Commit 301d8384 authored by Mark Brown's avatar Mark Brown

Merge remote-tracking branches 'spi/topic/oom', 'spi/topic/pxa2xx',...

Merge remote-tracking branches 'spi/topic/oom', 'spi/topic/pxa2xx', 'spi/topic/rspi' and 'spi/topic/sirf' into spi-next
...@@ -1111,10 +1111,8 @@ static int pl022_dma_probe(struct pl022 *pl022) ...@@ -1111,10 +1111,8 @@ static int pl022_dma_probe(struct pl022 *pl022)
} }
pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL); pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
if (!pl022->dummypage) { if (!pl022->dummypage)
dev_dbg(&pl022->adev->dev, "no DMA dummypage!\n");
goto err_no_dummypage; goto err_no_dummypage;
}
dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n", dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
dma_chan_name(pl022->dma_rx_channel), dma_chan_name(pl022->dma_rx_channel),
...@@ -1809,11 +1807,8 @@ static int pl022_setup(struct spi_device *spi) ...@@ -1809,11 +1807,8 @@ static int pl022_setup(struct spi_device *spi)
if (chip == NULL) { if (chip == NULL) {
chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL); chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
if (!chip) { if (!chip)
dev_err(&spi->dev,
"cannot allocate controller state\n");
return -ENOMEM; return -ENOMEM;
}
dev_dbg(&spi->dev, dev_dbg(&spi->dev,
"allocated memory for controller's runtime state\n"); "allocated memory for controller's runtime state\n");
} }
...@@ -2050,10 +2045,8 @@ pl022_platform_data_dt_get(struct device *dev) ...@@ -2050,10 +2045,8 @@ pl022_platform_data_dt_get(struct device *dev)
} }
pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL); pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL);
if (!pd) { if (!pd)
dev_err(dev, "cannot allocate platform data memory\n");
return NULL; return NULL;
}
pd->bus_id = -1; pd->bus_id = -1;
pd->enable_dma = 1; pd->enable_dma = 1;
......
...@@ -8,7 +8,43 @@ ...@@ -8,7 +8,43 @@
#include <linux/module.h> #include <linux/module.h>
#include <linux/spi/pxa2xx_spi.h> #include <linux/spi/pxa2xx_spi.h>
static int ce4100_spi_probe(struct pci_dev *dev, enum {
PORT_CE4100,
PORT_BYT,
};
struct pxa_spi_info {
enum pxa_ssp_type type;
int port_id;
int num_chipselect;
int tx_slave_id;
int tx_chan_id;
int rx_slave_id;
int rx_chan_id;
};
static struct pxa_spi_info spi_info_configs[] = {
[PORT_CE4100] = {
.type = PXA25x_SSP,
.port_id = -1,
.num_chipselect = -1,
.tx_slave_id = -1,
.tx_chan_id = -1,
.rx_slave_id = -1,
.rx_chan_id = -1,
},
[PORT_BYT] = {
.type = LPSS_SSP,
.port_id = 0,
.num_chipselect = 1,
.tx_slave_id = 0,
.tx_chan_id = 0,
.rx_slave_id = 1,
.rx_chan_id = 1,
},
};
static int pxa2xx_spi_pci_probe(struct pci_dev *dev,
const struct pci_device_id *ent) const struct pci_device_id *ent)
{ {
struct platform_device_info pi; struct platform_device_info pi;
...@@ -16,6 +52,7 @@ static int ce4100_spi_probe(struct pci_dev *dev, ...@@ -16,6 +52,7 @@ static int ce4100_spi_probe(struct pci_dev *dev,
struct platform_device *pdev; struct platform_device *pdev;
struct pxa2xx_spi_master spi_pdata; struct pxa2xx_spi_master spi_pdata;
struct ssp_device *ssp; struct ssp_device *ssp;
struct pxa_spi_info *c;
ret = pcim_enable_device(dev); ret = pcim_enable_device(dev);
if (ret) if (ret)
...@@ -25,8 +62,16 @@ static int ce4100_spi_probe(struct pci_dev *dev, ...@@ -25,8 +62,16 @@ static int ce4100_spi_probe(struct pci_dev *dev,
if (ret) if (ret)
return ret; return ret;
c = &spi_info_configs[ent->driver_data];
memset(&spi_pdata, 0, sizeof(spi_pdata)); memset(&spi_pdata, 0, sizeof(spi_pdata));
spi_pdata.num_chipselect = dev->devfn; spi_pdata.num_chipselect = (c->num_chipselect > 0) ?
c->num_chipselect : dev->devfn;
spi_pdata.tx_slave_id = c->tx_slave_id;
spi_pdata.tx_chan_id = c->tx_chan_id;
spi_pdata.rx_slave_id = c->rx_slave_id;
spi_pdata.rx_chan_id = c->rx_chan_id;
spi_pdata.enable_dma = c->rx_slave_id >= 0 && c->tx_slave_id >= 0;
ssp = &spi_pdata.ssp; ssp = &spi_pdata.ssp;
ssp->phys_base = pci_resource_start(dev, 0); ssp->phys_base = pci_resource_start(dev, 0);
...@@ -36,8 +81,8 @@ static int ce4100_spi_probe(struct pci_dev *dev, ...@@ -36,8 +81,8 @@ static int ce4100_spi_probe(struct pci_dev *dev,
return -EIO; return -EIO;
} }
ssp->irq = dev->irq; ssp->irq = dev->irq;
ssp->port_id = dev->devfn; ssp->port_id = (c->port_id >= 0) ? c->port_id : dev->devfn;
ssp->type = PXA25x_SSP; ssp->type = c->type;
memset(&pi, 0, sizeof(pi)); memset(&pi, 0, sizeof(pi));
pi.parent = &dev->dev; pi.parent = &dev->dev;
...@@ -55,28 +100,29 @@ static int ce4100_spi_probe(struct pci_dev *dev, ...@@ -55,28 +100,29 @@ static int ce4100_spi_probe(struct pci_dev *dev,
return 0; return 0;
} }
static void ce4100_spi_remove(struct pci_dev *dev) static void pxa2xx_spi_pci_remove(struct pci_dev *dev)
{ {
struct platform_device *pdev = pci_get_drvdata(dev); struct platform_device *pdev = pci_get_drvdata(dev);
platform_device_unregister(pdev); platform_device_unregister(pdev);
} }
static const struct pci_device_id ce4100_spi_devices[] = { static const struct pci_device_id pxa2xx_spi_pci_devices[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x2e6a) }, { PCI_VDEVICE(INTEL, 0x2e6a), PORT_CE4100 },
{ PCI_VDEVICE(INTEL, 0x0f0e), PORT_BYT },
{ }, { },
}; };
MODULE_DEVICE_TABLE(pci, ce4100_spi_devices); MODULE_DEVICE_TABLE(pci, pxa2xx_spi_pci_devices);
static struct pci_driver ce4100_spi_driver = { static struct pci_driver pxa2xx_spi_pci_driver = {
.name = "ce4100_spi", .name = "pxa2xx_spi_pci",
.id_table = ce4100_spi_devices, .id_table = pxa2xx_spi_pci_devices,
.probe = ce4100_spi_probe, .probe = pxa2xx_spi_pci_probe,
.remove = ce4100_spi_remove, .remove = pxa2xx_spi_pci_remove,
}; };
module_pci_driver(ce4100_spi_driver); module_pci_driver(pxa2xx_spi_pci_driver);
MODULE_DESCRIPTION("CE4100 PCI-SPI glue code for PXA's driver"); MODULE_DESCRIPTION("CE4100/LPSS PCI-SPI glue code for PXA's driver");
MODULE_LICENSE("GPL v2"); MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Sebastian Andrzej Siewior <bigeasy@linutronix.de>"); MODULE_AUTHOR("Sebastian Andrzej Siewior <bigeasy@linutronix.de>");
...@@ -886,11 +886,8 @@ static int setup(struct spi_device *spi) ...@@ -886,11 +886,8 @@ static int setup(struct spi_device *spi)
chip = spi_get_ctldata(spi); chip = spi_get_ctldata(spi);
if (!chip) { if (!chip) {
chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL); chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
if (!chip) { if (!chip)
dev_err(&spi->dev,
"failed setup: can't allocate chip data\n");
return -ENOMEM; return -ENOMEM;
}
if (drv_data->ssp_type == CE4100_SSP) { if (drv_data->ssp_type == CE4100_SSP) {
if (spi->chip_select > 4) { if (spi->chip_select > 4) {
...@@ -1037,11 +1034,8 @@ pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev) ...@@ -1037,11 +1034,8 @@ pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev)
return NULL; return NULL;
pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata) { if (!pdata)
dev_err(&pdev->dev,
"failed to allocate memory for platform data\n");
return NULL; return NULL;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0); res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) if (!res)
...@@ -1202,6 +1196,11 @@ static int pxa2xx_spi_probe(struct platform_device *pdev) ...@@ -1202,6 +1196,11 @@ static int pxa2xx_spi_probe(struct platform_device *pdev)
tasklet_init(&drv_data->pump_transfers, pump_transfers, tasklet_init(&drv_data->pump_transfers, pump_transfers,
(unsigned long)drv_data); (unsigned long)drv_data);
pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
/* Register with the SPI framework */ /* Register with the SPI framework */
platform_set_drvdata(pdev, drv_data); platform_set_drvdata(pdev, drv_data);
status = devm_spi_register_master(&pdev->dev, master); status = devm_spi_register_master(&pdev->dev, master);
...@@ -1210,11 +1209,6 @@ static int pxa2xx_spi_probe(struct platform_device *pdev) ...@@ -1210,11 +1209,6 @@ static int pxa2xx_spi_probe(struct platform_device *pdev)
goto out_error_clock_enabled; goto out_error_clock_enabled;
} }
pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
return status; return status;
out_error_clock_enabled: out_error_clock_enabled:
......
...@@ -183,8 +183,6 @@ ...@@ -183,8 +183,6 @@
#define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */ #define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */
#define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */ #define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */
#define DUMMY_DATA 0x00
struct rspi_data { struct rspi_data {
void __iomem *addr; void __iomem *addr;
u32 max_speed_hz; u32 max_speed_hz;
...@@ -197,11 +195,6 @@ struct rspi_data { ...@@ -197,11 +195,6 @@ struct rspi_data {
int rx_irq, tx_irq; int rx_irq, tx_irq;
const struct spi_ops *ops; const struct spi_ops *ops;
/* for dmaengine */
struct dma_chan *chan_tx;
struct dma_chan *chan_rx;
unsigned dma_width_16bit:1;
unsigned dma_callbacked:1; unsigned dma_callbacked:1;
unsigned byte_access:1; unsigned byte_access:1;
}; };
...@@ -253,6 +246,8 @@ struct spi_ops { ...@@ -253,6 +246,8 @@ struct spi_ops {
int (*transfer_one)(struct spi_master *master, struct spi_device *spi, int (*transfer_one)(struct spi_master *master, struct spi_device *spi,
struct spi_transfer *xfer); struct spi_transfer *xfer);
u16 mode_bits; u16 mode_bits;
u16 flags;
u16 fifo_size;
}; };
/* /*
...@@ -266,7 +261,8 @@ static int rspi_set_config_register(struct rspi_data *rspi, int access_size) ...@@ -266,7 +261,8 @@ static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR); rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
/* Sets transfer bit rate */ /* Sets transfer bit rate */
spbr = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz) - 1; spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
2 * rspi->max_speed_hz) - 1;
rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR); rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
/* Disable dummy transmission, set 16-bit word access, 1 frame */ /* Disable dummy transmission, set 16-bit word access, 1 frame */
...@@ -302,7 +298,8 @@ static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size) ...@@ -302,7 +298,8 @@ static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR); rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
/* Sets transfer bit rate */ /* Sets transfer bit rate */
spbr = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz) - 1; spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
2 * rspi->max_speed_hz) - 1;
rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR); rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
/* Disable dummy transmission, set byte access */ /* Disable dummy transmission, set byte access */
...@@ -335,7 +332,7 @@ static int qspi_set_config_register(struct rspi_data *rspi, int access_size) ...@@ -335,7 +332,7 @@ static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR); rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
/* Sets transfer bit rate */ /* Sets transfer bit rate */
spbr = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz); spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 2 * rspi->max_speed_hz);
rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR); rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
/* Disable dummy transmission, set byte access */ /* Disable dummy transmission, set byte access */
...@@ -403,11 +400,22 @@ static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask, ...@@ -403,11 +400,22 @@ static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
return 0; return 0;
} }
static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
{
return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
}
static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
{
return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
}
static int rspi_data_out(struct rspi_data *rspi, u8 data) static int rspi_data_out(struct rspi_data *rspi, u8 data)
{ {
if (rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE) < 0) { int error = rspi_wait_for_tx_empty(rspi);
if (error < 0) {
dev_err(&rspi->master->dev, "transmit timeout\n"); dev_err(&rspi->master->dev, "transmit timeout\n");
return -ETIMEDOUT; return error;
} }
rspi_write_data(rspi, data); rspi_write_data(rspi, data);
return 0; return 0;
...@@ -415,25 +423,36 @@ static int rspi_data_out(struct rspi_data *rspi, u8 data) ...@@ -415,25 +423,36 @@ static int rspi_data_out(struct rspi_data *rspi, u8 data)
static int rspi_data_in(struct rspi_data *rspi) static int rspi_data_in(struct rspi_data *rspi)
{ {
int error;
u8 data; u8 data;
if (rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE) < 0) { error = rspi_wait_for_rx_full(rspi);
if (error < 0) {
dev_err(&rspi->master->dev, "receive timeout\n"); dev_err(&rspi->master->dev, "receive timeout\n");
return -ETIMEDOUT; return error;
} }
data = rspi_read_data(rspi); data = rspi_read_data(rspi);
return data; return data;
} }
static int rspi_data_out_in(struct rspi_data *rspi, u8 data) static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
unsigned int n)
{ {
int ret; while (n-- > 0) {
if (tx) {
ret = rspi_data_out(rspi, data); int ret = rspi_data_out(rspi, *tx++);
if (ret < 0)
return ret;
}
if (rx) {
int ret = rspi_data_in(rspi);
if (ret < 0) if (ret < 0)
return ret; return ret;
*rx++ = ret;
}
}
return rspi_data_in(rspi); return 0;
} }
static void rspi_dma_complete(void *arg) static void rspi_dma_complete(void *arg)
...@@ -444,97 +463,67 @@ static void rspi_dma_complete(void *arg) ...@@ -444,97 +463,67 @@ static void rspi_dma_complete(void *arg)
wake_up_interruptible(&rspi->wait); wake_up_interruptible(&rspi->wait);
} }
static int rspi_dma_map_sg(struct scatterlist *sg, const void *buf, static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
unsigned len, struct dma_chan *chan, struct sg_table *rx)
enum dma_transfer_direction dir)
{
sg_init_table(sg, 1);
sg_set_buf(sg, buf, len);
sg_dma_len(sg) = len;
return dma_map_sg(chan->device->dev, sg, 1, dir);
}
static void rspi_dma_unmap_sg(struct scatterlist *sg, struct dma_chan *chan,
enum dma_transfer_direction dir)
{
dma_unmap_sg(chan->device->dev, sg, 1, dir);
}
static void rspi_memory_to_8bit(void *buf, const void *data, unsigned len)
{
u16 *dst = buf;
const u8 *src = data;
while (len) {
*dst++ = (u16)(*src++);
len--;
}
}
static void rspi_memory_from_8bit(void *buf, const void *data, unsigned len)
{ {
u8 *dst = buf; struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
const u16 *src = data; u8 irq_mask = 0;
unsigned int other_irq = 0;
while (len) { dma_cookie_t cookie;
*dst++ = (u8)*src++; int ret;
len--;
}
}
static int rspi_send_dma(struct rspi_data *rspi, struct spi_transfer *t) if (tx) {
{ desc_tx = dmaengine_prep_slave_sg(rspi->master->dma_tx,
struct scatterlist sg; tx->sgl, tx->nents, DMA_TO_DEVICE,
const void *buf = NULL; DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
struct dma_async_tx_descriptor *desc; if (!desc_tx)
unsigned int len; return -EIO;
int ret = 0;
if (rspi->dma_width_16bit) {
void *tmp;
/*
* If DMAC bus width is 16-bit, the driver allocates a dummy
* buffer. And, the driver converts original data into the
* DMAC data as the following format:
* original data: 1st byte, 2nd byte ...
* DMAC data: 1st byte, dummy, 2nd byte, dummy ...
*/
len = t->len * 2;
tmp = kmalloc(len, GFP_KERNEL);
if (!tmp)
return -ENOMEM;
rspi_memory_to_8bit(tmp, t->tx_buf, t->len);
buf = tmp;
} else {
len = t->len;
buf = t->tx_buf;
}
if (!rspi_dma_map_sg(&sg, buf, len, rspi->chan_tx, DMA_TO_DEVICE)) { irq_mask |= SPCR_SPTIE;
ret = -EFAULT;
goto end_nomap;
} }
desc = dmaengine_prep_slave_sg(rspi->chan_tx, &sg, 1, DMA_TO_DEVICE, if (rx) {
desc_rx = dmaengine_prep_slave_sg(rspi->master->dma_rx,
rx->sgl, rx->nents, DMA_FROM_DEVICE,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK); DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!desc) { if (!desc_rx)
ret = -EIO; return -EIO;
goto end;
irq_mask |= SPCR_SPRIE;
} }
/* /*
* DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
* called. So, this driver disables the IRQ while DMA transfer. * called. So, this driver disables the IRQ while DMA transfer.
*/ */
disable_irq(rspi->tx_irq); if (tx)
disable_irq(other_irq = rspi->tx_irq);
if (rx && rspi->rx_irq != other_irq)
disable_irq(rspi->rx_irq);
rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_TXMD, RSPI_SPCR); rspi_enable_irq(rspi, irq_mask);
rspi_enable_irq(rspi, SPCR_SPTIE);
rspi->dma_callbacked = 0; rspi->dma_callbacked = 0;
desc->callback = rspi_dma_complete; if (rx) {
desc->callback_param = rspi; desc_rx->callback = rspi_dma_complete;
dmaengine_submit(desc); desc_rx->callback_param = rspi;
dma_async_issue_pending(rspi->chan_tx); cookie = dmaengine_submit(desc_rx);
if (dma_submit_error(cookie))
return cookie;
dma_async_issue_pending(rspi->master->dma_rx);
}
if (tx) {
if (rx) {
/* No callback */
desc_tx->callback = NULL;
} else {
desc_tx->callback = rspi_dma_complete;
desc_tx->callback_param = rspi;
}
cookie = dmaengine_submit(desc_tx);
if (dma_submit_error(cookie))
return cookie;
dma_async_issue_pending(rspi->master->dma_tx);
}
ret = wait_event_interruptible_timeout(rspi->wait, ret = wait_event_interruptible_timeout(rspi->wait,
rspi->dma_callbacked, HZ); rspi->dma_callbacked, HZ);
...@@ -542,15 +531,13 @@ static int rspi_send_dma(struct rspi_data *rspi, struct spi_transfer *t) ...@@ -542,15 +531,13 @@ static int rspi_send_dma(struct rspi_data *rspi, struct spi_transfer *t)
ret = 0; ret = 0;
else if (!ret) else if (!ret)
ret = -ETIMEDOUT; ret = -ETIMEDOUT;
rspi_disable_irq(rspi, SPCR_SPTIE);
enable_irq(rspi->tx_irq); rspi_disable_irq(rspi, irq_mask);
end: if (tx)
rspi_dma_unmap_sg(&sg, rspi->chan_tx, DMA_TO_DEVICE); enable_irq(rspi->tx_irq);
end_nomap: if (rx && rspi->rx_irq != other_irq)
if (rspi->dma_width_16bit) enable_irq(rspi->rx_irq);
kfree(buf);
return ret; return ret;
} }
...@@ -585,157 +572,37 @@ static void qspi_receive_init(const struct rspi_data *rspi) ...@@ -585,157 +572,37 @@ static void qspi_receive_init(const struct rspi_data *rspi)
rspi_write8(rspi, 0, QSPI_SPBFCR); rspi_write8(rspi, 0, QSPI_SPBFCR);
} }
static int rspi_receive_dma(struct rspi_data *rspi, struct spi_transfer *t) static bool __rspi_can_dma(const struct rspi_data *rspi,
const struct spi_transfer *xfer)
{ {
struct scatterlist sg, sg_dummy; return xfer->len > rspi->ops->fifo_size;
void *dummy = NULL, *rx_buf = NULL;
struct dma_async_tx_descriptor *desc, *desc_dummy;
unsigned int len;
int ret = 0;
if (rspi->dma_width_16bit) {
/*
* If DMAC bus width is 16-bit, the driver allocates a dummy
* buffer. And, finally the driver converts the DMAC data into
* actual data as the following format:
* DMAC data: 1st byte, dummy, 2nd byte, dummy ...
* actual data: 1st byte, 2nd byte ...
*/
len = t->len * 2;
rx_buf = kmalloc(len, GFP_KERNEL);
if (!rx_buf)
return -ENOMEM;
} else {
len = t->len;
rx_buf = t->rx_buf;
}
/* prepare dummy transfer to generate SPI clocks */
dummy = kzalloc(len, GFP_KERNEL);
if (!dummy) {
ret = -ENOMEM;
goto end_nomap;
}
if (!rspi_dma_map_sg(&sg_dummy, dummy, len, rspi->chan_tx,
DMA_TO_DEVICE)) {
ret = -EFAULT;
goto end_nomap;
}
desc_dummy = dmaengine_prep_slave_sg(rspi->chan_tx, &sg_dummy, 1,
DMA_TO_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!desc_dummy) {
ret = -EIO;
goto end_dummy_mapped;
}
/* prepare receive transfer */
if (!rspi_dma_map_sg(&sg, rx_buf, len, rspi->chan_rx,
DMA_FROM_DEVICE)) {
ret = -EFAULT;
goto end_dummy_mapped;
}
desc = dmaengine_prep_slave_sg(rspi->chan_rx, &sg, 1, DMA_FROM_DEVICE,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!desc) {
ret = -EIO;
goto end;
}
rspi_receive_init(rspi);
/*
* DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
* called. So, this driver disables the IRQ while DMA transfer.
*/
disable_irq(rspi->tx_irq);
if (rspi->rx_irq != rspi->tx_irq)
disable_irq(rspi->rx_irq);
rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_TXMD, RSPI_SPCR);
rspi_enable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE);
rspi->dma_callbacked = 0;
desc->callback = rspi_dma_complete;
desc->callback_param = rspi;
dmaengine_submit(desc);
dma_async_issue_pending(rspi->chan_rx);
desc_dummy->callback = NULL; /* No callback */
dmaengine_submit(desc_dummy);
dma_async_issue_pending(rspi->chan_tx);
ret = wait_event_interruptible_timeout(rspi->wait,
rspi->dma_callbacked, HZ);
if (ret > 0 && rspi->dma_callbacked)
ret = 0;
else if (!ret)
ret = -ETIMEDOUT;
rspi_disable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE);
enable_irq(rspi->tx_irq);
if (rspi->rx_irq != rspi->tx_irq)
enable_irq(rspi->rx_irq);
end:
rspi_dma_unmap_sg(&sg, rspi->chan_rx, DMA_FROM_DEVICE);
end_dummy_mapped:
rspi_dma_unmap_sg(&sg_dummy, rspi->chan_tx, DMA_TO_DEVICE);
end_nomap:
if (rspi->dma_width_16bit) {
if (!ret)
rspi_memory_from_8bit(t->rx_buf, rx_buf, t->len);
kfree(rx_buf);
}
kfree(dummy);
return ret;
} }
static int rspi_is_dma(const struct rspi_data *rspi, struct spi_transfer *t) static bool rspi_can_dma(struct spi_master *master, struct spi_device *spi,
struct spi_transfer *xfer)
{ {
if (t->tx_buf && rspi->chan_tx) struct rspi_data *rspi = spi_master_get_devdata(master);
return 1;
/* If the module receives data by DMAC, it also needs TX DMAC */
if (t->rx_buf && rspi->chan_tx && rspi->chan_rx)
return 1;
return 0; return __rspi_can_dma(rspi, xfer);
} }
static int rspi_transfer_out_in(struct rspi_data *rspi, static int rspi_common_transfer(struct rspi_data *rspi,
struct spi_transfer *xfer) struct spi_transfer *xfer)
{ {
int remain = xfer->len, ret; int ret;
const u8 *tx_buf = xfer->tx_buf;
u8 *rx_buf = xfer->rx_buf;
u8 spcr, data;
rspi_receive_init(rspi);
spcr = rspi_read8(rspi, RSPI_SPCR); if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
if (rx_buf) /* rx_buf can be NULL on RSPI on SH in TX-only Mode */
spcr &= ~SPCR_TXMD; return rspi_dma_transfer(rspi, &xfer->tx_sg,
else xfer->rx_buf ? &xfer->rx_sg : NULL);
spcr |= SPCR_TXMD; }
rspi_write8(rspi, spcr, RSPI_SPCR);
while (remain > 0) { ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
data = tx_buf ? *tx_buf++ : DUMMY_DATA;
ret = rspi_data_out(rspi, data);
if (ret < 0) if (ret < 0)
return ret; return ret;
if (rx_buf) {
ret = rspi_data_in(rspi);
if (ret < 0)
return ret;
*rx_buf++ = ret;
}
remain--;
}
/* Wait for the last transmission */ /* Wait for the last transmission */
rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE); rspi_wait_for_tx_empty(rspi);
return 0; return 0;
} }
...@@ -744,46 +611,18 @@ static int rspi_transfer_one(struct spi_master *master, struct spi_device *spi, ...@@ -744,46 +611,18 @@ static int rspi_transfer_one(struct spi_master *master, struct spi_device *spi,
struct spi_transfer *xfer) struct spi_transfer *xfer)
{ {
struct rspi_data *rspi = spi_master_get_devdata(master); struct rspi_data *rspi = spi_master_get_devdata(master);
int ret; u8 spcr;
if (!rspi_is_dma(rspi, xfer))
return rspi_transfer_out_in(rspi, xfer);
if (xfer->tx_buf) {
ret = rspi_send_dma(rspi, xfer);
if (ret < 0)
return ret;
}
if (xfer->rx_buf)
return rspi_receive_dma(rspi, xfer);
return 0;
}
static int rspi_rz_transfer_out_in(struct rspi_data *rspi,
struct spi_transfer *xfer)
{
int remain = xfer->len, ret;
const u8 *tx_buf = xfer->tx_buf;
u8 *rx_buf = xfer->rx_buf;
u8 data;
rspi_rz_receive_init(rspi);
while (remain > 0) { spcr = rspi_read8(rspi, RSPI_SPCR);
data = tx_buf ? *tx_buf++ : DUMMY_DATA; if (xfer->rx_buf) {
ret = rspi_data_out_in(rspi, data); rspi_receive_init(rspi);
if (ret < 0) spcr &= ~SPCR_TXMD;
return ret; } else {
if (rx_buf) spcr |= SPCR_TXMD;
*rx_buf++ = ret;
remain--;
} }
rspi_write8(rspi, spcr, RSPI_SPCR);
/* Wait for the last transmission */ return rspi_common_transfer(rspi, xfer);
rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
return 0;
} }
static int rspi_rz_transfer_one(struct spi_master *master, static int rspi_rz_transfer_one(struct spi_master *master,
...@@ -791,68 +630,44 @@ static int rspi_rz_transfer_one(struct spi_master *master, ...@@ -791,68 +630,44 @@ static int rspi_rz_transfer_one(struct spi_master *master,
struct spi_transfer *xfer) struct spi_transfer *xfer)
{ {
struct rspi_data *rspi = spi_master_get_devdata(master); struct rspi_data *rspi = spi_master_get_devdata(master);
int ret;
rspi_rz_receive_init(rspi);
return rspi_rz_transfer_out_in(rspi, xfer); return rspi_common_transfer(rspi, xfer);
} }
static int qspi_transfer_out_in(struct rspi_data *rspi, static int qspi_transfer_out_in(struct rspi_data *rspi,
struct spi_transfer *xfer) struct spi_transfer *xfer)
{ {
int remain = xfer->len, ret;
const u8 *tx_buf = xfer->tx_buf;
u8 *rx_buf = xfer->rx_buf;
u8 data;
qspi_receive_init(rspi); qspi_receive_init(rspi);
while (remain > 0) { return rspi_common_transfer(rspi, xfer);
data = tx_buf ? *tx_buf++ : DUMMY_DATA;
ret = rspi_data_out_in(rspi, data);
if (ret < 0)
return ret;
if (rx_buf)
*rx_buf++ = ret;
remain--;
}
/* Wait for the last transmission */
rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
return 0;
} }
static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer) static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
{ {
const u8 *buf = xfer->tx_buf;
unsigned int i;
int ret; int ret;
for (i = 0; i < xfer->len; i++) { if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer))
ret = rspi_data_out(rspi, *buf++); return rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
ret = rspi_pio_transfer(rspi, xfer->tx_buf, NULL, xfer->len);
if (ret < 0) if (ret < 0)
return ret; return ret;
}
/* Wait for the last transmission */ /* Wait for the last transmission */
rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE); rspi_wait_for_tx_empty(rspi);
return 0; return 0;
} }
static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer) static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
{ {
u8 *buf = xfer->rx_buf; if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer))
unsigned int i; return rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
int ret;
for (i = 0; i < xfer->len; i++) { return rspi_pio_transfer(rspi, NULL, xfer->rx_buf, xfer->len);
ret = rspi_data_in(rspi);
if (ret < 0)
return ret;
*buf++ = ret;
}
return 0;
} }
static int qspi_transfer_one(struct spi_master *master, struct spi_device *spi, static int qspi_transfer_one(struct spi_master *master, struct spi_device *spi,
...@@ -862,10 +677,10 @@ static int qspi_transfer_one(struct spi_master *master, struct spi_device *spi, ...@@ -862,10 +677,10 @@ static int qspi_transfer_one(struct spi_master *master, struct spi_device *spi,
if (spi->mode & SPI_LOOP) { if (spi->mode & SPI_LOOP) {
return qspi_transfer_out_in(rspi, xfer); return qspi_transfer_out_in(rspi, xfer);
} else if (xfer->tx_buf && xfer->tx_nbits > SPI_NBITS_SINGLE) { } else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
/* Quad or Dual SPI Write */ /* Quad or Dual SPI Write */
return qspi_transfer_out(rspi, xfer); return qspi_transfer_out(rspi, xfer);
} else if (xfer->rx_buf && xfer->rx_nbits > SPI_NBITS_SINGLE) { } else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
/* Quad or Dual SPI Read */ /* Quad or Dual SPI Read */
return qspi_transfer_in(rspi, xfer); return qspi_transfer_in(rspi, xfer);
} else { } else {
...@@ -1046,65 +861,78 @@ static irqreturn_t rspi_irq_tx(int irq, void *_sr) ...@@ -1046,65 +861,78 @@ static irqreturn_t rspi_irq_tx(int irq, void *_sr)
return 0; return 0;
} }
static int rspi_request_dma(struct rspi_data *rspi, static struct dma_chan *rspi_request_dma_chan(struct device *dev,
struct platform_device *pdev) enum dma_transfer_direction dir,
unsigned int id,
dma_addr_t port_addr)
{ {
const struct rspi_plat_data *rspi_pd = dev_get_platdata(&pdev->dev);
struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
dma_cap_mask_t mask; dma_cap_mask_t mask;
struct dma_chan *chan;
struct dma_slave_config cfg; struct dma_slave_config cfg;
int ret; int ret;
if (!res || !rspi_pd)
return 0; /* The driver assumes no error. */
rspi->dma_width_16bit = rspi_pd->dma_width_16bit;
/* If the module receives data by DMAC, it also needs TX DMAC */
if (rspi_pd->dma_rx_id && rspi_pd->dma_tx_id) {
dma_cap_zero(mask); dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask); dma_cap_set(DMA_SLAVE, mask);
rspi->chan_rx = dma_request_channel(mask, shdma_chan_filter,
(void *)rspi_pd->dma_rx_id); chan = dma_request_channel(mask, shdma_chan_filter,
if (rspi->chan_rx) { (void *)(unsigned long)id);
cfg.slave_id = rspi_pd->dma_rx_id; if (!chan) {
cfg.direction = DMA_DEV_TO_MEM; dev_warn(dev, "dma_request_channel failed\n");
cfg.dst_addr = 0; return NULL;
cfg.src_addr = res->start + RSPI_SPDR;
ret = dmaengine_slave_config(rspi->chan_rx, &cfg);
if (!ret)
dev_info(&pdev->dev, "Use DMA when rx.\n");
else
return ret;
}
} }
if (rspi_pd->dma_tx_id) {
dma_cap_zero(mask); memset(&cfg, 0, sizeof(cfg));
dma_cap_set(DMA_SLAVE, mask); cfg.slave_id = id;
rspi->chan_tx = dma_request_channel(mask, shdma_chan_filter, cfg.direction = dir;
(void *)rspi_pd->dma_tx_id); if (dir == DMA_MEM_TO_DEV)
if (rspi->chan_tx) { cfg.dst_addr = port_addr;
cfg.slave_id = rspi_pd->dma_tx_id;
cfg.direction = DMA_MEM_TO_DEV;
cfg.dst_addr = res->start + RSPI_SPDR;
cfg.src_addr = 0;
ret = dmaengine_slave_config(rspi->chan_tx, &cfg);
if (!ret)
dev_info(&pdev->dev, "Use DMA when tx\n");
else else
return ret; cfg.src_addr = port_addr;
ret = dmaengine_slave_config(chan, &cfg);
if (ret) {
dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
dma_release_channel(chan);
return NULL;
} }
return chan;
}
static int rspi_request_dma(struct device *dev, struct spi_master *master,
const struct resource *res)
{
const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
if (!rspi_pd || !rspi_pd->dma_rx_id || !rspi_pd->dma_tx_id)
return 0; /* The driver assumes no error. */
master->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM,
rspi_pd->dma_rx_id,
res->start + RSPI_SPDR);
if (!master->dma_rx)
return -ENODEV;
master->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV,
rspi_pd->dma_tx_id,
res->start + RSPI_SPDR);
if (!master->dma_tx) {
dma_release_channel(master->dma_rx);
master->dma_rx = NULL;
return -ENODEV;
} }
master->can_dma = rspi_can_dma;
dev_info(dev, "DMA available");
return 0; return 0;
} }
static void rspi_release_dma(struct rspi_data *rspi) static void rspi_release_dma(struct rspi_data *rspi)
{ {
if (rspi->chan_tx) if (rspi->master->dma_tx)
dma_release_channel(rspi->chan_tx); dma_release_channel(rspi->master->dma_tx);
if (rspi->chan_rx) if (rspi->master->dma_rx)
dma_release_channel(rspi->chan_rx); dma_release_channel(rspi->master->dma_rx);
} }
static int rspi_remove(struct platform_device *pdev) static int rspi_remove(struct platform_device *pdev)
...@@ -1121,12 +949,16 @@ static const struct spi_ops rspi_ops = { ...@@ -1121,12 +949,16 @@ static const struct spi_ops rspi_ops = {
.set_config_register = rspi_set_config_register, .set_config_register = rspi_set_config_register,
.transfer_one = rspi_transfer_one, .transfer_one = rspi_transfer_one,
.mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP, .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP,
.flags = SPI_MASTER_MUST_TX,
.fifo_size = 8,
}; };
static const struct spi_ops rspi_rz_ops = { static const struct spi_ops rspi_rz_ops = {
.set_config_register = rspi_rz_set_config_register, .set_config_register = rspi_rz_set_config_register,
.transfer_one = rspi_rz_transfer_one, .transfer_one = rspi_rz_transfer_one,
.mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP, .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP,
.flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX,
.fifo_size = 8, /* 8 for TX, 32 for RX */
}; };
static const struct spi_ops qspi_ops = { static const struct spi_ops qspi_ops = {
...@@ -1135,6 +967,8 @@ static const struct spi_ops qspi_ops = { ...@@ -1135,6 +967,8 @@ static const struct spi_ops qspi_ops = {
.mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP | .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP |
SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_DUAL | SPI_TX_QUAD |
SPI_RX_DUAL | SPI_RX_QUAD, SPI_RX_DUAL | SPI_RX_QUAD,
.flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX,
.fifo_size = 32,
}; };
#ifdef CONFIG_OF #ifdef CONFIG_OF
...@@ -1254,6 +1088,7 @@ static int rspi_probe(struct platform_device *pdev) ...@@ -1254,6 +1088,7 @@ static int rspi_probe(struct platform_device *pdev)
master->prepare_message = rspi_prepare_message; master->prepare_message = rspi_prepare_message;
master->unprepare_message = rspi_unprepare_message; master->unprepare_message = rspi_unprepare_message;
master->mode_bits = ops->mode_bits; master->mode_bits = ops->mode_bits;
master->flags = ops->flags;
master->dev.of_node = pdev->dev.of_node; master->dev.of_node = pdev->dev.of_node;
ret = platform_get_irq_byname(pdev, "rx"); ret = platform_get_irq_byname(pdev, "rx");
...@@ -1291,11 +1126,9 @@ static int rspi_probe(struct platform_device *pdev) ...@@ -1291,11 +1126,9 @@ static int rspi_probe(struct platform_device *pdev)
goto error2; goto error2;
} }
ret = rspi_request_dma(rspi, pdev); ret = rspi_request_dma(&pdev->dev, master, res);
if (ret < 0) { if (ret < 0)
dev_err(&pdev->dev, "rspi_request_dma failed.\n"); dev_warn(&pdev->dev, "DMA not available, using PIO\n");
goto error3;
}
ret = devm_spi_register_master(&pdev->dev, master); ret = devm_spi_register_master(&pdev->dev, master);
if (ret < 0) { if (ret < 0) {
......
...@@ -183,11 +183,11 @@ static int s3c24xx_spi_setup(struct spi_device *spi) ...@@ -183,11 +183,11 @@ static int s3c24xx_spi_setup(struct spi_device *spi)
/* allocate settings on the first call */ /* allocate settings on the first call */
if (!cs) { if (!cs) {
cs = kzalloc(sizeof(struct s3c24xx_spi_devstate), GFP_KERNEL); cs = devm_kzalloc(&spi->dev,
if (!cs) { sizeof(struct s3c24xx_spi_devstate),
dev_err(&spi->dev, "no memory for controller state\n"); GFP_KERNEL);
if (!cs)
return -ENOMEM; return -ENOMEM;
}
cs->spcon = SPCON_DEFAULT; cs->spcon = SPCON_DEFAULT;
cs->hz = -1; cs->hz = -1;
...@@ -209,11 +209,6 @@ static int s3c24xx_spi_setup(struct spi_device *spi) ...@@ -209,11 +209,6 @@ static int s3c24xx_spi_setup(struct spi_device *spi)
return 0; return 0;
} }
static void s3c24xx_spi_cleanup(struct spi_device *spi)
{
kfree(spi->controller_state);
}
static inline unsigned int hw_txbyte(struct s3c24xx_spi *hw, int count) static inline unsigned int hw_txbyte(struct s3c24xx_spi *hw, int count)
{ {
return hw->tx ? hw->tx[count] : 0; return hw->tx ? hw->tx[count] : 0;
...@@ -543,7 +538,6 @@ static int s3c24xx_spi_probe(struct platform_device *pdev) ...@@ -543,7 +538,6 @@ static int s3c24xx_spi_probe(struct platform_device *pdev)
hw->bitbang.txrx_bufs = s3c24xx_spi_txrx; hw->bitbang.txrx_bufs = s3c24xx_spi_txrx;
hw->master->setup = s3c24xx_spi_setup; hw->master->setup = s3c24xx_spi_setup;
hw->master->cleanup = s3c24xx_spi_cleanup;
dev_dbg(hw->dev, "bitbang at %p\n", &hw->bitbang); dev_dbg(hw->dev, "bitbang at %p\n", &hw->bitbang);
......
...@@ -773,7 +773,6 @@ static struct s3c64xx_spi_csinfo *s3c64xx_get_slave_ctrldata( ...@@ -773,7 +773,6 @@ static struct s3c64xx_spi_csinfo *s3c64xx_get_slave_ctrldata(
cs = kzalloc(sizeof(*cs), GFP_KERNEL); cs = kzalloc(sizeof(*cs), GFP_KERNEL);
if (!cs) { if (!cs) {
dev_err(&spi->dev, "could not allocate memory for controller data\n");
of_node_put(data_np); of_node_put(data_np);
return ERR_PTR(-ENOMEM); return ERR_PTR(-ENOMEM);
} }
...@@ -987,10 +986,8 @@ static struct s3c64xx_spi_info *s3c64xx_spi_parse_dt(struct device *dev) ...@@ -987,10 +986,8 @@ static struct s3c64xx_spi_info *s3c64xx_spi_parse_dt(struct device *dev)
u32 temp; u32 temp;
sci = devm_kzalloc(dev, sizeof(*sci), GFP_KERNEL); sci = devm_kzalloc(dev, sizeof(*sci), GFP_KERNEL);
if (!sci) { if (!sci)
dev_err(dev, "memory allocation for spi_info failed\n");
return ERR_PTR(-ENOMEM); return ERR_PTR(-ENOMEM);
}
if (of_property_read_u32(dev->of_node, "samsung,spi-src-clk", &temp)) { if (of_property_read_u32(dev->of_node, "samsung,spi-src-clk", &temp)) {
dev_warn(dev, "spi bus clock parent not specified, using clock at index 0 as parent\n"); dev_warn(dev, "spi bus clock parent not specified, using clock at index 0 as parent\n");
......
...@@ -642,10 +642,8 @@ static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev) ...@@ -642,10 +642,8 @@ static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
u32 num_cs = 1; u32 num_cs = 1;
info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL); info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
if (!info) { if (!info)
dev_err(dev, "failed to allocate setup data\n");
return NULL; return NULL;
}
/* Parse the MSIOF properties */ /* Parse the MSIOF properties */
of_property_read_u32(np, "num-cs", &num_cs); of_property_read_u32(np, "num-cs", &num_cs);
......
...@@ -10,6 +10,7 @@ ...@@ -10,6 +10,7 @@
#include <linux/kernel.h> #include <linux/kernel.h>
#include <linux/slab.h> #include <linux/slab.h>
#include <linux/clk.h> #include <linux/clk.h>
#include <linux/completion.h>
#include <linux/interrupt.h> #include <linux/interrupt.h>
#include <linux/io.h> #include <linux/io.h>
#include <linux/of.h> #include <linux/of.h>
...@@ -85,6 +86,7 @@ ...@@ -85,6 +86,7 @@
#define SIRFSOC_SPI_TX_DONE BIT(1) #define SIRFSOC_SPI_TX_DONE BIT(1)
#define SIRFSOC_SPI_RX_OFLOW BIT(2) #define SIRFSOC_SPI_RX_OFLOW BIT(2)
#define SIRFSOC_SPI_TX_UFLOW BIT(3) #define SIRFSOC_SPI_TX_UFLOW BIT(3)
#define SIRFSOC_SPI_RX_IO_DMA BIT(4)
#define SIRFSOC_SPI_RX_FIFO_FULL BIT(6) #define SIRFSOC_SPI_RX_FIFO_FULL BIT(6)
#define SIRFSOC_SPI_TXFIFO_EMPTY BIT(7) #define SIRFSOC_SPI_TXFIFO_EMPTY BIT(7)
#define SIRFSOC_SPI_RXFIFO_THD_REACH BIT(8) #define SIRFSOC_SPI_RXFIFO_THD_REACH BIT(8)
...@@ -264,41 +266,34 @@ static irqreturn_t spi_sirfsoc_irq(int irq, void *dev_id) ...@@ -264,41 +266,34 @@ static irqreturn_t spi_sirfsoc_irq(int irq, void *dev_id)
{ {
struct sirfsoc_spi *sspi = dev_id; struct sirfsoc_spi *sspi = dev_id;
u32 spi_stat = readl(sspi->base + SIRFSOC_SPI_INT_STATUS); u32 spi_stat = readl(sspi->base + SIRFSOC_SPI_INT_STATUS);
writel(spi_stat, sspi->base + SIRFSOC_SPI_INT_STATUS);
if (sspi->tx_by_cmd && (spi_stat & SIRFSOC_SPI_FRM_END)) { if (sspi->tx_by_cmd && (spi_stat & SIRFSOC_SPI_FRM_END)) {
complete(&sspi->tx_done); complete(&sspi->tx_done);
writel(0x0, sspi->base + SIRFSOC_SPI_INT_EN); writel(0x0, sspi->base + SIRFSOC_SPI_INT_EN);
writel(SIRFSOC_SPI_INT_MASK_ALL,
sspi->base + SIRFSOC_SPI_INT_STATUS);
return IRQ_HANDLED; return IRQ_HANDLED;
} }
/* Error Conditions */ /* Error Conditions */
if (spi_stat & SIRFSOC_SPI_RX_OFLOW || if (spi_stat & SIRFSOC_SPI_RX_OFLOW ||
spi_stat & SIRFSOC_SPI_TX_UFLOW) { spi_stat & SIRFSOC_SPI_TX_UFLOW) {
complete(&sspi->tx_done);
complete(&sspi->rx_done); complete(&sspi->rx_done);
writel(0x0, sspi->base + SIRFSOC_SPI_INT_EN); writel(0x0, sspi->base + SIRFSOC_SPI_INT_EN);
writel(SIRFSOC_SPI_INT_MASK_ALL,
sspi->base + SIRFSOC_SPI_INT_STATUS);
return IRQ_HANDLED;
} }
if (spi_stat & SIRFSOC_SPI_TXFIFO_EMPTY)
if (spi_stat & (SIRFSOC_SPI_FRM_END complete(&sspi->tx_done);
| SIRFSOC_SPI_RXFIFO_THD_REACH)) while (!(readl(sspi->base + SIRFSOC_SPI_INT_STATUS) &
while (!((readl(sspi->base + SIRFSOC_SPI_RXFIFO_STATUS) SIRFSOC_SPI_RX_IO_DMA))
& SIRFSOC_SPI_FIFO_EMPTY)) && cpu_relax();
sspi->left_rx_word)
sspi->rx_word(sspi);
if (spi_stat & (SIRFSOC_SPI_TXFIFO_EMPTY |
SIRFSOC_SPI_TXFIFO_THD_REACH))
while (!((readl(sspi->base + SIRFSOC_SPI_TXFIFO_STATUS)
& SIRFSOC_SPI_FIFO_FULL)) &&
sspi->left_tx_word)
sspi->tx_word(sspi);
/* Received all words */
if ((sspi->left_rx_word == 0) && (sspi->left_tx_word == 0)) {
complete(&sspi->rx_done); complete(&sspi->rx_done);
writel(0x0, sspi->base + SIRFSOC_SPI_INT_EN); writel(0x0, sspi->base + SIRFSOC_SPI_INT_EN);
} writel(SIRFSOC_SPI_INT_MASK_ALL,
sspi->base + SIRFSOC_SPI_INT_STATUS);
return IRQ_HANDLED; return IRQ_HANDLED;
} }
...@@ -309,59 +304,51 @@ static void spi_sirfsoc_dma_fini_callback(void *data) ...@@ -309,59 +304,51 @@ static void spi_sirfsoc_dma_fini_callback(void *data)
complete(dma_complete); complete(dma_complete);
} }
static int spi_sirfsoc_transfer(struct spi_device *spi, struct spi_transfer *t) static int spi_sirfsoc_cmd_transfer(struct spi_device *spi,
struct spi_transfer *t)
{ {
struct sirfsoc_spi *sspi; struct sirfsoc_spi *sspi;
int timeout = t->len * 10; int timeout = t->len * 10;
sspi = spi_master_get_devdata(spi->master);
sspi->tx = t->tx_buf ? t->tx_buf : sspi->dummypage;
sspi->rx = t->rx_buf ? t->rx_buf : sspi->dummypage;
sspi->left_tx_word = sspi->left_rx_word = t->len / sspi->word_width;
reinit_completion(&sspi->rx_done);
reinit_completion(&sspi->tx_done);
writel(SIRFSOC_SPI_INT_MASK_ALL, sspi->base + SIRFSOC_SPI_INT_STATUS);
/*
* fill tx_buf into command register and wait for its completion
*/
if (sspi->tx_by_cmd) {
u32 cmd; u32 cmd;
memcpy(&cmd, sspi->tx, t->len);
sspi = spi_master_get_devdata(spi->master);
memcpy(&cmd, sspi->tx, t->len);
if (sspi->word_width == 1 && !(spi->mode & SPI_LSB_FIRST)) if (sspi->word_width == 1 && !(spi->mode & SPI_LSB_FIRST))
cmd = cpu_to_be32(cmd) >> cmd = cpu_to_be32(cmd) >>
((SIRFSOC_MAX_CMD_BYTES - t->len) * 8); ((SIRFSOC_MAX_CMD_BYTES - t->len) * 8);
if (sspi->word_width == 2 && t->len == 4 && if (sspi->word_width == 2 && t->len == 4 &&
(!(spi->mode & SPI_LSB_FIRST))) (!(spi->mode & SPI_LSB_FIRST)))
cmd = ((cmd & 0xffff) << 16) | (cmd >> 16); cmd = ((cmd & 0xffff) << 16) | (cmd >> 16);
writel(cmd, sspi->base + SIRFSOC_SPI_CMD); writel(cmd, sspi->base + SIRFSOC_SPI_CMD);
writel(SIRFSOC_SPI_FRM_END_INT_EN, writel(SIRFSOC_SPI_FRM_END_INT_EN,
sspi->base + SIRFSOC_SPI_INT_EN); sspi->base + SIRFSOC_SPI_INT_EN);
writel(SIRFSOC_SPI_CMD_TX_EN, writel(SIRFSOC_SPI_CMD_TX_EN,
sspi->base + SIRFSOC_SPI_TX_RX_EN); sspi->base + SIRFSOC_SPI_TX_RX_EN);
if (wait_for_completion_timeout(&sspi->tx_done, timeout) == 0) { if (wait_for_completion_timeout(&sspi->tx_done, timeout) == 0) {
dev_err(&spi->dev, "transfer timeout\n"); dev_err(&spi->dev, "cmd transfer timeout\n");
return 0; return 0;
} }
return t->len; return t->len;
} }
if (sspi->left_tx_word == 1) { static void spi_sirfsoc_dma_transfer(struct spi_device *spi,
writel(readl(sspi->base + SIRFSOC_SPI_CTRL) | struct spi_transfer *t)
SIRFSOC_SPI_ENA_AUTO_CLR, {
sspi->base + SIRFSOC_SPI_CTRL); struct sirfsoc_spi *sspi;
writel(0, sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN); struct dma_async_tx_descriptor *rx_desc, *tx_desc;
writel(0, sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN); int timeout = t->len * 10;
} else if ((sspi->left_tx_word > 1) && (sspi->left_tx_word <
SIRFSOC_SPI_DAT_FRM_LEN_MAX)) { sspi = spi_master_get_devdata(spi->master);
writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
writel(0, sspi->base + SIRFSOC_SPI_INT_EN);
writel(SIRFSOC_SPI_INT_MASK_ALL, sspi->base + SIRFSOC_SPI_INT_STATUS);
if (sspi->left_tx_word < SIRFSOC_SPI_DAT_FRM_LEN_MAX) {
writel(readl(sspi->base + SIRFSOC_SPI_CTRL) | writel(readl(sspi->base + SIRFSOC_SPI_CTRL) |
SIRFSOC_SPI_MUL_DAT_MODE | SIRFSOC_SPI_ENA_AUTO_CLR | SIRFSOC_SPI_MUL_DAT_MODE,
SIRFSOC_SPI_ENA_AUTO_CLR,
sspi->base + SIRFSOC_SPI_CTRL); sspi->base + SIRFSOC_SPI_CTRL);
writel(sspi->left_tx_word - 1, writel(sspi->left_tx_word - 1,
sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN); sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN);
...@@ -373,23 +360,18 @@ static int spi_sirfsoc_transfer(struct spi_device *spi, struct spi_transfer *t) ...@@ -373,23 +360,18 @@ static int spi_sirfsoc_transfer(struct spi_device *spi, struct spi_transfer *t)
writel(0, sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN); writel(0, sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN);
writel(0, sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN); writel(0, sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN);
} }
sspi->dst_start = dma_map_single(&spi->dev, sspi->rx, t->len,
writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP); (t->tx_buf != t->rx_buf) ?
writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP); DMA_FROM_DEVICE : DMA_BIDIRECTIONAL);
writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
if (IS_DMA_VALID(t)) {
struct dma_async_tx_descriptor *rx_desc, *tx_desc;
sspi->dst_start = dma_map_single(&spi->dev, sspi->rx, t->len, DMA_FROM_DEVICE);
rx_desc = dmaengine_prep_slave_single(sspi->rx_chan, rx_desc = dmaengine_prep_slave_single(sspi->rx_chan,
sspi->dst_start, t->len, DMA_DEV_TO_MEM, sspi->dst_start, t->len, DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK); DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
rx_desc->callback = spi_sirfsoc_dma_fini_callback; rx_desc->callback = spi_sirfsoc_dma_fini_callback;
rx_desc->callback_param = &sspi->rx_done; rx_desc->callback_param = &sspi->rx_done;
sspi->src_start = dma_map_single(&spi->dev, (void *)sspi->tx, t->len, DMA_TO_DEVICE); sspi->src_start = dma_map_single(&spi->dev, (void *)sspi->tx, t->len,
(t->tx_buf != t->rx_buf) ?
DMA_TO_DEVICE : DMA_BIDIRECTIONAL);
tx_desc = dmaengine_prep_slave_single(sspi->tx_chan, tx_desc = dmaengine_prep_slave_single(sspi->tx_chan,
sspi->src_start, t->len, DMA_MEM_TO_DEV, sspi->src_start, t->len, DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK); DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
...@@ -400,49 +382,100 @@ static int spi_sirfsoc_transfer(struct spi_device *spi, struct spi_transfer *t) ...@@ -400,49 +382,100 @@ static int spi_sirfsoc_transfer(struct spi_device *spi, struct spi_transfer *t)
dmaengine_submit(rx_desc); dmaengine_submit(rx_desc);
dma_async_issue_pending(sspi->tx_chan); dma_async_issue_pending(sspi->tx_chan);
dma_async_issue_pending(sspi->rx_chan); dma_async_issue_pending(sspi->rx_chan);
} else { writel(SIRFSOC_SPI_RX_EN | SIRFSOC_SPI_TX_EN,
/* Send the first word to trigger the whole tx/rx process */ sspi->base + SIRFSOC_SPI_TX_RX_EN);
sspi->tx_word(sspi); if (wait_for_completion_timeout(&sspi->rx_done, timeout) == 0) {
writel(SIRFSOC_SPI_RX_OFLOW_INT_EN | SIRFSOC_SPI_TX_UFLOW_INT_EN |
SIRFSOC_SPI_RXFIFO_THD_INT_EN | SIRFSOC_SPI_TXFIFO_THD_INT_EN |
SIRFSOC_SPI_FRM_END_INT_EN | SIRFSOC_SPI_RXFIFO_FULL_INT_EN |
SIRFSOC_SPI_TXFIFO_EMPTY_INT_EN, sspi->base + SIRFSOC_SPI_INT_EN);
}
writel(SIRFSOC_SPI_RX_EN | SIRFSOC_SPI_TX_EN, sspi->base + SIRFSOC_SPI_TX_RX_EN);
if (!IS_DMA_VALID(t)) { /* for PIO */
if (wait_for_completion_timeout(&sspi->rx_done, timeout) == 0)
dev_err(&spi->dev, "transfer timeout\n");
} else if (wait_for_completion_timeout(&sspi->rx_done, timeout) == 0) {
dev_err(&spi->dev, "transfer timeout\n"); dev_err(&spi->dev, "transfer timeout\n");
dmaengine_terminate_all(sspi->rx_chan); dmaengine_terminate_all(sspi->rx_chan);
} else } else
sspi->left_rx_word = 0; sspi->left_rx_word = 0;
/* /*
* we only wait tx-done event if transferring by DMA. for PIO, * we only wait tx-done event if transferring by DMA. for PIO,
* we get rx data by writing tx data, so if rx is done, tx has * we get rx data by writing tx data, so if rx is done, tx has
* done earlier * done earlier
*/ */
if (IS_DMA_VALID(t)) {
if (wait_for_completion_timeout(&sspi->tx_done, timeout) == 0) { if (wait_for_completion_timeout(&sspi->tx_done, timeout) == 0) {
dev_err(&spi->dev, "transfer timeout\n"); dev_err(&spi->dev, "transfer timeout\n");
dmaengine_terminate_all(sspi->tx_chan); dmaengine_terminate_all(sspi->tx_chan);
} }
}
if (IS_DMA_VALID(t)) {
dma_unmap_single(&spi->dev, sspi->src_start, t->len, DMA_TO_DEVICE); dma_unmap_single(&spi->dev, sspi->src_start, t->len, DMA_TO_DEVICE);
dma_unmap_single(&spi->dev, sspi->dst_start, t->len, DMA_FROM_DEVICE); dma_unmap_single(&spi->dev, sspi->dst_start, t->len, DMA_FROM_DEVICE);
}
/* TX, RX FIFO stop */ /* TX, RX FIFO stop */
writel(0, sspi->base + SIRFSOC_SPI_RXFIFO_OP); writel(0, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
writel(0, sspi->base + SIRFSOC_SPI_TXFIFO_OP); writel(0, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
if (sspi->left_tx_word >= SIRFSOC_SPI_DAT_FRM_LEN_MAX)
writel(0, sspi->base + SIRFSOC_SPI_TX_RX_EN); writel(0, sspi->base + SIRFSOC_SPI_TX_RX_EN);
}
static void spi_sirfsoc_pio_transfer(struct spi_device *spi,
struct spi_transfer *t)
{
struct sirfsoc_spi *sspi;
int timeout = t->len * 10;
sspi = spi_master_get_devdata(spi->master);
do {
writel(SIRFSOC_SPI_FIFO_RESET,
sspi->base + SIRFSOC_SPI_RXFIFO_OP);
writel(SIRFSOC_SPI_FIFO_RESET,
sspi->base + SIRFSOC_SPI_TXFIFO_OP);
writel(SIRFSOC_SPI_FIFO_START,
sspi->base + SIRFSOC_SPI_RXFIFO_OP);
writel(SIRFSOC_SPI_FIFO_START,
sspi->base + SIRFSOC_SPI_TXFIFO_OP);
writel(0, sspi->base + SIRFSOC_SPI_INT_EN); writel(0, sspi->base + SIRFSOC_SPI_INT_EN);
writel(SIRFSOC_SPI_INT_MASK_ALL,
sspi->base + SIRFSOC_SPI_INT_STATUS);
writel(readl(sspi->base + SIRFSOC_SPI_CTRL) |
SIRFSOC_SPI_MUL_DAT_MODE | SIRFSOC_SPI_ENA_AUTO_CLR,
sspi->base + SIRFSOC_SPI_CTRL);
writel(min(sspi->left_tx_word, (u32)(256 / sspi->word_width))
- 1, sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN);
writel(min(sspi->left_rx_word, (u32)(256 / sspi->word_width))
- 1, sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN);
while (!((readl(sspi->base + SIRFSOC_SPI_TXFIFO_STATUS)
& SIRFSOC_SPI_FIFO_FULL)) && sspi->left_tx_word)
sspi->tx_word(sspi);
writel(SIRFSOC_SPI_TXFIFO_EMPTY_INT_EN |
SIRFSOC_SPI_TX_UFLOW_INT_EN |
SIRFSOC_SPI_RX_OFLOW_INT_EN,
sspi->base + SIRFSOC_SPI_INT_EN);
writel(SIRFSOC_SPI_RX_EN | SIRFSOC_SPI_TX_EN,
sspi->base + SIRFSOC_SPI_TX_RX_EN);
if (!wait_for_completion_timeout(&sspi->tx_done, timeout) ||
!wait_for_completion_timeout(&sspi->rx_done, timeout)) {
dev_err(&spi->dev, "transfer timeout\n");
break;
}
while (!((readl(sspi->base + SIRFSOC_SPI_RXFIFO_STATUS)
& SIRFSOC_SPI_FIFO_EMPTY)) && sspi->left_rx_word)
sspi->rx_word(sspi);
writel(0, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
writel(0, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
} while (sspi->left_tx_word != 0 || sspi->left_rx_word != 0);
}
static int spi_sirfsoc_transfer(struct spi_device *spi, struct spi_transfer *t)
{
struct sirfsoc_spi *sspi;
sspi = spi_master_get_devdata(spi->master);
sspi->tx = t->tx_buf ? t->tx_buf : sspi->dummypage;
sspi->rx = t->rx_buf ? t->rx_buf : sspi->dummypage;
sspi->left_tx_word = sspi->left_rx_word = t->len / sspi->word_width;
reinit_completion(&sspi->rx_done);
reinit_completion(&sspi->tx_done);
/*
* in the transfer, if transfer data using command register with rx_buf
* null, just fill command data into command register and wait for its
* completion.
*/
if (sspi->tx_by_cmd)
spi_sirfsoc_cmd_transfer(spi, t);
else if (IS_DMA_VALID(t))
spi_sirfsoc_dma_transfer(spi, t);
else
spi_sirfsoc_pio_transfer(spi, t);
return t->len - sspi->left_rx_word * sspi->word_width; return t->len - sspi->left_rx_word * sspi->word_width;
} }
...@@ -512,7 +545,8 @@ spi_sirfsoc_setup_transfer(struct spi_device *spi, struct spi_transfer *t) ...@@ -512,7 +545,8 @@ spi_sirfsoc_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
break; break;
case 12: case 12:
case 16: case 16:
regval |= (bits_per_word == 12) ? SIRFSOC_SPI_TRAN_DAT_FORMAT_12 : regval |= (bits_per_word == 12) ?
SIRFSOC_SPI_TRAN_DAT_FORMAT_12 :
SIRFSOC_SPI_TRAN_DAT_FORMAT_16; SIRFSOC_SPI_TRAN_DAT_FORMAT_16;
sspi->rx_word = spi_sirfsoc_rx_word_u16; sspi->rx_word = spi_sirfsoc_rx_word_u16;
sspi->tx_word = spi_sirfsoc_tx_word_u16; sspi->tx_word = spi_sirfsoc_tx_word_u16;
...@@ -540,8 +574,8 @@ spi_sirfsoc_setup_transfer(struct spi_device *spi, struct spi_transfer *t) ...@@ -540,8 +574,8 @@ spi_sirfsoc_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
regval |= SIRFSOC_SPI_CLK_IDLE_STAT; regval |= SIRFSOC_SPI_CLK_IDLE_STAT;
/* /*
* Data should be driven at least 1/2 cycle before the fetch edge to make * Data should be driven at least 1/2 cycle before the fetch edge
* sure that data gets stable at the fetch edge. * to make sure that data gets stable at the fetch edge.
*/ */
if (((spi->mode & SPI_CPOL) && (spi->mode & SPI_CPHA)) || if (((spi->mode & SPI_CPOL) && (spi->mode & SPI_CPHA)) ||
(!(spi->mode & SPI_CPOL) && !(spi->mode & SPI_CPHA))) (!(spi->mode & SPI_CPOL) && !(spi->mode & SPI_CPHA)))
...@@ -578,11 +612,14 @@ spi_sirfsoc_setup_transfer(struct spi_device *spi, struct spi_transfer *t) ...@@ -578,11 +612,14 @@ spi_sirfsoc_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
if (IS_DMA_VALID(t)) { if (IS_DMA_VALID(t)) {
/* Enable DMA mode for RX, TX */ /* Enable DMA mode for RX, TX */
writel(0, sspi->base + SIRFSOC_SPI_TX_DMA_IO_CTRL); writel(0, sspi->base + SIRFSOC_SPI_TX_DMA_IO_CTRL);
writel(SIRFSOC_SPI_RX_DMA_FLUSH, sspi->base + SIRFSOC_SPI_RX_DMA_IO_CTRL); writel(SIRFSOC_SPI_RX_DMA_FLUSH,
sspi->base + SIRFSOC_SPI_RX_DMA_IO_CTRL);
} else { } else {
/* Enable IO mode for RX, TX */ /* Enable IO mode for RX, TX */
writel(SIRFSOC_SPI_IO_MODE_SEL, sspi->base + SIRFSOC_SPI_TX_DMA_IO_CTRL); writel(SIRFSOC_SPI_IO_MODE_SEL,
writel(SIRFSOC_SPI_IO_MODE_SEL, sspi->base + SIRFSOC_SPI_RX_DMA_IO_CTRL); sspi->base + SIRFSOC_SPI_TX_DMA_IO_CTRL);
writel(SIRFSOC_SPI_IO_MODE_SEL,
sspi->base + SIRFSOC_SPI_RX_DMA_IO_CTRL);
} }
return 0; return 0;
...@@ -612,7 +649,8 @@ static int spi_sirfsoc_probe(struct platform_device *pdev) ...@@ -612,7 +649,8 @@ static int spi_sirfsoc_probe(struct platform_device *pdev)
goto err_cs; goto err_cs;
} }
master = spi_alloc_master(&pdev->dev, sizeof(*sspi) + sizeof(int) * num_cs); master = spi_alloc_master(&pdev->dev,
sizeof(*sspi) + sizeof(int) * num_cs);
if (!master) { if (!master) {
dev_err(&pdev->dev, "Unable to allocate SPI master\n"); dev_err(&pdev->dev, "Unable to allocate SPI master\n");
return -ENOMEM; return -ENOMEM;
...@@ -808,8 +846,7 @@ static struct platform_driver spi_sirfsoc_driver = { ...@@ -808,8 +846,7 @@ static struct platform_driver spi_sirfsoc_driver = {
.remove = spi_sirfsoc_remove, .remove = spi_sirfsoc_remove,
}; };
module_platform_driver(spi_sirfsoc_driver); module_platform_driver(spi_sirfsoc_driver);
MODULE_DESCRIPTION("SiRF SoC SPI master driver"); MODULE_DESCRIPTION("SiRF SoC SPI master driver");
MODULE_AUTHOR("Zhiwu Song <Zhiwu.Song@csr.com>, " MODULE_AUTHOR("Zhiwu Song <Zhiwu.Song@csr.com>");
"Barry Song <Baohua.Song@csr.com>"); MODULE_AUTHOR("Barry Song <Baohua.Song@csr.com>");
MODULE_LICENSE("GPL v2"); MODULE_LICENSE("GPL v2");
...@@ -253,10 +253,8 @@ static int tle62x0_probe(struct spi_device *spi) ...@@ -253,10 +253,8 @@ static int tle62x0_probe(struct spi_device *spi)
} }
st = kzalloc(sizeof(struct tle62x0_state), GFP_KERNEL); st = kzalloc(sizeof(struct tle62x0_state), GFP_KERNEL);
if (st == NULL) { if (st == NULL)
dev_err(&spi->dev, "no memory for device state\n");
return -ENOMEM; return -ENOMEM;
}
st->us = spi; st->us = spi;
st->nr_gpio = pdata->gpio_count; st->nr_gpio = pdata->gpio_count;
......
...@@ -1578,14 +1578,11 @@ static int pch_spi_probe(struct pci_dev *pdev, const struct pci_device_id *id) ...@@ -1578,14 +1578,11 @@ static int pch_spi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
struct pch_pd_dev_save *pd_dev_save; struct pch_pd_dev_save *pd_dev_save;
pd_dev_save = kzalloc(sizeof(struct pch_pd_dev_save), GFP_KERNEL); pd_dev_save = kzalloc(sizeof(struct pch_pd_dev_save), GFP_KERNEL);
if (!pd_dev_save) { if (!pd_dev_save)
dev_err(&pdev->dev, "%s Can't allocate pd_dev_sav\n", __func__);
return -ENOMEM; return -ENOMEM;
}
board_dat = kzalloc(sizeof(struct pch_spi_board_data), GFP_KERNEL); board_dat = kzalloc(sizeof(struct pch_spi_board_data), GFP_KERNEL);
if (!board_dat) { if (!board_dat) {
dev_err(&pdev->dev, "%s Can't allocate board_dat\n", __func__);
retval = -ENOMEM; retval = -ENOMEM;
goto err_no_mem; goto err_no_mem;
} }
......
...@@ -25,8 +25,6 @@ struct rspi_plat_data { ...@@ -25,8 +25,6 @@ struct rspi_plat_data {
unsigned int dma_tx_id; unsigned int dma_tx_id;
unsigned int dma_rx_id; unsigned int dma_rx_id;
unsigned dma_width_16bit:1; /* DMAC read/write width = 16-bit */
u16 num_chipselect; u16 num_chipselect;
}; };
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment