Commit 2f8e2dc8 authored by Peter Osterlund's avatar Peter Osterlund Committed by Linus Torvalds

[PATCH] CDRW packet writing support

This patch implements CDRW packet writing as a kernel block device.  Usage
instructions are in the packet-writing.txt file.

A hint: If you don't want to wait for a complete disc format, you can
format just a part of the disc.  For example:

        cdrwtool -d /dev/hdc -m 10240

This will format 10240 blocks, ie 20MB.
Signed-off-by: default avatarPeter Osterlund <petero2@telia.com>
Signed-off-by: default avatarAndrew Morton <akpm@osdl.org>
Signed-off-by: default avatarLinus Torvalds <torvalds@osdl.org>
parent a7cbd7da
...@@ -22,6 +22,8 @@ mcdx ...@@ -22,6 +22,8 @@ mcdx
- info on improved Mitsumi CD-ROM driver. - info on improved Mitsumi CD-ROM driver.
optcd optcd
- info on the Optics Storage 8000 AT CD-ROM driver - info on the Optics Storage 8000 AT CD-ROM driver
packet-writing.txt
- Info on the CDRW packet writing module
sbpcd sbpcd
- info on the SoundBlaster/Panasonic CD-ROM interface driver. - info on the SoundBlaster/Panasonic CD-ROM interface driver.
sjcd sjcd
......
Getting started quick
---------------------
- Select packet support in the block device section and UDF support in
the file system section.
- Compile and install kernel and modules, reboot.
- You need the udftools package (pktsetup, mkudffs, cdrwtool).
Download from http://sourceforge.net/projects/linux-udf/
- Grab a new CD-RW disc and format it (assuming CD-RW is hdc, substitute
as appropriate):
# cdrwtool -d /dev/hdc -q
- Setup your writer
# pktsetup dev_name /dev/hdc
- Now you can mount /dev/pktcdvd/dev_name and copy files to it. Enjoy!
# mount /dev/pktcdvd/dev_name /cdrom -t udf -o rw,noatime
Packet writing for DVD-RW media
-------------------------------
DVD-RW discs can be written to much like CD-RW discs if they are in
the so called "restricted overwrite" mode. To put a disc in restricted
overwrite mode, run:
# dvd+rw-format /dev/hdc
You can then use the disc the same way you would use a CD-RW disc:
# pktsetup dev_name /dev/hdc
# mount /dev/pktcdvd/dev_name /cdrom -t udf -o rw,noatime
Packet writing for DVD+RW media
-------------------------------
According to the DVD+RW specification, a drive supporting DVD+RW discs
shall implement "true random writes with 2KB granularity", which means
that it should be possible to put any filesystem with a block size >=
2KB on such a disc. For example, it should be possible to do:
# mkudffs /dev/hdc
# mount /dev/hdc /cdrom -t udf -o rw,noatime
However, some drives don't follow the specification and expect the
host to perform aligned writes at 32KB boundaries. Other drives do
follow the specification, but suffer bad performance problems if the
writes are not 32KB aligned.
Both problems can be solved by using the pktcdvd driver, which always
generates aligned writes.
# pktsetup dev_name /dev/hdc
# mkudffs /dev/pktcdvd/dev_name
# mount /dev/pktcdvd/dev_name /cdrom -t udf -o rw,noatime
Notes
-----
- CD-RW media can usually not be overwritten more than about 1000
times, so to avoid unnecessary wear on the media, you should always
use the noatime mount option.
- Defect management (ie automatic remapping of bad sectors) has not
been implemented yet, so you are likely to get at least some
filesystem corruption if the disc wears out.
- Since the pktcdvd driver makes the disc appear as a regular block
device with a 2KB block size, you can put any filesystem you like on
the disc. For example, run:
# /sbin/mke2fs /dev/pktcdvd/dev_name
to create an ext2 filesystem on the disc.
Links
-----
See http://fy.chalmers.se/~appro/linux/DVD+RW/ for more information
about DVD writing.
...@@ -356,6 +356,39 @@ config LBD ...@@ -356,6 +356,39 @@ config LBD
your machine, or if you want to have a raid or loopback device your machine, or if you want to have a raid or loopback device
bigger than 2TB. Otherwise say N. bigger than 2TB. Otherwise say N.
config CDROM_PKTCDVD
tristate "Packet writing on CD/DVD media"
help
If you have a CDROM drive that supports packet writing, say Y to
include preliminary support. It should work with any MMC/Mt Fuji
compliant ATAPI or SCSI drive, which is just about any newer CD
writer.
Currently only writing to CD-RW, DVD-RW and DVD+RW discs is possible.
DVD-RW disks must be in restricted overwrite mode.
To compile this driver as a module, choose M here: the
module will be called pktcdvd.
config CDROM_PKTCDVD_BUFFERS
int "Free buffers for data gathering"
depends on CDROM_PKTCDVD
default "8"
help
This controls the maximum number of active concurrent packets. More
concurrent packets can increase write performance, but also require
more memory. Each concurrent packet will require approximately 64Kb
of non-swappable kernel memory, memory which will be allocated at
pktsetup time.
config CDROM_PKTCDVD_WCACHE
bool "Enable write caching"
depends on CDROM_PKTCDVD
help
If enabled, write caching will be set for the CD-R/W device. For now
this option is dangerous unless the CD-RW media is known good, as we
don't do deferred write error handling yet.
source "drivers/s390/block/Kconfig" source "drivers/s390/block/Kconfig"
endmenu endmenu
...@@ -35,6 +35,7 @@ obj-$(CONFIG_BLK_DEV_XD) += xd.o ...@@ -35,6 +35,7 @@ obj-$(CONFIG_BLK_DEV_XD) += xd.o
obj-$(CONFIG_BLK_CPQ_DA) += cpqarray.o obj-$(CONFIG_BLK_CPQ_DA) += cpqarray.o
obj-$(CONFIG_BLK_CPQ_CISS_DA) += cciss.o obj-$(CONFIG_BLK_CPQ_CISS_DA) += cciss.o
obj-$(CONFIG_BLK_DEV_DAC960) += DAC960.o obj-$(CONFIG_BLK_DEV_DAC960) += DAC960.o
obj-$(CONFIG_CDROM_PKTCDVD) += pktcdvd.o
obj-$(CONFIG_BLK_DEV_UMEM) += umem.o obj-$(CONFIG_BLK_DEV_UMEM) += umem.o
obj-$(CONFIG_BLK_DEV_NBD) += nbd.o obj-$(CONFIG_BLK_DEV_NBD) += nbd.o
......
/*
* Copyright (C) 2000 Jens Axboe <axboe@suse.de>
* Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
*
* May be copied or modified under the terms of the GNU General Public
* License. See linux/COPYING for more information.
*
* Packet writing layer for ATAPI and SCSI CD-R, CD-RW, DVD-R, and
* DVD-RW devices (aka an exercise in block layer masturbation)
*
*
* TODO: (circa order of when I will fix it)
* - Only able to write on CD-RW media right now.
* - check host application code on media and set it in write page
* - interface for UDF <-> packet to negotiate a new location when a write
* fails.
* - handle OPC, especially for -RW media
*
* Theory of operation:
*
* We use a custom make_request_fn function that forwards reads directly to
* the underlying CD device. Write requests are either attached directly to
* a live packet_data object, or simply stored sequentially in a list for
* later processing by the kcdrwd kernel thread. This driver doesn't use
* any elevator functionally as defined by the elevator_s struct, but the
* underlying CD device uses a standard elevator.
*
* This strategy makes it possible to do very late merging of IO requests.
* A new bio sent to pkt_make_request can be merged with a live packet_data
* object even if the object is in the data gathering state.
*
*************************************************************************/
#define VERSION_CODE "v0.2.0a 2004-07-14 Jens Axboe (axboe@suse.de) and petero2@telia.com"
#include <linux/pktcdvd.h>
#include <linux/config.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/kthread.h>
#include <linux/errno.h>
#include <linux/spinlock.h>
#include <linux/file.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/miscdevice.h>
#include <linux/suspend.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_ioctl.h>
#include <asm/uaccess.h>
#if PACKET_DEBUG
#define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
#else
#define DPRINTK(fmt, args...)
#endif
#if PACKET_DEBUG > 1
#define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
#else
#define VPRINTK(fmt, args...)
#endif
#define MAX_SPEED 0xffff
#define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
static struct proc_dir_entry *pkt_proc;
static int pkt_major;
static struct semaphore ctl_mutex; /* Serialize open/close/setup/teardown */
static mempool_t *psd_pool;
static void pkt_bio_finished(struct pktcdvd_device *pd)
{
BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
VPRINTK("pktcdvd: queue empty\n");
atomic_set(&pd->iosched.attention, 1);
wake_up(&pd->wqueue);
}
}
static void pkt_bio_destructor(struct bio *bio)
{
kfree(bio->bi_io_vec);
kfree(bio);
}
static struct bio *pkt_bio_alloc(int nr_iovecs)
{
struct bio_vec *bvl = NULL;
struct bio *bio;
bio = kmalloc(sizeof(struct bio), GFP_KERNEL);
if (!bio)
goto no_bio;
bio_init(bio);
bvl = kmalloc(nr_iovecs * sizeof(struct bio_vec), GFP_KERNEL);
if (!bvl)
goto no_bvl;
memset(bvl, 0, nr_iovecs * sizeof(struct bio_vec));
bio->bi_max_vecs = nr_iovecs;
bio->bi_io_vec = bvl;
bio->bi_destructor = pkt_bio_destructor;
return bio;
no_bvl:
kfree(bio);
no_bio:
return NULL;
}
/*
* Allocate a packet_data struct
*/
static struct packet_data *pkt_alloc_packet_data(void)
{
int i;
struct packet_data *pkt;
pkt = kmalloc(sizeof(struct packet_data), GFP_KERNEL);
if (!pkt)
goto no_pkt;
memset(pkt, 0, sizeof(struct packet_data));
pkt->w_bio = pkt_bio_alloc(PACKET_MAX_SIZE);
if (!pkt->w_bio)
goto no_bio;
for (i = 0; i < PAGES_PER_PACKET; i++) {
pkt->pages[i] = alloc_page(GFP_KERNEL);
if (!pkt->pages[i])
goto no_page;
}
for (i = 0; i < PAGES_PER_PACKET; i++)
clear_page(page_address(pkt->pages[i]));
spin_lock_init(&pkt->lock);
for (i = 0; i < PACKET_MAX_SIZE; i++) {
struct bio *bio = pkt_bio_alloc(1);
if (!bio)
goto no_rd_bio;
pkt->r_bios[i] = bio;
}
return pkt;
no_rd_bio:
for (i = 0; i < PACKET_MAX_SIZE; i++) {
struct bio *bio = pkt->r_bios[i];
if (bio)
bio_put(bio);
}
no_page:
for (i = 0; i < PAGES_PER_PACKET; i++)
if (pkt->pages[i])
__free_page(pkt->pages[i]);
bio_put(pkt->w_bio);
no_bio:
kfree(pkt);
no_pkt:
return NULL;
}
/*
* Free a packet_data struct
*/
static void pkt_free_packet_data(struct packet_data *pkt)
{
int i;
for (i = 0; i < PACKET_MAX_SIZE; i++) {
struct bio *bio = pkt->r_bios[i];
if (bio)
bio_put(bio);
}
for (i = 0; i < PAGES_PER_PACKET; i++)
__free_page(pkt->pages[i]);
bio_put(pkt->w_bio);
kfree(pkt);
}
static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
{
struct packet_data *pkt, *next;
BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
pkt_free_packet_data(pkt);
}
}
static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
{
struct packet_data *pkt;
INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
spin_lock_init(&pd->cdrw.active_list_lock);
while (nr_packets > 0) {
pkt = pkt_alloc_packet_data();
if (!pkt) {
pkt_shrink_pktlist(pd);
return 0;
}
pkt->id = nr_packets;
pkt->pd = pd;
list_add(&pkt->list, &pd->cdrw.pkt_free_list);
nr_packets--;
}
return 1;
}
static void *pkt_rb_alloc(int gfp_mask, void *data)
{
return kmalloc(sizeof(struct pkt_rb_node), gfp_mask);
}
static void pkt_rb_free(void *ptr, void *data)
{
kfree(ptr);
}
static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
{
struct rb_node *n = rb_next(&node->rb_node);
if (!n)
return NULL;
return rb_entry(n, struct pkt_rb_node, rb_node);
}
static inline void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
{
rb_erase(&node->rb_node, &pd->bio_queue);
mempool_free(node, pd->rb_pool);
pd->bio_queue_size--;
BUG_ON(pd->bio_queue_size < 0);
}
/*
* Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
*/
static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
{
struct rb_node *n = pd->bio_queue.rb_node;
struct rb_node *next;
struct pkt_rb_node *tmp;
if (!n) {
BUG_ON(pd->bio_queue_size > 0);
return NULL;
}
for (;;) {
tmp = rb_entry(n, struct pkt_rb_node, rb_node);
if (s <= tmp->bio->bi_sector)
next = n->rb_left;
else
next = n->rb_right;
if (!next)
break;
n = next;
}
if (s > tmp->bio->bi_sector) {
tmp = pkt_rbtree_next(tmp);
if (!tmp)
return NULL;
}
BUG_ON(s > tmp->bio->bi_sector);
return tmp;
}
/*
* Insert a node into the pd->bio_queue rb tree.
*/
static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
{
struct rb_node **p = &pd->bio_queue.rb_node;
struct rb_node *parent = NULL;
sector_t s = node->bio->bi_sector;
struct pkt_rb_node *tmp;
while (*p) {
parent = *p;
tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
if (s < tmp->bio->bi_sector)
p = &(*p)->rb_left;
else
p = &(*p)->rb_right;
}
rb_link_node(&node->rb_node, parent, p);
rb_insert_color(&node->rb_node, &pd->bio_queue);
pd->bio_queue_size++;
}
/*
* Add a bio to a single linked list defined by its head and tail pointers.
*/
static inline void pkt_add_list_last(struct bio *bio, struct bio **list_head, struct bio **list_tail)
{
bio->bi_next = NULL;
if (*list_tail) {
BUG_ON((*list_head) == NULL);
(*list_tail)->bi_next = bio;
(*list_tail) = bio;
} else {
BUG_ON((*list_head) != NULL);
(*list_head) = bio;
(*list_tail) = bio;
}
}
/*
* Remove and return the first bio from a single linked list defined by its
* head and tail pointers.
*/
static inline struct bio *pkt_get_list_first(struct bio **list_head, struct bio **list_tail)
{
struct bio *bio;
if (*list_head == NULL)
return NULL;
bio = *list_head;
*list_head = bio->bi_next;
if (*list_head == NULL)
*list_tail = NULL;
bio->bi_next = NULL;
return bio;
}
/*
* Send a packet_command to the underlying block device and
* wait for completion.
*/
static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
{
char sense[SCSI_SENSE_BUFFERSIZE];
request_queue_t *q;
struct request *rq;
DECLARE_COMPLETION(wait);
int err = 0;
q = bdev_get_queue(pd->bdev);
rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ? WRITE : READ,
__GFP_WAIT);
rq->errors = 0;
rq->rq_disk = pd->bdev->bd_disk;
rq->bio = NULL;
rq->buffer = NULL;
rq->timeout = 60*HZ;
rq->data = cgc->buffer;
rq->data_len = cgc->buflen;
rq->sense = sense;
memset(sense, 0, sizeof(sense));
rq->sense_len = 0;
rq->flags |= REQ_BLOCK_PC | REQ_HARDBARRIER;
if (cgc->quiet)
rq->flags |= REQ_QUIET;
memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
if (sizeof(rq->cmd) > CDROM_PACKET_SIZE)
memset(rq->cmd + CDROM_PACKET_SIZE, 0, sizeof(rq->cmd) - CDROM_PACKET_SIZE);
rq->ref_count++;
rq->flags |= REQ_NOMERGE;
rq->waiting = &wait;
elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1);
generic_unplug_device(q);
wait_for_completion(&wait);
if (rq->errors)
err = -EIO;
blk_put_request(rq);
return err;
}
/*
* A generic sense dump / resolve mechanism should be implemented across
* all ATAPI + SCSI devices.
*/
static void pkt_dump_sense(struct packet_command *cgc)
{
static char *info[9] = { "No sense", "Recovered error", "Not ready",
"Medium error", "Hardware error", "Illegal request",
"Unit attention", "Data protect", "Blank check" };
int i;
struct request_sense *sense = cgc->sense;
printk("pktcdvd:");
for (i = 0; i < CDROM_PACKET_SIZE; i++)
printk(" %02x", cgc->cmd[i]);
printk(" - ");
if (sense == NULL) {
printk("no sense\n");
return;
}
printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
if (sense->sense_key > 8) {
printk(" (INVALID)\n");
return;
}
printk(" (%s)\n", info[sense->sense_key]);
}
/*
* flush the drive cache to media
*/
static int pkt_flush_cache(struct pktcdvd_device *pd)
{
struct packet_command cgc;
init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
cgc.cmd[0] = GPCMD_FLUSH_CACHE;
cgc.quiet = 1;
/*
* the IMMED bit -- we default to not setting it, although that
* would allow a much faster close, this is safer
*/
#if 0
cgc.cmd[1] = 1 << 1;
#endif
return pkt_generic_packet(pd, &cgc);
}
/*
* speed is given as the normal factor, e.g. 4 for 4x
*/
static int pkt_set_speed(struct pktcdvd_device *pd, unsigned write_speed, unsigned read_speed)
{
struct packet_command cgc;
struct request_sense sense;
int ret;
init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
cgc.sense = &sense;
cgc.cmd[0] = GPCMD_SET_SPEED;
cgc.cmd[2] = (read_speed >> 8) & 0xff;
cgc.cmd[3] = read_speed & 0xff;
cgc.cmd[4] = (write_speed >> 8) & 0xff;
cgc.cmd[5] = write_speed & 0xff;
if ((ret = pkt_generic_packet(pd, &cgc)))
pkt_dump_sense(&cgc);
return ret;
}
/*
* Queue a bio for processing by the low-level CD device. Must be called
* from process context.
*/
static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio, int high_prio_read)
{
spin_lock(&pd->iosched.lock);
if (bio_data_dir(bio) == READ) {
pkt_add_list_last(bio, &pd->iosched.read_queue,
&pd->iosched.read_queue_tail);
if (high_prio_read)
pd->iosched.high_prio_read = 1;
} else {
pkt_add_list_last(bio, &pd->iosched.write_queue,
&pd->iosched.write_queue_tail);
}
spin_unlock(&pd->iosched.lock);
atomic_set(&pd->iosched.attention, 1);
wake_up(&pd->wqueue);
}
/*
* Process the queued read/write requests. This function handles special
* requirements for CDRW drives:
* - A cache flush command must be inserted before a read request if the
* previous request was a write.
* - Switching between reading and writing is slow, so don't it more often
* than necessary.
* - Set the read speed according to current usage pattern. When only reading
* from the device, it's best to use the highest possible read speed, but
* when switching often between reading and writing, it's better to have the
* same read and write speeds.
* - Reads originating from user space should have higher priority than reads
* originating from pkt_gather_data, because some process is usually waiting
* on reads of the first kind.
*/
static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
{
request_queue_t *q;
if (atomic_read(&pd->iosched.attention) == 0)
return;
atomic_set(&pd->iosched.attention, 0);
q = bdev_get_queue(pd->bdev);
for (;;) {
struct bio *bio;
int reads_queued, writes_queued, high_prio_read;
spin_lock(&pd->iosched.lock);
reads_queued = (pd->iosched.read_queue != NULL);
writes_queued = (pd->iosched.write_queue != NULL);
if (!reads_queued)
pd->iosched.high_prio_read = 0;
high_prio_read = pd->iosched.high_prio_read;
spin_unlock(&pd->iosched.lock);
if (!reads_queued && !writes_queued)
break;
if (pd->iosched.writing) {
if (high_prio_read || (!writes_queued && reads_queued)) {
if (atomic_read(&pd->cdrw.pending_bios) > 0) {
VPRINTK("pktcdvd: write, waiting\n");
break;
}
pkt_flush_cache(pd);
pd->iosched.writing = 0;
}
} else {
if (!reads_queued && writes_queued) {
if (atomic_read(&pd->cdrw.pending_bios) > 0) {
VPRINTK("pktcdvd: read, waiting\n");
break;
}
pd->iosched.writing = 1;
}
}
spin_lock(&pd->iosched.lock);
if (pd->iosched.writing) {
bio = pkt_get_list_first(&pd->iosched.write_queue,
&pd->iosched.write_queue_tail);
} else {
bio = pkt_get_list_first(&pd->iosched.read_queue,
&pd->iosched.read_queue_tail);
}
spin_unlock(&pd->iosched.lock);
if (!bio)
continue;
if (bio_data_dir(bio) == READ)
pd->iosched.successive_reads += bio->bi_size >> 10;
else
pd->iosched.successive_reads = 0;
if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
if (pd->read_speed == pd->write_speed) {
pd->read_speed = MAX_SPEED;
pkt_set_speed(pd, pd->write_speed, pd->read_speed);
}
} else {
if (pd->read_speed != pd->write_speed) {
pd->read_speed = pd->write_speed;
pkt_set_speed(pd, pd->write_speed, pd->read_speed);
}
}
atomic_inc(&pd->cdrw.pending_bios);
generic_make_request(bio);
}
}
/*
* Special care is needed if the underlying block device has a small
* max_phys_segments value.
*/
static int pkt_set_segment_merging(struct pktcdvd_device *pd, request_queue_t *q)
{
if ((pd->settings.size << 9) / CD_FRAMESIZE <= q->max_phys_segments) {
/*
* The cdrom device can handle one segment/frame
*/
clear_bit(PACKET_MERGE_SEGS, &pd->flags);
return 0;
} else if ((pd->settings.size << 9) / PAGE_SIZE <= q->max_phys_segments) {
/*
* We can handle this case at the expense of some extra memory
* copies during write operations
*/
set_bit(PACKET_MERGE_SEGS, &pd->flags);
return 0;
} else {
printk("pktcdvd: cdrom max_phys_segments too small\n");
return -EIO;
}
}
/*
* Copy CD_FRAMESIZE bytes from src_bio into a destination page
*/
static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs,
struct page *dst_page, int dst_offs)
{
unsigned int copy_size = CD_FRAMESIZE;
while (copy_size > 0) {
struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg);
void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) +
src_bvl->bv_offset + offs;
void *vto = page_address(dst_page) + dst_offs;
int len = min_t(int, copy_size, src_bvl->bv_len - offs);
BUG_ON(len < 0);
memcpy(vto, vfrom, len);
kunmap_atomic(src_bvl->bv_page, KM_USER0);
seg++;
offs = 0;
dst_offs += len;
copy_size -= len;
}
}
/*
* Copy all data for this packet to pkt->pages[], so that
* a) The number of required segments for the write bio is minimized, which
* is necessary for some scsi controllers.
* b) The data can be used as cache to avoid read requests if we receive a
* new write request for the same zone.
*/
static void pkt_make_local_copy(struct packet_data *pkt, struct page **pages, int *offsets)
{
int f, p, offs;
/* Copy all data to pkt->pages[] */
p = 0;
offs = 0;
for (f = 0; f < pkt->frames; f++) {
if (pages[f] != pkt->pages[p]) {
void *vfrom = kmap_atomic(pages[f], KM_USER0) + offsets[f];
void *vto = page_address(pkt->pages[p]) + offs;
memcpy(vto, vfrom, CD_FRAMESIZE);
kunmap_atomic(pages[f], KM_USER0);
pages[f] = pkt->pages[p];
offsets[f] = offs;
} else {
BUG_ON(offsets[f] != offs);
}
offs += CD_FRAMESIZE;
if (offs >= PAGE_SIZE) {
BUG_ON(offs > PAGE_SIZE);
offs = 0;
p++;
}
}
}
static int pkt_end_io_read(struct bio *bio, unsigned int bytes_done, int err)
{
struct packet_data *pkt = bio->bi_private;
struct pktcdvd_device *pd = pkt->pd;
BUG_ON(!pd);
if (bio->bi_size)
return 1;
VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
(unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
if (err)
atomic_inc(&pkt->io_errors);
if (atomic_dec_and_test(&pkt->io_wait)) {
atomic_inc(&pkt->run_sm);
wake_up(&pd->wqueue);
}
pkt_bio_finished(pd);
return 0;
}
static int pkt_end_io_packet_write(struct bio *bio, unsigned int bytes_done, int err)
{
struct packet_data *pkt = bio->bi_private;
struct pktcdvd_device *pd = pkt->pd;
BUG_ON(!pd);
if (bio->bi_size)
return 1;
VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
pd->stats.pkt_ended++;
pkt_bio_finished(pd);
atomic_dec(&pkt->io_wait);
atomic_inc(&pkt->run_sm);
wake_up(&pd->wqueue);
return 0;
}
/*
* Schedule reads for the holes in a packet
*/
static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
{
int frames_read = 0;
struct bio *bio;
int f;
char written[PACKET_MAX_SIZE];
BUG_ON(!pkt->orig_bios);
atomic_set(&pkt->io_wait, 0);
atomic_set(&pkt->io_errors, 0);
if (pkt->cache_valid) {
VPRINTK("pkt_gather_data: zone %llx cached\n",
(unsigned long long)pkt->sector);
goto out_account;
}
/*
* Figure out which frames we need to read before we can write.
*/
memset(written, 0, sizeof(written));
spin_lock(&pkt->lock);
for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
int num_frames = bio->bi_size / CD_FRAMESIZE;
BUG_ON(first_frame < 0);
BUG_ON(first_frame + num_frames > pkt->frames);
for (f = first_frame; f < first_frame + num_frames; f++)
written[f] = 1;
}
spin_unlock(&pkt->lock);
/*
* Schedule reads for missing parts of the packet.
*/
for (f = 0; f < pkt->frames; f++) {
int p, offset;
if (written[f])
continue;
bio = pkt->r_bios[f];
bio_init(bio);
bio->bi_max_vecs = 1;
bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
bio->bi_bdev = pd->bdev;
bio->bi_end_io = pkt_end_io_read;
bio->bi_private = pkt;
p = (f * CD_FRAMESIZE) / PAGE_SIZE;
offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
f, pkt->pages[p], offset);
if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
BUG();
atomic_inc(&pkt->io_wait);
bio->bi_rw = READ;
pkt_queue_bio(pd, bio, 0);
frames_read++;
}
out_account:
VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
frames_read, (unsigned long long)pkt->sector);
pd->stats.pkt_started++;
pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
pd->stats.secs_w += pd->settings.size;
}
/*
* Find a packet matching zone, or the least recently used packet if
* there is no match.
*/
static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
{
struct packet_data *pkt;
list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
list_del_init(&pkt->list);
if (pkt->sector != zone)
pkt->cache_valid = 0;
break;
}
}
return pkt;
}
static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
{
if (pkt->cache_valid) {
list_add(&pkt->list, &pd->cdrw.pkt_free_list);
} else {
list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
}
}
/*
* recover a failed write, query for relocation if possible
*
* returns 1 if recovery is possible, or 0 if not
*
*/
static int pkt_start_recovery(struct packet_data *pkt)
{
/*
* FIXME. We need help from the file system to implement
* recovery handling.
*/
return 0;
#if 0
struct request *rq = pkt->rq;
struct pktcdvd_device *pd = rq->rq_disk->private_data;
struct block_device *pkt_bdev;
struct super_block *sb = NULL;
unsigned long old_block, new_block;
sector_t new_sector;
pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
if (pkt_bdev) {
sb = get_super(pkt_bdev);
bdput(pkt_bdev);
}
if (!sb)
return 0;
if (!sb->s_op || !sb->s_op->relocate_blocks)
goto out;
old_block = pkt->sector / (CD_FRAMESIZE >> 9);
if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
goto out;
new_sector = new_block * (CD_FRAMESIZE >> 9);
pkt->sector = new_sector;
pkt->bio->bi_sector = new_sector;
pkt->bio->bi_next = NULL;
pkt->bio->bi_flags = 1 << BIO_UPTODATE;
pkt->bio->bi_idx = 0;
BUG_ON(pkt->bio->bi_rw != (1 << BIO_RW));
BUG_ON(pkt->bio->bi_vcnt != pkt->frames);
BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE);
BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write);
BUG_ON(pkt->bio->bi_private != pkt);
drop_super(sb);
return 1;
out:
drop_super(sb);
return 0;
#endif
}
static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
{
#if PACKET_DEBUG > 1
static const char *state_name[] = {
"IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
};
enum packet_data_state old_state = pkt->state;
VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
state_name[old_state], state_name[state]);
#endif
pkt->state = state;
}
/*
* Scan the work queue to see if we can start a new packet.
* returns non-zero if any work was done.
*/
static int pkt_handle_queue(struct pktcdvd_device *pd)
{
struct packet_data *pkt, *p;
struct bio *bio = NULL;
sector_t zone = 0; /* Suppress gcc warning */
struct pkt_rb_node *node, *first_node;
struct rb_node *n;
VPRINTK("handle_queue\n");
atomic_set(&pd->scan_queue, 0);
if (list_empty(&pd->cdrw.pkt_free_list)) {
VPRINTK("handle_queue: no pkt\n");
return 0;
}
/*
* Try to find a zone we are not already working on.
*/
spin_lock(&pd->lock);
first_node = pkt_rbtree_find(pd, pd->current_sector);
if (!first_node) {
n = rb_first(&pd->bio_queue);
if (n)
first_node = rb_entry(n, struct pkt_rb_node, rb_node);
}
node = first_node;
while (node) {
bio = node->bio;
zone = ZONE(bio->bi_sector, pd);
list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
if (p->sector == zone)
goto try_next_bio;
}
break;
try_next_bio:
node = pkt_rbtree_next(node);
if (!node) {
n = rb_first(&pd->bio_queue);
if (n)
node = rb_entry(n, struct pkt_rb_node, rb_node);
}
if (node == first_node)
node = NULL;
}
spin_unlock(&pd->lock);
if (!bio) {
VPRINTK("handle_queue: no bio\n");
return 0;
}
pkt = pkt_get_packet_data(pd, zone);
BUG_ON(!pkt);
pd->current_sector = zone + pd->settings.size;
pkt->sector = zone;
pkt->frames = pd->settings.size >> 2;
BUG_ON(pkt->frames > PACKET_MAX_SIZE);
pkt->write_size = 0;
/*
* Scan work queue for bios in the same zone and link them
* to this packet.
*/
spin_lock(&pd->lock);
VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
bio = node->bio;
VPRINTK("pkt_handle_queue: found zone=%llx\n",
(unsigned long long)ZONE(bio->bi_sector, pd));
if (ZONE(bio->bi_sector, pd) != zone)
break;
pkt_rbtree_erase(pd, node);
spin_lock(&pkt->lock);
pkt_add_list_last(bio, &pkt->orig_bios, &pkt->orig_bios_tail);
pkt->write_size += bio->bi_size / CD_FRAMESIZE;
spin_unlock(&pkt->lock);
}
spin_unlock(&pd->lock);
pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
pkt_set_state(pkt, PACKET_WAITING_STATE);
atomic_set(&pkt->run_sm, 1);
spin_lock(&pd->cdrw.active_list_lock);
list_add(&pkt->list, &pd->cdrw.pkt_active_list);
spin_unlock(&pd->cdrw.active_list_lock);
return 1;
}
/*
* Assemble a bio to write one packet and queue the bio for processing
* by the underlying block device.
*/
static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
{
struct bio *bio;
struct page *pages[PACKET_MAX_SIZE];
int offsets[PACKET_MAX_SIZE];
int f;
int frames_write;
for (f = 0; f < pkt->frames; f++) {
pages[f] = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
offsets[f] = (f * CD_FRAMESIZE) % PAGE_SIZE;
}
/*
* Fill-in pages[] and offsets[] with data from orig_bios.
*/
frames_write = 0;
spin_lock(&pkt->lock);
for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
int segment = bio->bi_idx;
int src_offs = 0;
int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
int num_frames = bio->bi_size / CD_FRAMESIZE;
BUG_ON(first_frame < 0);
BUG_ON(first_frame + num_frames > pkt->frames);
for (f = first_frame; f < first_frame + num_frames; f++) {
struct bio_vec *src_bvl = bio_iovec_idx(bio, segment);
while (src_offs >= src_bvl->bv_len) {
src_offs -= src_bvl->bv_len;
segment++;
BUG_ON(segment >= bio->bi_vcnt);
src_bvl = bio_iovec_idx(bio, segment);
}
if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) {
pages[f] = src_bvl->bv_page;
offsets[f] = src_bvl->bv_offset + src_offs;
} else {
pkt_copy_bio_data(bio, segment, src_offs,
pages[f], offsets[f]);
}
src_offs += CD_FRAMESIZE;
frames_write++;
}
}
pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
spin_unlock(&pkt->lock);
VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
frames_write, (unsigned long long)pkt->sector);
BUG_ON(frames_write != pkt->write_size);
if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
pkt_make_local_copy(pkt, pages, offsets);
pkt->cache_valid = 1;
} else {
pkt->cache_valid = 0;
}
/* Start the write request */
bio_init(pkt->w_bio);
pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE;
pkt->w_bio->bi_sector = pkt->sector;
pkt->w_bio->bi_bdev = pd->bdev;
pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
pkt->w_bio->bi_private = pkt;
for (f = 0; f < pkt->frames; f++) {
if ((f + 1 < pkt->frames) && (pages[f + 1] == pages[f]) &&
(offsets[f + 1] = offsets[f] + CD_FRAMESIZE)) {
if (!bio_add_page(pkt->w_bio, pages[f], CD_FRAMESIZE * 2, offsets[f]))
BUG();
f++;
} else {
if (!bio_add_page(pkt->w_bio, pages[f], CD_FRAMESIZE, offsets[f]))
BUG();
}
}
VPRINTK("pktcdvd: vcnt=%d\n", pkt->w_bio->bi_vcnt);
atomic_set(&pkt->io_wait, 1);
pkt->w_bio->bi_rw = WRITE;
pkt_queue_bio(pd, pkt->w_bio, 0);
}
static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
{
struct bio *bio, *next;
if (!uptodate)
pkt->cache_valid = 0;
/* Finish all bios corresponding to this packet */
bio = pkt->orig_bios;
while (bio) {
next = bio->bi_next;
bio->bi_next = NULL;
bio_endio(bio, bio->bi_size, uptodate ? 0 : -EIO);
bio = next;
}
pkt->orig_bios = pkt->orig_bios_tail = NULL;
}
static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
{
int uptodate;
VPRINTK("run_state_machine: pkt %d\n", pkt->id);
for (;;) {
switch (pkt->state) {
case PACKET_WAITING_STATE:
if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
return;
pkt->sleep_time = 0;
pkt_gather_data(pd, pkt);
pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
break;
case PACKET_READ_WAIT_STATE:
if (atomic_read(&pkt->io_wait) > 0)
return;
if (atomic_read(&pkt->io_errors) > 0) {
pkt_set_state(pkt, PACKET_RECOVERY_STATE);
} else {
pkt_start_write(pd, pkt);
}
break;
case PACKET_WRITE_WAIT_STATE:
if (atomic_read(&pkt->io_wait) > 0)
return;
if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
pkt_set_state(pkt, PACKET_FINISHED_STATE);
} else {
pkt_set_state(pkt, PACKET_RECOVERY_STATE);
}
break;
case PACKET_RECOVERY_STATE:
if (pkt_start_recovery(pkt)) {
pkt_start_write(pd, pkt);
} else {
VPRINTK("No recovery possible\n");
pkt_set_state(pkt, PACKET_FINISHED_STATE);
}
break;
case PACKET_FINISHED_STATE:
uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
pkt_finish_packet(pkt, uptodate);
return;
default:
BUG();
break;
}
}
}
static void pkt_handle_packets(struct pktcdvd_device *pd)
{
struct packet_data *pkt, *next;
VPRINTK("pkt_handle_packets\n");
/*
* Run state machine for active packets
*/
list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
if (atomic_read(&pkt->run_sm) > 0) {
atomic_set(&pkt->run_sm, 0);
pkt_run_state_machine(pd, pkt);
}
}
/*
* Move no longer active packets to the free list
*/
spin_lock(&pd->cdrw.active_list_lock);
list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
if (pkt->state == PACKET_FINISHED_STATE) {
list_del(&pkt->list);
pkt_put_packet_data(pd, pkt);
pkt_set_state(pkt, PACKET_IDLE_STATE);
atomic_set(&pd->scan_queue, 1);
}
}
spin_unlock(&pd->cdrw.active_list_lock);
}
static void pkt_count_states(struct pktcdvd_device *pd, int *states)
{
struct packet_data *pkt;
int i;
for (i = 0; i <= PACKET_NUM_STATES; i++)
states[i] = 0;
spin_lock(&pd->cdrw.active_list_lock);
list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
states[pkt->state]++;
}
spin_unlock(&pd->cdrw.active_list_lock);
}
/*
* kcdrwd is woken up when writes have been queued for one of our
* registered devices
*/
static int kcdrwd(void *foobar)
{
struct pktcdvd_device *pd = foobar;
struct packet_data *pkt;
long min_sleep_time, residue;
set_user_nice(current, -20);
for (;;) {
DECLARE_WAITQUEUE(wait, current);
/*
* Wait until there is something to do
*/
add_wait_queue(&pd->wqueue, &wait);
for (;;) {
set_current_state(TASK_INTERRUPTIBLE);
/* Check if we need to run pkt_handle_queue */
if (atomic_read(&pd->scan_queue) > 0)
goto work_to_do;
/* Check if we need to run the state machine for some packet */
list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
if (atomic_read(&pkt->run_sm) > 0)
goto work_to_do;
}
/* Check if we need to process the iosched queues */
if (atomic_read(&pd->iosched.attention) != 0)
goto work_to_do;
/* Otherwise, go to sleep */
if (PACKET_DEBUG > 1) {
int states[PACKET_NUM_STATES];
pkt_count_states(pd, states);
VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
states[0], states[1], states[2], states[3],
states[4], states[5]);
}
min_sleep_time = MAX_SCHEDULE_TIMEOUT;
list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
min_sleep_time = pkt->sleep_time;
}
generic_unplug_device(bdev_get_queue(pd->bdev));
VPRINTK("kcdrwd: sleeping\n");
residue = schedule_timeout(min_sleep_time);
VPRINTK("kcdrwd: wake up\n");
/* make swsusp happy with our thread */
if (current->flags & PF_FREEZE)
refrigerator(PF_FREEZE);
list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
if (!pkt->sleep_time)
continue;
pkt->sleep_time -= min_sleep_time - residue;
if (pkt->sleep_time <= 0) {
pkt->sleep_time = 0;
atomic_inc(&pkt->run_sm);
}
}
if (signal_pending(current)) {
flush_signals(current);
}
if (kthread_should_stop())
break;
}
work_to_do:
set_current_state(TASK_RUNNING);
remove_wait_queue(&pd->wqueue, &wait);
if (kthread_should_stop())
break;
/*
* if pkt_handle_queue returns true, we can queue
* another request.
*/
while (pkt_handle_queue(pd))
;
/*
* Handle packet state machine
*/
pkt_handle_packets(pd);
/*
* Handle iosched queues
*/
pkt_iosched_process_queue(pd);
}
return 0;
}
static void pkt_print_settings(struct pktcdvd_device *pd)
{
printk("pktcdvd: %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
printk("%u blocks, ", pd->settings.size >> 2);
printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
}
static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc,
int page_code, int page_control)
{
memset(cgc->cmd, 0, sizeof(cgc->cmd));
cgc->cmd[0] = GPCMD_MODE_SENSE_10;
cgc->cmd[2] = page_code | (page_control << 6);
cgc->cmd[7] = cgc->buflen >> 8;
cgc->cmd[8] = cgc->buflen & 0xff;
cgc->data_direction = CGC_DATA_READ;
return pkt_generic_packet(pd, cgc);
}
static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
{
memset(cgc->cmd, 0, sizeof(cgc->cmd));
memset(cgc->buffer, 0, 2);
cgc->cmd[0] = GPCMD_MODE_SELECT_10;
cgc->cmd[1] = 0x10; /* PF */
cgc->cmd[7] = cgc->buflen >> 8;
cgc->cmd[8] = cgc->buflen & 0xff;
cgc->data_direction = CGC_DATA_WRITE;
return pkt_generic_packet(pd, cgc);
}
static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
{
struct packet_command cgc;
int ret;
/* set up command and get the disc info */
init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
cgc.cmd[0] = GPCMD_READ_DISC_INFO;
cgc.cmd[8] = cgc.buflen = 2;
cgc.quiet = 1;
if ((ret = pkt_generic_packet(pd, &cgc)))
return ret;
/* not all drives have the same disc_info length, so requeue
* packet with the length the drive tells us it can supply
*/
cgc.buflen = be16_to_cpu(di->disc_information_length) +
sizeof(di->disc_information_length);
if (cgc.buflen > sizeof(disc_information))
cgc.buflen = sizeof(disc_information);
cgc.cmd[8] = cgc.buflen;
return pkt_generic_packet(pd, &cgc);
}
static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
{
struct packet_command cgc;
int ret;
init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
cgc.cmd[1] = type & 3;
cgc.cmd[4] = (track & 0xff00) >> 8;
cgc.cmd[5] = track & 0xff;
cgc.cmd[8] = 8;
cgc.quiet = 1;
if ((ret = pkt_generic_packet(pd, &cgc)))
return ret;
cgc.buflen = be16_to_cpu(ti->track_information_length) +
sizeof(ti->track_information_length);
if (cgc.buflen > sizeof(track_information))
cgc.buflen = sizeof(track_information);
cgc.cmd[8] = cgc.buflen;
return pkt_generic_packet(pd, &cgc);
}
static int pkt_get_last_written(struct pktcdvd_device *pd, long *last_written)
{
disc_information di;
track_information ti;
__u32 last_track;
int ret = -1;
if ((ret = pkt_get_disc_info(pd, &di)))
return ret;
last_track = (di.last_track_msb << 8) | di.last_track_lsb;
if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
return ret;
/* if this track is blank, try the previous. */
if (ti.blank) {
last_track--;
if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
return ret;
}
/* if last recorded field is valid, return it. */
if (ti.lra_v) {
*last_written = be32_to_cpu(ti.last_rec_address);
} else {
/* make it up instead */
*last_written = be32_to_cpu(ti.track_start) +
be32_to_cpu(ti.track_size);
if (ti.free_blocks)
*last_written -= (be32_to_cpu(ti.free_blocks) + 7);
}
return 0;
}
/*
* write mode select package based on pd->settings
*/
static int pkt_set_write_settings(struct pktcdvd_device *pd)
{
struct packet_command cgc;
struct request_sense sense;
write_param_page *wp;
char buffer[128];
int ret, size;
/* doesn't apply to DVD+RW */
if (pd->mmc3_profile == 0x1a)
return 0;
memset(buffer, 0, sizeof(buffer));
init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
cgc.sense = &sense;
if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
pkt_dump_sense(&cgc);
return ret;
}
size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
if (size > sizeof(buffer))
size = sizeof(buffer);
/*
* now get it all
*/
init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
cgc.sense = &sense;
if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
pkt_dump_sense(&cgc);
return ret;
}
/*
* write page is offset header + block descriptor length
*/
wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
wp->fp = pd->settings.fp;
wp->track_mode = pd->settings.track_mode;
wp->write_type = pd->settings.write_type;
wp->data_block_type = pd->settings.block_mode;
wp->multi_session = 0;
#ifdef PACKET_USE_LS
wp->link_size = 7;
wp->ls_v = 1;
#endif
if (wp->data_block_type == PACKET_BLOCK_MODE1) {
wp->session_format = 0;
wp->subhdr2 = 0x20;
} else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
wp->session_format = 0x20;
wp->subhdr2 = 8;
#if 0
wp->mcn[0] = 0x80;
memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
#endif
} else {
/*
* paranoia
*/
printk("pktcdvd: write mode wrong %d\n", wp->data_block_type);
return 1;
}
wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
cgc.buflen = cgc.cmd[8] = size;
if ((ret = pkt_mode_select(pd, &cgc))) {
pkt_dump_sense(&cgc);
return ret;
}
pkt_print_settings(pd);
return 0;
}
/*
* 0 -- we can write to this track, 1 -- we can't
*/
static int pkt_good_track(track_information *ti)
{
/*
* only good for CD-RW at the moment, not DVD-RW
*/
/*
* FIXME: only for FP
*/
if (ti->fp == 0)
return 0;
/*
* "good" settings as per Mt Fuji.
*/
if (ti->rt == 0 && ti->blank == 0 && ti->packet == 1)
return 0;
if (ti->rt == 0 && ti->blank == 1 && ti->packet == 1)
return 0;
if (ti->rt == 1 && ti->blank == 0 && ti->packet == 1)
return 0;
printk("pktcdvd: bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
return 1;
}
/*
* 0 -- we can write to this disc, 1 -- we can't
*/
static int pkt_good_disc(struct pktcdvd_device *pd, disc_information *di)
{
switch (pd->mmc3_profile) {
case 0x0a: /* CD-RW */
case 0xffff: /* MMC3 not supported */
break;
case 0x1a: /* DVD+RW */
case 0x13: /* DVD-RW */
return 0;
default:
printk("pktcdvd: Wrong disc profile (%x)\n", pd->mmc3_profile);
return 1;
}
/*
* for disc type 0xff we should probably reserve a new track.
* but i'm not sure, should we leave this to user apps? probably.
*/
if (di->disc_type == 0xff) {
printk("pktcdvd: Unknown disc. No track?\n");
return 1;
}
if (di->disc_type != 0x20 && di->disc_type != 0) {
printk("pktcdvd: Wrong disc type (%x)\n", di->disc_type);
return 1;
}
if (di->erasable == 0) {
printk("pktcdvd: Disc not erasable\n");
return 1;
}
if (di->border_status == PACKET_SESSION_RESERVED) {
printk("pktcdvd: Can't write to last track (reserved)\n");
return 1;
}
return 0;
}
static int pkt_probe_settings(struct pktcdvd_device *pd)
{
struct packet_command cgc;
unsigned char buf[12];
disc_information di;
track_information ti;
int ret, track;
init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
cgc.cmd[8] = 8;
ret = pkt_generic_packet(pd, &cgc);
pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
memset(&di, 0, sizeof(disc_information));
memset(&ti, 0, sizeof(track_information));
if ((ret = pkt_get_disc_info(pd, &di))) {
printk("failed get_disc\n");
return ret;
}
if (pkt_good_disc(pd, &di))
return -ENXIO;
switch (pd->mmc3_profile) {
case 0x1a: /* DVD+RW */
printk("pktcdvd: inserted media is DVD+RW\n");
break;
case 0x13: /* DVD-RW */
printk("pktcdvd: inserted media is DVD-RW\n");
break;
default:
printk("pktcdvd: inserted media is CD-R%s\n", di.erasable ? "W" : "");
break;
}
pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
printk("pktcdvd: failed get_track\n");
return ret;
}
if (pkt_good_track(&ti)) {
printk("pktcdvd: can't write to this track\n");
return -ENXIO;
}
/*
* we keep packet size in 512 byte units, makes it easier to
* deal with request calculations.
*/
pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
if (pd->settings.size == 0) {
printk("pktcdvd: detected zero packet size!\n");
pd->settings.size = 128;
}
pd->settings.fp = ti.fp;
pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
if (ti.nwa_v) {
pd->nwa = be32_to_cpu(ti.next_writable);
set_bit(PACKET_NWA_VALID, &pd->flags);
}
/*
* in theory we could use lra on -RW media as well and just zero
* blocks that haven't been written yet, but in practice that
* is just a no-go. we'll use that for -R, naturally.
*/
if (ti.lra_v) {
pd->lra = be32_to_cpu(ti.last_rec_address);
set_bit(PACKET_LRA_VALID, &pd->flags);
} else {
pd->lra = 0xffffffff;
set_bit(PACKET_LRA_VALID, &pd->flags);
}
/*
* fine for now
*/
pd->settings.link_loss = 7;
pd->settings.write_type = 0; /* packet */
pd->settings.track_mode = ti.track_mode;
/*
* mode1 or mode2 disc
*/
switch (ti.data_mode) {
case PACKET_MODE1:
pd->settings.block_mode = PACKET_BLOCK_MODE1;
break;
case PACKET_MODE2:
pd->settings.block_mode = PACKET_BLOCK_MODE2;
break;
default:
printk("pktcdvd: unknown data mode\n");
return 1;
}
return 0;
}
/*
* enable/disable write caching on drive
*/
static int pkt_write_caching(struct pktcdvd_device *pd, int set)
{
struct packet_command cgc;
struct request_sense sense;
unsigned char buf[64];
int ret;
memset(buf, 0, sizeof(buf));
init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
cgc.sense = &sense;
cgc.buflen = pd->mode_offset + 12;
/*
* caching mode page might not be there, so quiet this command
*/
cgc.quiet = 1;
if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
return ret;
buf[pd->mode_offset + 10] |= (!!set << 2);
cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
ret = pkt_mode_select(pd, &cgc);
if (ret) {
printk("pktcdvd: write caching control failed\n");
pkt_dump_sense(&cgc);
} else if (!ret && set)
printk("pktcdvd: enabled write caching on %s\n", pd->name);
return ret;
}
static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
{
struct packet_command cgc;
init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
cgc.cmd[4] = lockflag ? 1 : 0;
return pkt_generic_packet(pd, &cgc);
}
/*
* Returns drive maximum write speed
*/
static int pkt_get_max_speed(struct pktcdvd_device *pd, unsigned *write_speed)
{
struct packet_command cgc;
struct request_sense sense;
unsigned char buf[256+18];
unsigned char *cap_buf;
int ret, offset;
memset(buf, 0, sizeof(buf));
cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
cgc.sense = &sense;
ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
if (ret) {
cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
sizeof(struct mode_page_header);
ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
if (ret) {
pkt_dump_sense(&cgc);
return ret;
}
}
offset = 20; /* Obsoleted field, used by older drives */
if (cap_buf[1] >= 28)
offset = 28; /* Current write speed selected */
if (cap_buf[1] >= 30) {
/* If the drive reports at least one "Logical Unit Write
* Speed Performance Descriptor Block", use the information
* in the first block. (contains the highest speed)
*/
int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
if (num_spdb > 0)
offset = 34;
}
*write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
return 0;
}
/* These tables from cdrecord - I don't have orange book */
/* standard speed CD-RW (1-4x) */
static char clv_to_speed[16] = {
/* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
/* high speed CD-RW (-10x) */
static char hs_clv_to_speed[16] = {
/* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
/* ultra high speed CD-RW */
static char us_clv_to_speed[16] = {
/* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
};
/*
* reads the maximum media speed from ATIP
*/
static int pkt_media_speed(struct pktcdvd_device *pd, unsigned *speed)
{
struct packet_command cgc;
struct request_sense sense;
unsigned char buf[64];
unsigned int size, st, sp;
int ret;
init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
cgc.sense = &sense;
cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
cgc.cmd[1] = 2;
cgc.cmd[2] = 4; /* READ ATIP */
cgc.cmd[8] = 2;
ret = pkt_generic_packet(pd, &cgc);
if (ret) {
pkt_dump_sense(&cgc);
return ret;
}
size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
if (size > sizeof(buf))
size = sizeof(buf);
init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
cgc.sense = &sense;
cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
cgc.cmd[1] = 2;
cgc.cmd[2] = 4;
cgc.cmd[8] = size;
ret = pkt_generic_packet(pd, &cgc);
if (ret) {
pkt_dump_sense(&cgc);
return ret;
}
if (!buf[6] & 0x40) {
printk("pktcdvd: Disc type is not CD-RW\n");
return 1;
}
if (!buf[6] & 0x4) {
printk("pktcdvd: A1 values on media are not valid, maybe not CDRW?\n");
return 1;
}
st = (buf[6] >> 3) & 0x7; /* disc sub-type */
sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
/* Info from cdrecord */
switch (st) {
case 0: /* standard speed */
*speed = clv_to_speed[sp];
break;
case 1: /* high speed */
*speed = hs_clv_to_speed[sp];
break;
case 2: /* ultra high speed */
*speed = us_clv_to_speed[sp];
break;
default:
printk("pktcdvd: Unknown disc sub-type %d\n",st);
return 1;
}
if (*speed) {
printk("pktcdvd: Max. media speed: %d\n",*speed);
return 0;
} else {
printk("pktcdvd: Unknown speed %d for sub-type %d\n",sp,st);
return 1;
}
}
static int pkt_perform_opc(struct pktcdvd_device *pd)
{
struct packet_command cgc;
struct request_sense sense;
int ret;
VPRINTK("pktcdvd: Performing OPC\n");
init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
cgc.sense = &sense;
cgc.timeout = 60*HZ;
cgc.cmd[0] = GPCMD_SEND_OPC;
cgc.cmd[1] = 1;
if ((ret = pkt_generic_packet(pd, &cgc)))
pkt_dump_sense(&cgc);
return ret;
}
static int pkt_open_write(struct pktcdvd_device *pd)
{
int ret;
unsigned int write_speed, media_write_speed, read_speed;
if ((ret = pkt_probe_settings(pd))) {
DPRINTK("pktcdvd: %s failed probe\n", pd->name);
return -EIO;
}
if ((ret = pkt_set_write_settings(pd))) {
DPRINTK("pktcdvd: %s failed saving write settings\n", pd->name);
return -EIO;
}
pkt_write_caching(pd, USE_WCACHING);
if ((ret = pkt_get_max_speed(pd, &write_speed)))
write_speed = 16 * 177;
switch (pd->mmc3_profile) {
case 0x13: /* DVD-RW */
case 0x1a: /* DVD+RW */
DPRINTK("pktcdvd: write speed %ukB/s\n", write_speed);
break;
default:
if ((ret = pkt_media_speed(pd, &media_write_speed)))
media_write_speed = 16;
write_speed = min(write_speed, media_write_speed * 177);
DPRINTK("pktcdvd: write speed %ux\n", write_speed / 176);
break;
}
read_speed = write_speed;
if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
DPRINTK("pktcdvd: %s couldn't set write speed\n", pd->name);
return -EIO;
}
pd->write_speed = write_speed;
pd->read_speed = read_speed;
if ((ret = pkt_perform_opc(pd))) {
DPRINTK("pktcdvd: %s Optimum Power Calibration failed\n", pd->name);
}
return 0;
}
/*
* called at open time.
*/
static int pkt_open_dev(struct pktcdvd_device *pd, int write)
{
int ret;
long lba;
request_queue_t *q;
/*
* We need to re-open the cdrom device without O_NONBLOCK to be able
* to read/write from/to it. It is already opened in O_NONBLOCK mode
* so bdget() can't fail.
*/
bdget(pd->bdev->bd_dev);
if ((ret = blkdev_get(pd->bdev, FMODE_READ, O_RDONLY)))
goto out;
if ((ret = pkt_get_last_written(pd, &lba))) {
printk("pktcdvd: pkt_get_last_written failed\n");
goto out_putdev;
}
set_capacity(pd->disk, lba << 2);
set_capacity(pd->bdev->bd_disk, lba << 2);
bd_set_size(pd->bdev, (loff_t)lba << 11);
q = bdev_get_queue(pd->bdev);
if (write) {
if ((ret = pkt_open_write(pd)))
goto out_putdev;
/*
* Some CDRW drives can not handle writes larger than one packet,
* even if the size is a multiple of the packet size.
*/
spin_lock_irq(q->queue_lock);
blk_queue_max_sectors(q, pd->settings.size);
spin_unlock_irq(q->queue_lock);
set_bit(PACKET_WRITABLE, &pd->flags);
} else {
pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
clear_bit(PACKET_WRITABLE, &pd->flags);
}
if ((ret = pkt_set_segment_merging(pd, q)))
goto out_putdev;
if (write)
printk("pktcdvd: %lukB available on disc\n", lba << 1);
return 0;
out_putdev:
blkdev_put(pd->bdev);
out:
return ret;
}
/*
* called when the device is closed. makes sure that the device flushes
* the internal cache before we close.
*/
static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
{
if (flush && pkt_flush_cache(pd))
DPRINTK("pktcdvd: %s not flushing cache\n", pd->name);
pkt_lock_door(pd, 0);
pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
blkdev_put(pd->bdev);
}
static struct pktcdvd_device *pkt_find_dev_from_minor(int dev_minor)
{
if (dev_minor >= MAX_WRITERS)
return NULL;
return pkt_devs[dev_minor];
}
static int pkt_open(struct inode *inode, struct file *file)
{
struct pktcdvd_device *pd = NULL;
int ret;
VPRINTK("pktcdvd: entering open\n");
down(&ctl_mutex);
pd = pkt_find_dev_from_minor(iminor(inode));
if (!pd) {
ret = -ENODEV;
goto out;
}
BUG_ON(pd->refcnt < 0);
pd->refcnt++;
if (pd->refcnt == 1) {
if (pkt_open_dev(pd, file->f_mode & FMODE_WRITE)) {
ret = -EIO;
goto out_dec;
}
/*
* needed here as well, since ext2 (among others) may change
* the blocksize at mount time
*/
set_blocksize(inode->i_bdev, CD_FRAMESIZE);
}
up(&ctl_mutex);
return 0;
out_dec:
pd->refcnt--;
out:
VPRINTK("pktcdvd: failed open (%d)\n", ret);
up(&ctl_mutex);
return ret;
}
static int pkt_close(struct inode *inode, struct file *file)
{
struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
int ret = 0;
down(&ctl_mutex);
pd->refcnt--;
BUG_ON(pd->refcnt < 0);
if (pd->refcnt == 0) {
int flush = test_bit(PACKET_WRITABLE, &pd->flags);
pkt_release_dev(pd, flush);
}
up(&ctl_mutex);
return ret;
}
static void *psd_pool_alloc(int gfp_mask, void *data)
{
return kmalloc(sizeof(struct packet_stacked_data), gfp_mask);
}
static void psd_pool_free(void *ptr, void *data)
{
kfree(ptr);
}
static int pkt_end_io_read_cloned(struct bio *bio, unsigned int bytes_done, int err)
{
struct packet_stacked_data *psd = bio->bi_private;
struct pktcdvd_device *pd = psd->pd;
if (bio->bi_size)
return 1;
bio_put(bio);
bio_endio(psd->bio, psd->bio->bi_size, err);
mempool_free(psd, psd_pool);
pkt_bio_finished(pd);
return 0;
}
static int pkt_make_request(request_queue_t *q, struct bio *bio)
{
struct pktcdvd_device *pd;
char b[BDEVNAME_SIZE];
sector_t zone;
struct packet_data *pkt;
int was_empty, blocked_bio;
struct pkt_rb_node *node;
pd = q->queuedata;
if (!pd) {
printk("pktcdvd: %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
goto end_io;
}
/*
* Clone READ bios so we can have our own bi_end_io callback.
*/
if (bio_data_dir(bio) == READ) {
struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
psd->pd = pd;
psd->bio = bio;
cloned_bio->bi_bdev = pd->bdev;
cloned_bio->bi_private = psd;
cloned_bio->bi_end_io = pkt_end_io_read_cloned;
pd->stats.secs_r += bio->bi_size >> 9;
pkt_queue_bio(pd, cloned_bio, 1);
return 0;
}
if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
printk("pktcdvd: WRITE for ro device %s (%llu)\n",
pd->name, (unsigned long long)bio->bi_sector);
goto end_io;
}
if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
printk("pktcdvd: wrong bio size\n");
goto end_io;
}
blk_queue_bounce(q, &bio);
zone = ZONE(bio->bi_sector, pd);
VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
(unsigned long long)bio->bi_sector,
(unsigned long long)(bio->bi_sector + bio_sectors(bio)));
/* Check if we have to split the bio */
{
struct bio_pair *bp;
sector_t last_zone;
int first_sectors;
last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd);
if (last_zone != zone) {
BUG_ON(last_zone != zone + pd->settings.size);
first_sectors = last_zone - bio->bi_sector;
bp = bio_split(bio, bio_split_pool, first_sectors);
BUG_ON(!bp);
pkt_make_request(q, &bp->bio1);
pkt_make_request(q, &bp->bio2);
bio_pair_release(bp);
return 0;
}
}
/*
* If we find a matching packet in state WAITING or READ_WAIT, we can
* just append this bio to that packet.
*/
spin_lock(&pd->cdrw.active_list_lock);
blocked_bio = 0;
list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
if (pkt->sector == zone) {
spin_lock(&pkt->lock);
if ((pkt->state == PACKET_WAITING_STATE) ||
(pkt->state == PACKET_READ_WAIT_STATE)) {
pkt_add_list_last(bio, &pkt->orig_bios,
&pkt->orig_bios_tail);
pkt->write_size += bio->bi_size / CD_FRAMESIZE;
if ((pkt->write_size >= pkt->frames) &&
(pkt->state == PACKET_WAITING_STATE)) {
atomic_inc(&pkt->run_sm);
wake_up(&pd->wqueue);
}
spin_unlock(&pkt->lock);
spin_unlock(&pd->cdrw.active_list_lock);
return 0;
} else {
blocked_bio = 1;
}
spin_unlock(&pkt->lock);
}
}
spin_unlock(&pd->cdrw.active_list_lock);
/*
* No matching packet found. Store the bio in the work queue.
*/
node = mempool_alloc(pd->rb_pool, GFP_NOIO);
BUG_ON(!node);
node->bio = bio;
spin_lock(&pd->lock);
BUG_ON(pd->bio_queue_size < 0);
was_empty = (pd->bio_queue_size == 0);
pkt_rbtree_insert(pd, node);
spin_unlock(&pd->lock);
/*
* Wake up the worker thread.
*/
atomic_set(&pd->scan_queue, 1);
if (was_empty) {
/* This wake_up is required for correct operation */
wake_up(&pd->wqueue);
} else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
/*
* This wake up is not required for correct operation,
* but improves performance in some cases.
*/
wake_up(&pd->wqueue);
}
return 0;
end_io:
bio_io_error(bio, bio->bi_size);
return 0;
}
static int pkt_merge_bvec(request_queue_t *q, struct bio *bio, struct bio_vec *bvec)
{
struct pktcdvd_device *pd = q->queuedata;
sector_t zone = ZONE(bio->bi_sector, pd);
int used = ((bio->bi_sector - zone) << 9) + bio->bi_size;
int remaining = (pd->settings.size << 9) - used;
int remaining2;
/*
* A bio <= PAGE_SIZE must be allowed. If it crosses a packet
* boundary, pkt_make_request() will split the bio.
*/
remaining2 = PAGE_SIZE - bio->bi_size;
remaining = max(remaining, remaining2);
BUG_ON(remaining < 0);
return remaining;
}
static void pkt_init_queue(struct pktcdvd_device *pd)
{
request_queue_t *q = pd->disk->queue;
blk_queue_make_request(q, pkt_make_request);
blk_queue_hardsect_size(q, CD_FRAMESIZE);
blk_queue_max_sectors(q, PACKET_MAX_SECTORS);
blk_queue_merge_bvec(q, pkt_merge_bvec);
q->queuedata = pd;
}
static int pkt_seq_show(struct seq_file *m, void *p)
{
struct pktcdvd_device *pd = m->private;
char *msg;
char bdev_buf[BDEVNAME_SIZE];
int states[PACKET_NUM_STATES];
seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
bdevname(pd->bdev, bdev_buf));
seq_printf(m, "\nSettings:\n");
seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
if (pd->settings.write_type == 0)
msg = "Packet";
else
msg = "Unknown";
seq_printf(m, "\twrite type:\t\t%s\n", msg);
seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
msg = "Mode 1";
else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
msg = "Mode 2";
else
msg = "Unknown";
seq_printf(m, "\tblock mode:\t\t%s\n", msg);
seq_printf(m, "\nStatistics:\n");
seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
seq_printf(m, "\nMisc:\n");
seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
seq_printf(m, "\nQueue state:\n");
seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
pkt_count_states(pd, states);
seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
states[0], states[1], states[2], states[3], states[4], states[5]);
return 0;
}
static int pkt_seq_open(struct inode *inode, struct file *file)
{
return single_open(file, pkt_seq_show, PDE(inode)->data);
}
static struct file_operations pkt_proc_fops = {
.open = pkt_seq_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release
};
static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
{
int i;
int ret = 0;
char b[BDEVNAME_SIZE];
struct proc_dir_entry *proc;
struct block_device *bdev;
if (pd->pkt_dev == dev) {
printk("pktcdvd: Recursive setup not allowed\n");
return -EBUSY;
}
for (i = 0; i < MAX_WRITERS; i++) {
struct pktcdvd_device *pd2 = pkt_devs[i];
if (!pd2)
continue;
if (pd2->bdev->bd_dev == dev) {
printk("pktcdvd: %s already setup\n", bdevname(pd2->bdev, b));
return -EBUSY;
}
if (pd2->pkt_dev == dev) {
printk("pktcdvd: Can't chain pktcdvd devices\n");
return -EBUSY;
}
}
bdev = bdget(dev);
if (!bdev)
return -ENOMEM;
ret = blkdev_get(bdev, FMODE_READ, O_RDONLY | O_NONBLOCK);
if (ret)
return ret;
/* This is safe, since we have a reference from open(). */
__module_get(THIS_MODULE);
if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
printk("pktcdvd: not enough memory for buffers\n");
ret = -ENOMEM;
goto out_mem;
}
pd->bdev = bdev;
set_blocksize(bdev, CD_FRAMESIZE);
pkt_init_queue(pd);
atomic_set(&pd->cdrw.pending_bios, 0);
pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
if (IS_ERR(pd->cdrw.thread)) {
printk("pktcdvd: can't start kernel thread\n");
ret = -ENOMEM;
goto out_thread;
}
proc = create_proc_entry(pd->name, 0, pkt_proc);
if (proc) {
proc->data = pd;
proc->proc_fops = &pkt_proc_fops;
}
DPRINTK("pktcdvd: writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
return 0;
out_thread:
pkt_shrink_pktlist(pd);
out_mem:
blkdev_put(bdev);
/* This is safe: open() is still holding a reference. */
module_put(THIS_MODULE);
return ret;
}
static int pkt_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
{
struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd, imajor(inode), iminor(inode));
BUG_ON(!pd);
switch (cmd) {
/*
* forward selected CDROM ioctls to CD-ROM, for UDF
*/
case CDROMMULTISESSION:
case CDROMREADTOCENTRY:
case CDROM_LAST_WRITTEN:
case CDROM_SEND_PACKET:
case SCSI_IOCTL_SEND_COMMAND:
return ioctl_by_bdev(pd->bdev, cmd, arg);
case CDROMEJECT:
/*
* The door gets locked when the device is opened, so we
* have to unlock it or else the eject command fails.
*/
pkt_lock_door(pd, 0);
return ioctl_by_bdev(pd->bdev, cmd, arg);
default:
printk("pktcdvd: Unknown ioctl for %s (%x)\n", pd->name, cmd);
return -ENOTTY;
}
return 0;
}
static int pkt_media_changed(struct gendisk *disk)
{
struct pktcdvd_device *pd = disk->private_data;
struct gendisk *attached_disk;
if (!pd)
return 0;
if (!pd->bdev)
return 0;
attached_disk = pd->bdev->bd_disk;
if (!attached_disk)
return 0;
return attached_disk->fops->media_changed(attached_disk);
}
static struct block_device_operations pktcdvd_ops = {
.owner = THIS_MODULE,
.open = pkt_open,
.release = pkt_close,
.ioctl = pkt_ioctl,
.media_changed = pkt_media_changed,
};
/*
* Set up mapping from pktcdvd device to CD-ROM device.
*/
static int pkt_setup_dev(struct pkt_ctrl_command *ctrl_cmd)
{
int idx;
int ret = -ENOMEM;
struct pktcdvd_device *pd;
struct gendisk *disk;
dev_t dev = new_decode_dev(ctrl_cmd->dev);
for (idx = 0; idx < MAX_WRITERS; idx++)
if (!pkt_devs[idx])
break;
if (idx == MAX_WRITERS) {
printk("pktcdvd: max %d writers supported\n", MAX_WRITERS);
return -EBUSY;
}
pd = kmalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
if (!pd)
return ret;
memset(pd, 0, sizeof(struct pktcdvd_device));
pd->rb_pool = mempool_create(PKT_RB_POOL_SIZE, pkt_rb_alloc, pkt_rb_free, NULL);
if (!pd->rb_pool)
goto out_mem;
disk = alloc_disk(1);
if (!disk)
goto out_mem;
pd->disk = disk;
spin_lock_init(&pd->lock);
spin_lock_init(&pd->iosched.lock);
sprintf(pd->name, "pktcdvd%d", idx);
init_waitqueue_head(&pd->wqueue);
pd->bio_queue = RB_ROOT;
disk->major = pkt_major;
disk->first_minor = idx;
disk->fops = &pktcdvd_ops;
disk->flags = GENHD_FL_REMOVABLE;
sprintf(disk->disk_name, "pktcdvd%d", idx);
disk->private_data = pd;
disk->queue = blk_alloc_queue(GFP_KERNEL);
if (!disk->queue)
goto out_mem2;
pd->pkt_dev = MKDEV(disk->major, disk->first_minor);
ret = pkt_new_dev(pd, dev);
if (ret)
goto out_new_dev;
add_disk(disk);
pkt_devs[idx] = pd;
ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
return 0;
out_new_dev:
blk_put_queue(disk->queue);
out_mem2:
put_disk(disk);
out_mem:
if (pd->rb_pool)
mempool_destroy(pd->rb_pool);
kfree(pd);
return ret;
}
/*
* Tear down mapping from pktcdvd device to CD-ROM device.
*/
static int pkt_remove_dev(struct pkt_ctrl_command *ctrl_cmd)
{
struct pktcdvd_device *pd;
int idx;
dev_t pkt_dev = new_decode_dev(ctrl_cmd->pkt_dev);
for (idx = 0; idx < MAX_WRITERS; idx++) {
pd = pkt_devs[idx];
if (pd && (pd->pkt_dev == pkt_dev))
break;
}
if (idx == MAX_WRITERS) {
DPRINTK("pktcdvd: dev not setup\n");
return -ENXIO;
}
if (pd->refcnt > 0)
return -EBUSY;
if (!IS_ERR(pd->cdrw.thread))
kthread_stop(pd->cdrw.thread);
blkdev_put(pd->bdev);
pkt_shrink_pktlist(pd);
remove_proc_entry(pd->name, pkt_proc);
DPRINTK("pktcdvd: writer %s unmapped\n", pd->name);
del_gendisk(pd->disk);
blk_put_queue(pd->disk->queue);
put_disk(pd->disk);
pkt_devs[idx] = NULL;
mempool_destroy(pd->rb_pool);
kfree(pd);
/* This is safe: open() is still holding a reference. */
module_put(THIS_MODULE);
return 0;
}
static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
{
struct pktcdvd_device *pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
if (pd) {
ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
} else {
ctrl_cmd->dev = 0;
ctrl_cmd->pkt_dev = 0;
}
ctrl_cmd->num_devices = MAX_WRITERS;
}
static int pkt_ctl_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
{
void __user *argp = (void __user *)arg;
struct pkt_ctrl_command ctrl_cmd;
int ret = 0;
if (cmd != PACKET_CTRL_CMD)
return -ENOTTY;
if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
return -EFAULT;
switch (ctrl_cmd.command) {
case PKT_CTRL_CMD_SETUP:
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
down(&ctl_mutex);
ret = pkt_setup_dev(&ctrl_cmd);
up(&ctl_mutex);
break;
case PKT_CTRL_CMD_TEARDOWN:
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
down(&ctl_mutex);
ret = pkt_remove_dev(&ctrl_cmd);
up(&ctl_mutex);
break;
case PKT_CTRL_CMD_STATUS:
down(&ctl_mutex);
pkt_get_status(&ctrl_cmd);
up(&ctl_mutex);
break;
default:
return -ENOTTY;
}
if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
return -EFAULT;
return ret;
}
static struct file_operations pkt_ctl_fops = {
.ioctl = pkt_ctl_ioctl,
.owner = THIS_MODULE,
};
static struct miscdevice pkt_misc = {
.minor = MISC_DYNAMIC_MINOR,
.name = "pktcdvd",
.devfs_name = "pktcdvd/control",
.fops = &pkt_ctl_fops
};
int pkt_init(void)
{
int ret;
psd_pool = mempool_create(PSD_POOL_SIZE, psd_pool_alloc, psd_pool_free, NULL);
if (!psd_pool)
return -ENOMEM;
ret = register_blkdev(pkt_major, "pktcdvd");
if (ret < 0) {
printk("pktcdvd: Unable to register block device\n");
goto out2;
}
if (!pkt_major)
pkt_major = ret;
ret = misc_register(&pkt_misc);
if (ret) {
printk("pktcdvd: Unable to register misc device\n");
goto out;
}
init_MUTEX(&ctl_mutex);
pkt_proc = proc_mkdir("pktcdvd", proc_root_driver);
DPRINTK("pktcdvd: %s\n", VERSION_CODE);
return 0;
out:
unregister_blkdev(pkt_major, "pktcdvd");
out2:
mempool_destroy(psd_pool);
return ret;
}
void pkt_exit(void)
{
remove_proc_entry("pktcdvd", proc_root_driver);
misc_deregister(&pkt_misc);
unregister_blkdev(pkt_major, "pktcdvd");
mempool_destroy(psd_pool);
}
MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
MODULE_LICENSE("GPL");
module_init(pkt_init);
module_exit(pkt_exit);
...@@ -8,6 +8,7 @@ ...@@ -8,6 +8,7 @@
obj-$(CONFIG_BLK_DEV_IDECD) += cdrom.o obj-$(CONFIG_BLK_DEV_IDECD) += cdrom.o
obj-$(CONFIG_BLK_DEV_SR) += cdrom.o obj-$(CONFIG_BLK_DEV_SR) += cdrom.o
obj-$(CONFIG_PARIDE_PCD) += cdrom.o obj-$(CONFIG_PARIDE_PCD) += cdrom.o
obj-$(CONFIG_CDROM_PKTCDVD) += cdrom.o
obj-$(CONFIG_AZTCD) += aztcd.o obj-$(CONFIG_AZTCD) += aztcd.o
obj-$(CONFIG_CDU31A) += cdu31a.o cdrom.o obj-$(CONFIG_CDU31A) += cdu31a.o cdrom.o
......
...@@ -2001,7 +2001,7 @@ ide_do_rw_cdrom (ide_drive_t *drive, struct request *rq, sector_t block) ...@@ -2001,7 +2001,7 @@ ide_do_rw_cdrom (ide_drive_t *drive, struct request *rq, sector_t block)
} }
CDROM_CONFIG_FLAGS(drive)->seeking = 0; CDROM_CONFIG_FLAGS(drive)->seeking = 0;
} }
if (IDE_LARGE_SEEK(info->last_block, block, IDECD_SEEK_THRESHOLD) && drive->dsc_overlap) { if ((rq_data_dir(rq) == READ) && IDE_LARGE_SEEK(info->last_block, block, IDECD_SEEK_THRESHOLD) && drive->dsc_overlap) {
action = cdrom_start_seek(drive, block); action = cdrom_start_seek(drive, block);
} else { } else {
if (rq_data_dir(rq) == READ) if (rq_data_dir(rq) == READ)
...@@ -2962,8 +2962,10 @@ int ide_cdrom_probe_capabilities (ide_drive_t *drive) ...@@ -2962,8 +2962,10 @@ int ide_cdrom_probe_capabilities (ide_drive_t *drive)
CDROM_CONFIG_FLAGS(drive)->no_eject = 0; CDROM_CONFIG_FLAGS(drive)->no_eject = 0;
if (cap.cd_r_write) if (cap.cd_r_write)
CDROM_CONFIG_FLAGS(drive)->cd_r = 1; CDROM_CONFIG_FLAGS(drive)->cd_r = 1;
if (cap.cd_rw_write) if (cap.cd_rw_write) {
CDROM_CONFIG_FLAGS(drive)->cd_rw = 1; CDROM_CONFIG_FLAGS(drive)->cd_rw = 1;
CDROM_CONFIG_FLAGS(drive)->ram = 1;
}
if (cap.test_write) if (cap.test_write)
CDROM_CONFIG_FLAGS(drive)->test_write = 1; CDROM_CONFIG_FLAGS(drive)->test_write = 1;
if (cap.dvd_ram_read || cap.dvd_r_read || cap.dvd_rom) if (cap.dvd_ram_read || cap.dvd_r_read || cap.dvd_rom)
......
...@@ -876,10 +876,10 @@ static void get_capabilities(struct scsi_cd *cd) ...@@ -876,10 +876,10 @@ static void get_capabilities(struct scsi_cd *cd)
cd->cdi.mask |= CDC_CLOSE_TRAY; */ cd->cdi.mask |= CDC_CLOSE_TRAY; */
/* /*
* if DVD-RAM of MRW-W, we are randomly writeable * if DVD-RAM, MRW-W or CD-RW, we are randomly writable
*/ */
if ((cd->cdi.mask & (CDC_DVD_RAM | CDC_MRW_W | CDC_RAM)) != if ((cd->cdi.mask & (CDC_DVD_RAM | CDC_MRW_W | CDC_RAM | CDC_CD_RW)) !=
(CDC_DVD_RAM | CDC_MRW_W | CDC_RAM)) { (CDC_DVD_RAM | CDC_MRW_W | CDC_RAM | CDC_CD_RW)) {
cd->device->writeable = 1; cd->device->writeable = 1;
} }
......
...@@ -115,6 +115,7 @@ ...@@ -115,6 +115,7 @@
#include <linux/random.h> #include <linux/random.h>
#include <linux/filter.h> #include <linux/filter.h>
#include <linux/msdos_fs.h> #include <linux/msdos_fs.h>
#include <linux/pktcdvd.h>
#include <linux/hiddev.h> #include <linux/hiddev.h>
......
...@@ -499,6 +499,7 @@ struct cdrom_generic_command ...@@ -499,6 +499,7 @@ struct cdrom_generic_command
#define GPMODE_VENDOR_PAGE 0x00 #define GPMODE_VENDOR_PAGE 0x00
#define GPMODE_R_W_ERROR_PAGE 0x01 #define GPMODE_R_W_ERROR_PAGE 0x01
#define GPMODE_WRITE_PARMS_PAGE 0x05 #define GPMODE_WRITE_PARMS_PAGE 0x05
#define GPMODE_WCACHING_PAGE 0x08
#define GPMODE_AUDIO_CTL_PAGE 0x0e #define GPMODE_AUDIO_CTL_PAGE 0x0e
#define GPMODE_POWER_PAGE 0x1a #define GPMODE_POWER_PAGE 0x1a
#define GPMODE_FAULT_FAIL_PAGE 0x1c #define GPMODE_FAULT_FAIL_PAGE 0x1c
......
...@@ -382,6 +382,8 @@ COMPATIBLE_IOCTL(CDROMREADALL) ...@@ -382,6 +382,8 @@ COMPATIBLE_IOCTL(CDROMREADALL)
COMPATIBLE_IOCTL(DVD_READ_STRUCT) COMPATIBLE_IOCTL(DVD_READ_STRUCT)
COMPATIBLE_IOCTL(DVD_WRITE_STRUCT) COMPATIBLE_IOCTL(DVD_WRITE_STRUCT)
COMPATIBLE_IOCTL(DVD_AUTH) COMPATIBLE_IOCTL(DVD_AUTH)
/* pktcdvd */
COMPATIBLE_IOCTL(PACKET_CTRL_CMD)
/* Big L */ /* Big L */
ULONG_IOCTL(LOOP_SET_FD) ULONG_IOCTL(LOOP_SET_FD)
ULONG_IOCTL(LOOP_CHANGE_FD) ULONG_IOCTL(LOOP_CHANGE_FD)
......
/*
* Copyright (C) 2000 Jens Axboe <axboe@suse.de>
* Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
*
* May be copied or modified under the terms of the GNU General Public
* License. See linux/COPYING for more information.
*
* Packet writing layer for ATAPI and SCSI CD-R, CD-RW, DVD-R, and
* DVD-RW devices.
*
*/
#ifndef __PKTCDVD_H
#define __PKTCDVD_H
#include <linux/types.h>
/*
* 1 for normal debug messages, 2 is very verbose. 0 to turn it off.
*/
#define PACKET_DEBUG 1
#define MAX_WRITERS 8
#define PKT_RB_POOL_SIZE 512
/*
* How long we should hold a non-full packet before starting data gathering.
*/
#define PACKET_WAIT_TIME (HZ * 5 / 1000)
/*
* use drive write caching -- we need deferred error handling to be
* able to sucessfully recover with this option (drive will return good
* status as soon as the cdb is validated).
*/
#if defined(CONFIG_CDROM_PKTCDVD_WCACHE)
#define USE_WCACHING 1
#else
#define USE_WCACHING 0
#endif
/*
* No user-servicable parts beyond this point ->
*/
/*
* device types
*/
#define PACKET_CDR 1
#define PACKET_CDRW 2
#define PACKET_DVDR 3
#define PACKET_DVDRW 4
/*
* flags
*/
#define PACKET_WRITABLE 1 /* pd is writable */
#define PACKET_NWA_VALID 2 /* next writable address valid */
#define PACKET_LRA_VALID 3 /* last recorded address valid */
#define PACKET_MERGE_SEGS 4 /* perform segment merging to keep */
/* underlying cdrom device happy */
/*
* Disc status -- from READ_DISC_INFO
*/
#define PACKET_DISC_EMPTY 0
#define PACKET_DISC_INCOMPLETE 1
#define PACKET_DISC_COMPLETE 2
#define PACKET_DISC_OTHER 3
/*
* write type, and corresponding data block type
*/
#define PACKET_MODE1 1
#define PACKET_MODE2 2
#define PACKET_BLOCK_MODE1 8
#define PACKET_BLOCK_MODE2 10
/*
* Last session/border status
*/
#define PACKET_SESSION_EMPTY 0
#define PACKET_SESSION_INCOMPLETE 1
#define PACKET_SESSION_RESERVED 2
#define PACKET_SESSION_COMPLETE 3
#define PACKET_MCN "4a656e734178626f65323030300000"
#undef PACKET_USE_LS
#define PKT_CTRL_CMD_SETUP 0
#define PKT_CTRL_CMD_TEARDOWN 1
#define PKT_CTRL_CMD_STATUS 2
struct pkt_ctrl_command {
__u32 command; /* in: Setup, teardown, status */
__u32 dev_index; /* in/out: Device index */
__u32 dev; /* in/out: Device nr for cdrw device */
__u32 pkt_dev; /* in/out: Device nr for packet device */
__u32 num_devices; /* out: Largest device index + 1 */
__u32 padding; /* Not used */
};
/*
* packet ioctls
*/
#define PACKET_IOCTL_MAGIC ('X')
#define PACKET_CTRL_CMD _IOWR(PACKET_IOCTL_MAGIC, 1, struct pkt_ctrl_command)
#ifdef __KERNEL__
#include <linux/blkdev.h>
#include <linux/completion.h>
#include <linux/cdrom.h>
struct packet_settings
{
__u8 size; /* packet size in (512 byte) sectors */
__u8 fp; /* fixed packets */
__u8 link_loss; /* the rest is specified
* as per Mt Fuji */
__u8 write_type;
__u8 track_mode;
__u8 block_mode;
};
/*
* Very crude stats for now
*/
struct packet_stats
{
unsigned long pkt_started;
unsigned long pkt_ended;
unsigned long secs_w;
unsigned long secs_rg;
unsigned long secs_r;
};
struct packet_cdrw
{
struct list_head pkt_free_list;
struct list_head pkt_active_list;
spinlock_t active_list_lock; /* Serialize access to pkt_active_list */
struct task_struct *thread;
atomic_t pending_bios;
};
/*
* Switch to high speed reading after reading this many kilobytes
* with no interspersed writes.
*/
#define HI_SPEED_SWITCH 512
struct packet_iosched
{
atomic_t attention; /* Set to non-zero when queue processing is needed */
int writing; /* Non-zero when writing, zero when reading */
spinlock_t lock; /* Protecting read/write queue manipulations */
struct bio *read_queue;
struct bio *read_queue_tail;
struct bio *write_queue;
struct bio *write_queue_tail;
int high_prio_read; /* An important read request has been queued */
int successive_reads;
};
/*
* 32 buffers of 2048 bytes
*/
#define PACKET_MAX_SIZE 32
#define PAGES_PER_PACKET (PACKET_MAX_SIZE * CD_FRAMESIZE / PAGE_SIZE)
#define PACKET_MAX_SECTORS (PACKET_MAX_SIZE * CD_FRAMESIZE >> 9)
enum packet_data_state {
PACKET_IDLE_STATE, /* Not used at the moment */
PACKET_WAITING_STATE, /* Waiting for more bios to arrive, so */
/* we don't have to do as much */
/* data gathering */
PACKET_READ_WAIT_STATE, /* Waiting for reads to fill in holes */
PACKET_WRITE_WAIT_STATE, /* Waiting for the write to complete */
PACKET_RECOVERY_STATE, /* Recover after read/write errors */
PACKET_FINISHED_STATE, /* After write has finished */
PACKET_NUM_STATES /* Number of possible states */
};
/*
* Information needed for writing a single packet
*/
struct pktcdvd_device;
struct packet_data
{
struct list_head list;
spinlock_t lock; /* Lock protecting state transitions and */
/* orig_bios list */
struct bio *orig_bios; /* Original bios passed to pkt_make_request */
struct bio *orig_bios_tail;/* that will be handled by this packet */
int write_size; /* Total size of all bios in the orig_bios */
/* list, measured in number of frames */
struct bio *w_bio; /* The bio we will send to the real CD */
/* device once we have all data for the */
/* packet we are going to write */
sector_t sector; /* First sector in this packet */
int frames; /* Number of frames in this packet */
enum packet_data_state state; /* Current state */
atomic_t run_sm; /* Incremented whenever the state */
/* machine needs to be run */
long sleep_time; /* Set this to non-zero to make the state */
/* machine run after this many jiffies. */
atomic_t io_wait; /* Number of pending IO operations */
atomic_t io_errors; /* Number of read/write errors during IO */
struct bio *r_bios[PACKET_MAX_SIZE]; /* bios to use during data gathering */
struct page *pages[PAGES_PER_PACKET];
int cache_valid; /* If non-zero, the data for the zone defined */
/* by the sector variable is completely cached */
/* in the pages[] vector. */
int id; /* ID number for debugging */
struct pktcdvd_device *pd;
};
struct pkt_rb_node {
struct rb_node rb_node;
struct bio *bio;
};
struct packet_stacked_data
{
struct bio *bio; /* Original read request bio */
struct pktcdvd_device *pd;
};
#define PSD_POOL_SIZE 64
struct pktcdvd_device
{
struct block_device *bdev; /* dev attached */
dev_t pkt_dev; /* our dev */
char name[20];
struct packet_settings settings;
struct packet_stats stats;
int refcnt; /* Open count */
int write_speed; /* current write speed, kB/s */
int read_speed; /* current read speed, kB/s */
unsigned long offset; /* start offset */
__u8 mode_offset; /* 0 / 8 */
__u8 type;
unsigned long flags;
__u16 mmc3_profile;
__u32 nwa; /* next writable address */
__u32 lra; /* last recorded address */
struct packet_cdrw cdrw;
wait_queue_head_t wqueue;
spinlock_t lock; /* Serialize access to bio_queue */
struct rb_root bio_queue; /* Work queue of bios we need to handle */
int bio_queue_size; /* Number of nodes in bio_queue */
sector_t current_sector; /* Keep track of where the elevator is */
atomic_t scan_queue; /* Set to non-zero when pkt_handle_queue */
/* needs to be run. */
mempool_t *rb_pool; /* mempool for pkt_rb_node allocations */
struct packet_iosched iosched;
struct gendisk *disk;
};
#endif /* __KERNEL__ */
#endif /* __PKTCDVD_H */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment