),
SR_TRAP(SYS_ERXPFGCDN_EL1, CGT_HCR_nFIEN), SR_TRAP(SYS_ERXPFGCDN_EL1, CGT_HCR_nFIEN),
......
...@@ -27,7 +27,7 @@ static inline bool __translate_far_to_hpfar(u64 far, u64 *hpfar) ...@@ -27,7 +27,7 @@ static inline bool __translate_far_to_hpfar(u64 far, u64 *hpfar)
* saved the guest context yet, and we may return early... * saved the guest context yet, and we may return early...
*/ */
par = read_sysreg_par(); par = read_sysreg_par();
if (!__kvm_at("s1e1r", far)) if (!__kvm_at(OP_AT_S1E1R, far))
tmp = read_sysreg_par(); tmp = read_sysreg_par();
else else
tmp = SYS_PAR_EL1_F; /* back to the guest */ tmp = SYS_PAR_EL1_F; /* back to the guest */
......
...@@ -103,20 +103,6 @@ struct s2_walk_info { ...@@ -103,20 +103,6 @@ struct s2_walk_info {
bool be; bool be;
}; };
static unsigned int ps_to_output_size(unsigned int ps)
{
switch (ps) {
case 0: return 32;
case 1: return 36;
case 2: return 40;
case 3: return 42;
case 4: return 44;
case 5:
default:
return 48;
}
}
static u32 compute_fsc(int level, u32 fsc) static u32 compute_fsc(int level, u32 fsc)
{ {
return fsc | (level & 0x3); return fsc | (level & 0x3);
...@@ -256,7 +242,7 @@ static int walk_nested_s2_pgd(phys_addr_t ipa, ...@@ -256,7 +242,7 @@ static int walk_nested_s2_pgd(phys_addr_t ipa,
/* Check for valid descriptor at this point */ /* Check for valid descriptor at this point */
if (!(desc & 1) || ((desc & 3) == 1 && level == 3)) { if (!(desc & 1) || ((desc & 3) == 1 && level == 3)) {
out->esr = compute_fsc(level, ESR_ELx_FSC_FAULT); out->esr = compute_fsc(level, ESR_ELx_FSC_FAULT);
out->upper_attr = desc; out->desc = desc;
return 1; return 1;
} }
...@@ -266,7 +252,7 @@ static int walk_nested_s2_pgd(phys_addr_t ipa, ...@@ -266,7 +252,7 @@ static int walk_nested_s2_pgd(phys_addr_t ipa,
if (check_output_size(wi, desc)) { if (check_output_size(wi, desc)) {
out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ); out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ);
out->upper_attr = desc; out->desc = desc;
return 1; return 1;
} }
...@@ -278,27 +264,24 @@ static int walk_nested_s2_pgd(phys_addr_t ipa, ...@@ -278,27 +264,24 @@ static int walk_nested_s2_pgd(phys_addr_t ipa,
if (level < first_block_level) { if (level < first_block_level) {
out->esr = compute_fsc(level, ESR_ELx_FSC_FAULT); out->esr = compute_fsc(level, ESR_ELx_FSC_FAULT);
out->upper_attr = desc; out->desc = desc;
return 1; return 1;
} }
/*
* We don't use the contiguous bit in the stage-2 ptes, so skip check
* for misprogramming of the contiguous bit.
*/
if (check_output_size(wi, desc)) { if (check_output_size(wi, desc)) {
out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ); out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ);
out->upper_attr = desc; out->desc = desc;
return 1; return 1;
} }
if (!(desc & BIT(10))) { if (!(desc & BIT(10))) {
out->esr = compute_fsc(level, ESR_ELx_FSC_ACCESS); out->esr = compute_fsc(level, ESR_ELx_FSC_ACCESS);
out->upper_attr = desc; out->desc = desc;
return 1; return 1;
} }
addr_bottom += contiguous_bit_shift(desc, wi, level);
/* Calculate and return the result */ /* Calculate and return the result */
paddr = (desc & GENMASK_ULL(47, addr_bottom)) | paddr = (desc & GENMASK_ULL(47, addr_bottom)) |
(ipa & GENMASK_ULL(addr_bottom - 1, 0)); (ipa & GENMASK_ULL(addr_bottom - 1, 0));
...@@ -307,7 +290,7 @@ static int walk_nested_s2_pgd(phys_addr_t ipa, ...@@ -307,7 +290,7 @@ static int walk_nested_s2_pgd(phys_addr_t ipa,
out->readable = desc & (0b01 << 6); out->readable = desc & (0b01 << 6);
out->writable = desc & (0b10 << 6); out->writable = desc & (0b10 << 6);
out->level = level; out->level = level;
out->upper_attr = desc & GENMASK_ULL(63, 52); out->desc = desc;
return 0; return 0;
} }
...@@ -1193,5 +1176,12 @@ int kvm_init_nv_sysregs(struct kvm *kvm) ...@@ -1193,5 +1176,12 @@ int kvm_init_nv_sysregs(struct kvm *kvm)
res0 |= ~(res0 | res1); res0 |= ~(res0 | res1);
set_sysreg_masks(kvm, HAFGRTR_EL2, res0, res1); set_sysreg_masks(kvm, HAFGRTR_EL2, res0, res1);
/* SCTLR_EL1 */
res0 = SCTLR_EL1_RES0;
res1 = SCTLR_EL1_RES1;
if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, PAN, PAN3))
res0 |= SCTLR_EL1_EPAN;
set_sysreg_masks(kvm, SCTLR_EL1, res0, res1);
return 0; return 0;
} }
...@@ -2830,6 +2830,43 @@ static const struct sys_reg_desc sys_reg_descs[] = { ...@@ -2830,6 +2830,43 @@ static const struct sys_reg_desc sys_reg_descs[] = {
EL2_REG(SP_EL2, NULL, reset_unknown, 0), EL2_REG(SP_EL2, NULL, reset_unknown, 0),
}; };
static bool handle_at_s1e01(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
u32 op = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
__kvm_at_s1e01(vcpu, op, p->regval);
return true;
}
static bool handle_at_s1e2(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
u32 op = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
/* There is no FGT associated with AT S1E2A :-( */
if (op == OP_AT_S1E2A &&
!kvm_has_feat(vcpu->kvm, ID_AA64ISAR2_EL1, ATS1A, IMP)) {
kvm_inject_undefined(vcpu);
return false;
}
__kvm_at_s1e2(vcpu, op, p->regval);
return true;
}
static bool handle_at_s12(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
const struct sys_reg_desc *r)
{
u32 op = sys_insn(p->Op0, p->Op1, p->CRn, p->CRm, p->Op2);
__kvm_at_s12(vcpu, op, p->regval);
return true;
}
static bool kvm_supported_tlbi_s12_op(struct kvm_vcpu *vpcu, u32 instr) static bool kvm_supported_tlbi_s12_op(struct kvm_vcpu *vpcu, u32 instr)
{ {
struct kvm *kvm = vpcu->kvm; struct kvm *kvm = vpcu->kvm;
...@@ -3082,6 +3119,14 @@ static struct sys_reg_desc sys_insn_descs[] = { ...@@ -3082,6 +3119,14 @@ static struct sys_reg_desc sys_insn_descs[] = {
{ SYS_DESC(SYS_DC_ISW), access_dcsw }, { SYS_DESC(SYS_DC_ISW), access_dcsw },
{ SYS_DESC(SYS_DC_IGSW), access_dcgsw }, { SYS_DESC(SYS_DC_IGSW), access_dcgsw },
{ SYS_DESC(SYS_DC_IGDSW), access_dcgsw }, { SYS_DESC(SYS_DC_IGDSW), access_dcgsw },
SYS_INSN(AT_S1E1R, handle_at_s1e01),
SYS_INSN(AT_S1E1W, handle_at_s1e01),
SYS_INSN(AT_S1E0R, handle_at_s1e01),
SYS_INSN(AT_S1E0W, handle_at_s1e01),
SYS_INSN(AT_S1E1RP, handle_at_s1e01),
SYS_INSN(AT_S1E1WP, handle_at_s1e01),
{ SYS_DESC(SYS_DC_CSW), access_dcsw }, { SYS_DESC(SYS_DC_CSW), access_dcsw },
{ SYS_DESC(SYS_DC_CGSW), access_dcgsw }, { SYS_DESC(SYS_DC_CGSW), access_dcgsw },
{ SYS_DESC(SYS_DC_CGDSW), access_dcgsw }, { SYS_DESC(SYS_DC_CGDSW), access_dcgsw },
...@@ -3161,6 +3206,14 @@ static struct sys_reg_desc sys_insn_descs[] = { ...@@ -3161,6 +3206,14 @@ static struct sys_reg_desc sys_insn_descs[] = {
SYS_INSN(TLBI_VALE1NXS, handle_tlbi_el1), SYS_INSN(TLBI_VALE1NXS, handle_tlbi_el1),
SYS_INSN(TLBI_VAALE1NXS, handle_tlbi_el1), SYS_INSN(TLBI_VAALE1NXS, handle_tlbi_el1),
SYS_INSN(AT_S1E2R, handle_at_s1e2),
SYS_INSN(AT_S1E2W, handle_at_s1e2),
SYS_INSN(AT_S12E1R, handle_at_s12),
SYS_INSN(AT_S12E1W, handle_at_s12),
SYS_INSN(AT_S12E0R, handle_at_s12),
SYS_INSN(AT_S12E0W, handle_at_s12),
SYS_INSN(AT_S1E2A, handle_at_s1e2),
SYS_INSN(TLBI_IPAS2E1IS, handle_ipas2e1is), SYS_INSN(TLBI_IPAS2E1IS, handle_ipas2e1is),
SYS_INSN(TLBI_RIPAS2E1IS, handle_ripas2e1is), SYS_INSN(TLBI_RIPAS2E1IS, handle_ripas2e1is),
SYS_INSN(TLBI_IPAS2LE1IS, handle_ipas2e1is), SYS_INSN(TLBI_IPAS2LE1IS, handle_ipas2e1is),
...@@ -4642,6 +4695,13 @@ void kvm_calculate_traps(struct kvm_vcpu *vcpu) ...@@ -4642,6 +4695,13 @@ void kvm_calculate_traps(struct kvm_vcpu *vcpu)
HFGITR_EL2_TLBIRVAAE1OS | HFGITR_EL2_TLBIRVAAE1OS |
HFGITR_EL2_TLBIRVAE1OS); HFGITR_EL2_TLBIRVAE1OS);
if (!kvm_has_feat(kvm, ID_AA64ISAR2_EL1, ATS1A, IMP))
kvm->arch.fgu[HFGITR_GROUP] |= HFGITR_EL2_ATS1E1A;
if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, PAN, PAN2))
kvm->arch.fgu[HFGITR_GROUP] |= (HFGITR_EL2_ATS1E1RP |
HFGITR_EL2_ATS1E1WP);
if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S1PIE, IMP)) if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S1PIE, IMP))
kvm->arch.fgu[HFGxTR_GROUP] |= (HFGxTR_EL2_nPIRE0_EL1 | kvm->arch.fgu[HFGxTR_GROUP] |= (HFGxTR_EL2_nPIRE0_EL1 |
HFGxTR_EL2_nPIR_EL1); HFGxTR_EL2_nPIR_EL1);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment