Commit 368ff8f1 authored by Suzuki Poulose's avatar Suzuki Poulose Committed by Josh Boyer

powerpc: Define virtual-physical translations for RELOCATABLE

We find the runtime address of _stext and relocate ourselves based
on the following calculation.

	virtual_base = ALIGN(KERNELBASE,KERNEL_TLB_PIN_SIZE) +
			MODULO(_stext.run,KERNEL_TLB_PIN_SIZE)

relocate() is called with the Effective Virtual Base Address (as
shown below)

            | Phys. Addr| Virt. Addr |
Page        |------------------------|
Boundary    |           |            |
            |           |            |
            |           |            |
Kernel Load |___________|_ __ _ _ _ _|<- Effective
Addr(_stext)|           |      ^     |Virt. Base Addr
            |           |      |     |
            |           |      |     |
            |           |reloc_offset|
            |           |      |     |
            |           |      |     |
            |           |______v_____|<-(KERNELBASE)%TLB_SIZE
            |           |            |
            |           |            |
            |           |            |
Page        |-----------|------------|
Boundary    |           |            |

On BookE, we need __va() & __pa() early in the boot process to access
the device tree.

Currently this has been defined as :

#define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) -
						PHYSICAL_START + KERNELBASE)
where:
 PHYSICAL_START is kernstart_addr - a variable updated at runtime.
 KERNELBASE	is the compile time Virtual base address of kernel.

This won't work for us, as kernstart_addr is dynamic and will yield different
results for __va()/__pa() for same mapping.

e.g.,

Let the kernel be loaded at 64MB and KERNELBASE be 0xc0000000 (same as
PAGE_OFFSET).

In this case, we would be mapping 0 to 0xc0000000, and kernstart_addr = 64M

Now __va(1MB) = (0x100000) - (0x4000000) + 0xc0000000
		= 0xbc100000 , which is wrong.

it should be : 0xc0000000 + 0x100000 = 0xc0100000

On platforms which support AMP, like PPC_47x (based on 44x), the kernel
could be loaded at highmem. Hence we cannot always depend on the compile
time constants for mapping.

Here are the possible solutions:

1) Update kernstart_addr(PHSYICAL_START) to match the Physical address of
compile time KERNELBASE value, instead of the actual Physical_Address(_stext).

The disadvantage is that we may break other users of PHYSICAL_START. They
could be replaced with __pa(_stext).

2) Redefine __va() & __pa() with relocation offset

#ifdef	CONFIG_RELOCATABLE_PPC32
#define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) - PHYSICAL_START + (KERNELBASE + RELOC_OFFSET)))
#define __pa(x) ((unsigned long)(x) + PHYSICAL_START - (KERNELBASE + RELOC_OFFSET))
#endif

where, RELOC_OFFSET could be

  a) A variable, say relocation_offset (like kernstart_addr), updated
     at boot time. This impacts performance, as we have to load an additional
     variable from memory.

		OR

  b) #define RELOC_OFFSET ((PHYSICAL_START & PPC_PIN_SIZE_OFFSET_MASK) - \
                      (KERNELBASE & PPC_PIN_SIZE_OFFSET_MASK))

   This introduces more calculations for doing the translation.

3) Redefine __va() & __pa() with a new variable

i.e,

#define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) + VIRT_PHYS_OFFSET))

where VIRT_PHYS_OFFSET :

#ifdef CONFIG_RELOCATABLE_PPC32
#define VIRT_PHYS_OFFSET virt_phys_offset
#else
#define VIRT_PHYS_OFFSET (KERNELBASE - PHYSICAL_START)
#endif /* CONFIG_RELOCATABLE_PPC32 */

where virt_phy_offset is updated at runtime to :

	Effective KERNELBASE - kernstart_addr.

Taking our example, above:

virt_phys_offset = effective_kernelstart_vaddr - kernstart_addr
		 = 0xc0400000 - 0x400000
		 = 0xc0000000
	and

	__va(0x100000) = 0xc0000000 + 0x100000 = 0xc0100000
	 which is what we want.

I have implemented (3) in the following patch which has same cost of
operation as the existing one.

I have tested the patches on 440x platforms only. However this should
work fine for PPC_47x also, as we only depend on the runtime address
and the current TLB XLAT entry for the startup code, which is available
in r25. I don't have access to a 47x board yet. So, it would be great if
somebody could test this on 47x.
Signed-off-by: default avatarSuzuki K. Poulose <suzuki@in.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Kumar Gala <galak@kernel.crashing.org>
Cc: linuxppc-dev <linuxppc-dev@lists.ozlabs.org>
Signed-off-by: default avatarJosh Boyer <jwboyer@gmail.com>
parent 9c5f7d39
...@@ -97,12 +97,26 @@ extern unsigned int HPAGE_SHIFT; ...@@ -97,12 +97,26 @@ extern unsigned int HPAGE_SHIFT;
extern phys_addr_t memstart_addr; extern phys_addr_t memstart_addr;
extern phys_addr_t kernstart_addr; extern phys_addr_t kernstart_addr;
#ifdef CONFIG_RELOCATABLE_PPC32
extern long long virt_phys_offset;
#endif #endif
#endif /* __ASSEMBLY__ */
#define PHYSICAL_START kernstart_addr #define PHYSICAL_START kernstart_addr
#else
#else /* !CONFIG_NONSTATIC_KERNEL */
#define PHYSICAL_START ASM_CONST(CONFIG_PHYSICAL_START) #define PHYSICAL_START ASM_CONST(CONFIG_PHYSICAL_START)
#endif #endif
/* See Description below for VIRT_PHYS_OFFSET */
#ifdef CONFIG_RELOCATABLE_PPC32
#define VIRT_PHYS_OFFSET virt_phys_offset
#else
#define VIRT_PHYS_OFFSET (KERNELBASE - PHYSICAL_START)
#endif
#ifdef CONFIG_PPC64 #ifdef CONFIG_PPC64
#define MEMORY_START 0UL #define MEMORY_START 0UL
#elif defined(CONFIG_NONSTATIC_KERNEL) #elif defined(CONFIG_NONSTATIC_KERNEL)
...@@ -125,12 +139,77 @@ extern phys_addr_t kernstart_addr; ...@@ -125,12 +139,77 @@ extern phys_addr_t kernstart_addr;
* determine MEMORY_START until then. However we can determine PHYSICAL_START * determine MEMORY_START until then. However we can determine PHYSICAL_START
* from information at hand (program counter, TLB lookup). * from information at hand (program counter, TLB lookup).
* *
* On BookE with RELOCATABLE (RELOCATABLE_PPC32)
*
* With RELOCATABLE_PPC32, we support loading the kernel at any physical
* address without any restriction on the page alignment.
*
* We find the runtime address of _stext and relocate ourselves based on
* the following calculation:
*
* virtual_base = ALIGN_DOWN(KERNELBASE,256M) +
* MODULO(_stext.run,256M)
* and create the following mapping:
*
* ALIGN_DOWN(_stext.run,256M) => ALIGN_DOWN(KERNELBASE,256M)
*
* When we process relocations, we cannot depend on the
* existing equation for the __va()/__pa() translations:
*
* __va(x) = (x) - PHYSICAL_START + KERNELBASE
*
* Where:
* PHYSICAL_START = kernstart_addr = Physical address of _stext
* KERNELBASE = Compiled virtual address of _stext.
*
* This formula holds true iff, kernel load address is TLB page aligned.
*
* In our case, we need to also account for the shift in the kernel Virtual
* address.
*
* E.g.,
*
* Let the kernel be loaded at 64MB and KERNELBASE be 0xc0000000 (same as PAGE_OFFSET).
* In this case, we would be mapping 0 to 0xc0000000, and kernstart_addr = 64M
*
* Now __va(1MB) = (0x100000) - (0x4000000) + 0xc0000000
* = 0xbc100000 , which is wrong.
*
* Rather, it should be : 0xc0000000 + 0x100000 = 0xc0100000
* according to our mapping.
*
* Hence we use the following formula to get the translations right:
*
* __va(x) = (x) - [ PHYSICAL_START - Effective KERNELBASE ]
*
* Where :
* PHYSICAL_START = dynamic load address.(kernstart_addr variable)
* Effective KERNELBASE = virtual_base =
* = ALIGN_DOWN(KERNELBASE,256M) +
* MODULO(PHYSICAL_START,256M)
*
* To make the cost of __va() / __pa() more light weight, we introduce
* a new variable virt_phys_offset, which will hold :
*
* virt_phys_offset = Effective KERNELBASE - PHYSICAL_START
* = ALIGN_DOWN(KERNELBASE,256M) -
* ALIGN_DOWN(PHYSICALSTART,256M)
*
* Hence :
*
* __va(x) = x - PHYSICAL_START + Effective KERNELBASE
* = x + virt_phys_offset
*
* and
* __pa(x) = x + PHYSICAL_START - Effective KERNELBASE
* = x - virt_phys_offset
*
* On non-Book-E PPC64 PAGE_OFFSET and MEMORY_START are constants so use * On non-Book-E PPC64 PAGE_OFFSET and MEMORY_START are constants so use
* the other definitions for __va & __pa. * the other definitions for __va & __pa.
*/ */
#ifdef CONFIG_BOOKE #ifdef CONFIG_BOOKE
#define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) - PHYSICAL_START + KERNELBASE)) #define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) + VIRT_PHYS_OFFSET))
#define __pa(x) ((unsigned long)(x) + PHYSICAL_START - KERNELBASE) #define __pa(x) ((unsigned long)(x) - VIRT_PHYS_OFFSET)
#else #else
#define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) + PAGE_OFFSET - MEMORY_START)) #define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) + PAGE_OFFSET - MEMORY_START))
#define __pa(x) ((unsigned long)(x) - PAGE_OFFSET + MEMORY_START) #define __pa(x) ((unsigned long)(x) - PAGE_OFFSET + MEMORY_START)
......
...@@ -65,6 +65,13 @@ phys_addr_t memstart_addr = (phys_addr_t)~0ull; ...@@ -65,6 +65,13 @@ phys_addr_t memstart_addr = (phys_addr_t)~0ull;
EXPORT_SYMBOL(memstart_addr); EXPORT_SYMBOL(memstart_addr);
phys_addr_t kernstart_addr; phys_addr_t kernstart_addr;
EXPORT_SYMBOL(kernstart_addr); EXPORT_SYMBOL(kernstart_addr);
#ifdef CONFIG_RELOCATABLE_PPC32
/* Used in __va()/__pa() */
long long virt_phys_offset;
EXPORT_SYMBOL(virt_phys_offset);
#endif
phys_addr_t lowmem_end_addr; phys_addr_t lowmem_end_addr;
int boot_mapsize; int boot_mapsize;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment