Commit 373e515d authored by Mark Brown's avatar Mark Brown

Merge remote-tracking branches 'asoc/topic/intel', 'asoc/topic/kirkwood',...

Merge remote-tracking branches 'asoc/topic/intel', 'asoc/topic/kirkwood', 'asoc/topic/lm49453', 'asoc/topic/max9768' and 'asoc/topic/max98088' into asoc-next
...@@ -188,7 +188,6 @@ static struct reg_default lm49453_reg_defs[] = { ...@@ -188,7 +188,6 @@ static struct reg_default lm49453_reg_defs[] = {
/* codec private data */ /* codec private data */
struct lm49453_priv { struct lm49453_priv {
struct regmap *regmap; struct regmap *regmap;
int fs_rate;
}; };
/* capture path controls */ /* capture path controls */
...@@ -1112,13 +1111,10 @@ static int lm49453_hw_params(struct snd_pcm_substream *substream, ...@@ -1112,13 +1111,10 @@ static int lm49453_hw_params(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai) struct snd_soc_dai *dai)
{ {
struct snd_soc_codec *codec = dai->codec; struct snd_soc_codec *codec = dai->codec;
struct lm49453_priv *lm49453 = snd_soc_codec_get_drvdata(codec);
u16 clk_div = 0; u16 clk_div = 0;
lm49453->fs_rate = params_rate(params);
/* Setting DAC clock dividers based on substream sample rate. */ /* Setting DAC clock dividers based on substream sample rate. */
switch (lm49453->fs_rate) { switch (params_rate(params)) {
case 8000: case 8000:
case 16000: case 16000:
case 32000: case 32000:
......
...@@ -43,8 +43,8 @@ static struct reg_default max9768_default_regs[] = { ...@@ -43,8 +43,8 @@ static struct reg_default max9768_default_regs[] = {
static int max9768_get_gpio(struct snd_kcontrol *kcontrol, static int max9768_get_gpio(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol) struct snd_ctl_elem_value *ucontrol)
{ {
struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol); struct snd_soc_component *c = snd_soc_kcontrol_component(kcontrol);
struct max9768 *max9768 = snd_soc_codec_get_drvdata(codec); struct max9768 *max9768 = snd_soc_component_get_drvdata(c);
int val = gpio_get_value_cansleep(max9768->mute_gpio); int val = gpio_get_value_cansleep(max9768->mute_gpio);
ucontrol->value.integer.value[0] = !val; ucontrol->value.integer.value[0] = !val;
...@@ -55,8 +55,8 @@ static int max9768_get_gpio(struct snd_kcontrol *kcontrol, ...@@ -55,8 +55,8 @@ static int max9768_get_gpio(struct snd_kcontrol *kcontrol,
static int max9768_set_gpio(struct snd_kcontrol *kcontrol, static int max9768_set_gpio(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol) struct snd_ctl_elem_value *ucontrol)
{ {
struct snd_soc_codec *codec = snd_soc_kcontrol_codec(kcontrol); struct snd_soc_component *c = snd_soc_kcontrol_component(kcontrol);
struct max9768 *max9768 = snd_soc_codec_get_drvdata(codec); struct max9768 *max9768 = snd_soc_component_get_drvdata(c);
gpio_set_value_cansleep(max9768->mute_gpio, !ucontrol->value.integer.value[0]); gpio_set_value_cansleep(max9768->mute_gpio, !ucontrol->value.integer.value[0]);
...@@ -130,19 +130,20 @@ static const struct snd_soc_dapm_route max9768_dapm_routes[] = { ...@@ -130,19 +130,20 @@ static const struct snd_soc_dapm_route max9768_dapm_routes[] = {
{ "OUT-", NULL, "IN" }, { "OUT-", NULL, "IN" },
}; };
static int max9768_probe(struct snd_soc_codec *codec) static int max9768_probe(struct snd_soc_component *component)
{ {
struct max9768 *max9768 = snd_soc_codec_get_drvdata(codec); struct max9768 *max9768 = snd_soc_component_get_drvdata(component);
int ret; int ret;
if (max9768->flags & MAX9768_FLAG_CLASSIC_PWM) { if (max9768->flags & MAX9768_FLAG_CLASSIC_PWM) {
ret = snd_soc_write(codec, MAX9768_CTRL, MAX9768_CTRL_PWM); ret = regmap_write(max9768->regmap, MAX9768_CTRL,
MAX9768_CTRL_PWM);
if (ret) if (ret)
return ret; return ret;
} }
if (gpio_is_valid(max9768->mute_gpio)) { if (gpio_is_valid(max9768->mute_gpio)) {
ret = snd_soc_add_codec_controls(codec, max9768_mute, ret = snd_soc_add_component_controls(component, max9768_mute,
ARRAY_SIZE(max9768_mute)); ARRAY_SIZE(max9768_mute));
if (ret) if (ret)
return ret; return ret;
...@@ -151,7 +152,7 @@ static int max9768_probe(struct snd_soc_codec *codec) ...@@ -151,7 +152,7 @@ static int max9768_probe(struct snd_soc_codec *codec)
return 0; return 0;
} }
static struct snd_soc_codec_driver max9768_codec_driver = { static struct snd_soc_component_driver max9768_component_driver = {
.probe = max9768_probe, .probe = max9768_probe,
.controls = max9768_volume, .controls = max9768_volume,
.num_controls = ARRAY_SIZE(max9768_volume), .num_controls = ARRAY_SIZE(max9768_volume),
...@@ -183,11 +184,13 @@ static int max9768_i2c_probe(struct i2c_client *client, ...@@ -183,11 +184,13 @@ static int max9768_i2c_probe(struct i2c_client *client,
if (pdata) { if (pdata) {
/* Mute on powerup to avoid clicks */ /* Mute on powerup to avoid clicks */
err = gpio_request_one(pdata->mute_gpio, GPIOF_INIT_HIGH, "MAX9768 Mute"); err = devm_gpio_request_one(&client->dev, pdata->mute_gpio,
GPIOF_INIT_HIGH, "MAX9768 Mute");
max9768->mute_gpio = err ?: pdata->mute_gpio; max9768->mute_gpio = err ?: pdata->mute_gpio;
/* Activate chip by releasing shutdown, enables I2C */ /* Activate chip by releasing shutdown, enables I2C */
err = gpio_request_one(pdata->shdn_gpio, GPIOF_INIT_HIGH, "MAX9768 Shutdown"); err = devm_gpio_request_one(&client->dev, pdata->shdn_gpio,
GPIOF_INIT_HIGH, "MAX9768 Shutdown");
max9768->shdn_gpio = err ?: pdata->shdn_gpio; max9768->shdn_gpio = err ?: pdata->shdn_gpio;
max9768->flags = pdata->flags; max9768->flags = pdata->flags;
...@@ -199,38 +202,11 @@ static int max9768_i2c_probe(struct i2c_client *client, ...@@ -199,38 +202,11 @@ static int max9768_i2c_probe(struct i2c_client *client,
i2c_set_clientdata(client, max9768); i2c_set_clientdata(client, max9768);
max9768->regmap = devm_regmap_init_i2c(client, &max9768_i2c_regmap_config); max9768->regmap = devm_regmap_init_i2c(client, &max9768_i2c_regmap_config);
if (IS_ERR(max9768->regmap)) { if (IS_ERR(max9768->regmap))
err = PTR_ERR(max9768->regmap); return PTR_ERR(max9768->regmap);
goto err_gpio_free;
}
err = snd_soc_register_codec(&client->dev, &max9768_codec_driver, NULL, 0);
if (err)
goto err_gpio_free;
return 0;
err_gpio_free:
if (gpio_is_valid(max9768->shdn_gpio))
gpio_free(max9768->shdn_gpio);
if (gpio_is_valid(max9768->mute_gpio))
gpio_free(max9768->mute_gpio);
return err;
}
static int max9768_i2c_remove(struct i2c_client *client)
{
struct max9768 *max9768 = i2c_get_clientdata(client);
snd_soc_unregister_codec(&client->dev); return devm_snd_soc_register_component(&client->dev,
&max9768_component_driver, NULL, 0);
if (gpio_is_valid(max9768->shdn_gpio))
gpio_free(max9768->shdn_gpio);
if (gpio_is_valid(max9768->mute_gpio))
gpio_free(max9768->mute_gpio);
return 0;
} }
static const struct i2c_device_id max9768_i2c_id[] = { static const struct i2c_device_id max9768_i2c_id[] = {
...@@ -244,7 +220,6 @@ static struct i2c_driver max9768_i2c_driver = { ...@@ -244,7 +220,6 @@ static struct i2c_driver max9768_i2c_driver = {
.name = "max9768", .name = "max9768",
}, },
.probe = max9768_i2c_probe, .probe = max9768_i2c_probe,
.remove = max9768_i2c_remove,
.id_table = max9768_i2c_id, .id_table = max9768_i2c_id,
}; };
module_i2c_driver(max9768_i2c_driver); module_i2c_driver(max9768_i2c_driver);
......
...@@ -258,292 +258,36 @@ static const struct reg_default max98088_reg[] = { ...@@ -258,292 +258,36 @@ static const struct reg_default max98088_reg[] = {
{ 0xc9, 0x00 }, /* C9 DAI2 biquad */ { 0xc9, 0x00 }, /* C9 DAI2 biquad */
}; };
static struct {
int readable;
int writable;
int vol;
} max98088_access[M98088_REG_CNT] = {
{ 0xFF, 0xFF, 1 }, /* 00 IRQ status */
{ 0xFF, 0x00, 1 }, /* 01 MIC status */
{ 0xFF, 0x00, 1 }, /* 02 jack status */
{ 0x1F, 0x1F, 1 }, /* 03 battery voltage */
{ 0xFF, 0xFF, 0 }, /* 04 */
{ 0xFF, 0xFF, 0 }, /* 05 */
{ 0xFF, 0xFF, 0 }, /* 06 */
{ 0xFF, 0xFF, 0 }, /* 07 */
{ 0xFF, 0xFF, 0 }, /* 08 */
{ 0xFF, 0xFF, 0 }, /* 09 */
{ 0xFF, 0xFF, 0 }, /* 0A */
{ 0xFF, 0xFF, 0 }, /* 0B */
{ 0xFF, 0xFF, 0 }, /* 0C */
{ 0xFF, 0xFF, 0 }, /* 0D */
{ 0xFF, 0xFF, 0 }, /* 0E */
{ 0xFF, 0xFF, 0 }, /* 0F interrupt enable */
{ 0xFF, 0xFF, 0 }, /* 10 master clock */
{ 0xFF, 0xFF, 0 }, /* 11 DAI1 clock mode */
{ 0xFF, 0xFF, 0 }, /* 12 DAI1 clock control */
{ 0xFF, 0xFF, 0 }, /* 13 DAI1 clock control */
{ 0xFF, 0xFF, 0 }, /* 14 DAI1 format */
{ 0xFF, 0xFF, 0 }, /* 15 DAI1 clock */
{ 0xFF, 0xFF, 0 }, /* 16 DAI1 config */
{ 0xFF, 0xFF, 0 }, /* 17 DAI1 TDM */
{ 0xFF, 0xFF, 0 }, /* 18 DAI1 filters */
{ 0xFF, 0xFF, 0 }, /* 19 DAI2 clock mode */
{ 0xFF, 0xFF, 0 }, /* 1A DAI2 clock control */
{ 0xFF, 0xFF, 0 }, /* 1B DAI2 clock control */
{ 0xFF, 0xFF, 0 }, /* 1C DAI2 format */
{ 0xFF, 0xFF, 0 }, /* 1D DAI2 clock */
{ 0xFF, 0xFF, 0 }, /* 1E DAI2 config */
{ 0xFF, 0xFF, 0 }, /* 1F DAI2 TDM */
{ 0xFF, 0xFF, 0 }, /* 20 DAI2 filters */
{ 0xFF, 0xFF, 0 }, /* 21 data config */
{ 0xFF, 0xFF, 0 }, /* 22 DAC mixer */
{ 0xFF, 0xFF, 0 }, /* 23 left ADC mixer */
{ 0xFF, 0xFF, 0 }, /* 24 right ADC mixer */
{ 0xFF, 0xFF, 0 }, /* 25 left HP mixer */
{ 0xFF, 0xFF, 0 }, /* 26 right HP mixer */
{ 0xFF, 0xFF, 0 }, /* 27 HP control */
{ 0xFF, 0xFF, 0 }, /* 28 left REC mixer */
{ 0xFF, 0xFF, 0 }, /* 29 right REC mixer */
{ 0xFF, 0xFF, 0 }, /* 2A REC control */
{ 0xFF, 0xFF, 0 }, /* 2B left SPK mixer */
{ 0xFF, 0xFF, 0 }, /* 2C right SPK mixer */
{ 0xFF, 0xFF, 0 }, /* 2D SPK control */
{ 0xFF, 0xFF, 0 }, /* 2E sidetone */
{ 0xFF, 0xFF, 0 }, /* 2F DAI1 playback level */
{ 0xFF, 0xFF, 0 }, /* 30 DAI1 playback level */
{ 0xFF, 0xFF, 0 }, /* 31 DAI2 playback level */
{ 0xFF, 0xFF, 0 }, /* 32 DAI2 playbakc level */
{ 0xFF, 0xFF, 0 }, /* 33 left ADC level */
{ 0xFF, 0xFF, 0 }, /* 34 right ADC level */
{ 0xFF, 0xFF, 0 }, /* 35 MIC1 level */
{ 0xFF, 0xFF, 0 }, /* 36 MIC2 level */
{ 0xFF, 0xFF, 0 }, /* 37 INA level */
{ 0xFF, 0xFF, 0 }, /* 38 INB level */
{ 0xFF, 0xFF, 0 }, /* 39 left HP volume */
{ 0xFF, 0xFF, 0 }, /* 3A right HP volume */
{ 0xFF, 0xFF, 0 }, /* 3B left REC volume */
{ 0xFF, 0xFF, 0 }, /* 3C right REC volume */
{ 0xFF, 0xFF, 0 }, /* 3D left SPK volume */
{ 0xFF, 0xFF, 0 }, /* 3E right SPK volume */
{ 0xFF, 0xFF, 0 }, /* 3F MIC config */
{ 0xFF, 0xFF, 0 }, /* 40 MIC threshold */
{ 0xFF, 0xFF, 0 }, /* 41 excursion limiter filter */
{ 0xFF, 0xFF, 0 }, /* 42 excursion limiter threshold */
{ 0xFF, 0xFF, 0 }, /* 43 ALC */
{ 0xFF, 0xFF, 0 }, /* 44 power limiter threshold */
{ 0xFF, 0xFF, 0 }, /* 45 power limiter config */
{ 0xFF, 0xFF, 0 }, /* 46 distortion limiter config */
{ 0xFF, 0xFF, 0 }, /* 47 audio input */
{ 0xFF, 0xFF, 0 }, /* 48 microphone */
{ 0xFF, 0xFF, 0 }, /* 49 level control */
{ 0xFF, 0xFF, 0 }, /* 4A bypass switches */
{ 0xFF, 0xFF, 0 }, /* 4B jack detect */
{ 0xFF, 0xFF, 0 }, /* 4C input enable */
{ 0xFF, 0xFF, 0 }, /* 4D output enable */
{ 0xFF, 0xFF, 0 }, /* 4E bias control */
{ 0xFF, 0xFF, 0 }, /* 4F DAC power */
{ 0xFF, 0xFF, 0 }, /* 50 DAC power */
{ 0xFF, 0xFF, 0 }, /* 51 system */
{ 0xFF, 0xFF, 0 }, /* 52 DAI1 EQ1 */
{ 0xFF, 0xFF, 0 }, /* 53 DAI1 EQ1 */
{ 0xFF, 0xFF, 0 }, /* 54 DAI1 EQ1 */
{ 0xFF, 0xFF, 0 }, /* 55 DAI1 EQ1 */
{ 0xFF, 0xFF, 0 }, /* 56 DAI1 EQ1 */
{ 0xFF, 0xFF, 0 }, /* 57 DAI1 EQ1 */
{ 0xFF, 0xFF, 0 }, /* 58 DAI1 EQ1 */
{ 0xFF, 0xFF, 0 }, /* 59 DAI1 EQ1 */
{ 0xFF, 0xFF, 0 }, /* 5A DAI1 EQ1 */
{ 0xFF, 0xFF, 0 }, /* 5B DAI1 EQ1 */
{ 0xFF, 0xFF, 0 }, /* 5C DAI1 EQ2 */
{ 0xFF, 0xFF, 0 }, /* 5D DAI1 EQ2 */
{ 0xFF, 0xFF, 0 }, /* 5E DAI1 EQ2 */
{ 0xFF, 0xFF, 0 }, /* 5F DAI1 EQ2 */
{ 0xFF, 0xFF, 0 }, /* 60 DAI1 EQ2 */
{ 0xFF, 0xFF, 0 }, /* 61 DAI1 EQ2 */
{ 0xFF, 0xFF, 0 }, /* 62 DAI1 EQ2 */
{ 0xFF, 0xFF, 0 }, /* 63 DAI1 EQ2 */
{ 0xFF, 0xFF, 0 }, /* 64 DAI1 EQ2 */
{ 0xFF, 0xFF, 0 }, /* 65 DAI1 EQ2 */
{ 0xFF, 0xFF, 0 }, /* 66 DAI1 EQ3 */
{ 0xFF, 0xFF, 0 }, /* 67 DAI1 EQ3 */
{ 0xFF, 0xFF, 0 }, /* 68 DAI1 EQ3 */
{ 0xFF, 0xFF, 0 }, /* 69 DAI1 EQ3 */
{ 0xFF, 0xFF, 0 }, /* 6A DAI1 EQ3 */
{ 0xFF, 0xFF, 0 }, /* 6B DAI1 EQ3 */
{ 0xFF, 0xFF, 0 }, /* 6C DAI1 EQ3 */
{ 0xFF, 0xFF, 0 }, /* 6D DAI1 EQ3 */
{ 0xFF, 0xFF, 0 }, /* 6E DAI1 EQ3 */
{ 0xFF, 0xFF, 0 }, /* 6F DAI1 EQ3 */
{ 0xFF, 0xFF, 0 }, /* 70 DAI1 EQ4 */
{ 0xFF, 0xFF, 0 }, /* 71 DAI1 EQ4 */
{ 0xFF, 0xFF, 0 }, /* 72 DAI1 EQ4 */
{ 0xFF, 0xFF, 0 }, /* 73 DAI1 EQ4 */
{ 0xFF, 0xFF, 0 }, /* 74 DAI1 EQ4 */
{ 0xFF, 0xFF, 0 }, /* 75 DAI1 EQ4 */
{ 0xFF, 0xFF, 0 }, /* 76 DAI1 EQ4 */
{ 0xFF, 0xFF, 0 }, /* 77 DAI1 EQ4 */
{ 0xFF, 0xFF, 0 }, /* 78 DAI1 EQ4 */
{ 0xFF, 0xFF, 0 }, /* 79 DAI1 EQ4 */
{ 0xFF, 0xFF, 0 }, /* 7A DAI1 EQ5 */
{ 0xFF, 0xFF, 0 }, /* 7B DAI1 EQ5 */
{ 0xFF, 0xFF, 0 }, /* 7C DAI1 EQ5 */
{ 0xFF, 0xFF, 0 }, /* 7D DAI1 EQ5 */
{ 0xFF, 0xFF, 0 }, /* 7E DAI1 EQ5 */
{ 0xFF, 0xFF, 0 }, /* 7F DAI1 EQ5 */
{ 0xFF, 0xFF, 0 }, /* 80 DAI1 EQ5 */
{ 0xFF, 0xFF, 0 }, /* 81 DAI1 EQ5 */
{ 0xFF, 0xFF, 0 }, /* 82 DAI1 EQ5 */
{ 0xFF, 0xFF, 0 }, /* 83 DAI1 EQ5 */
{ 0xFF, 0xFF, 0 }, /* 84 DAI2 EQ1 */
{ 0xFF, 0xFF, 0 }, /* 85 DAI2 EQ1 */
{ 0xFF, 0xFF, 0 }, /* 86 DAI2 EQ1 */
{ 0xFF, 0xFF, 0 }, /* 87 DAI2 EQ1 */
{ 0xFF, 0xFF, 0 }, /* 88 DAI2 EQ1 */
{ 0xFF, 0xFF, 0 }, /* 89 DAI2 EQ1 */
{ 0xFF, 0xFF, 0 }, /* 8A DAI2 EQ1 */
{ 0xFF, 0xFF, 0 }, /* 8B DAI2 EQ1 */
{ 0xFF, 0xFF, 0 }, /* 8C DAI2 EQ1 */
{ 0xFF, 0xFF, 0 }, /* 8D DAI2 EQ1 */
{ 0xFF, 0xFF, 0 }, /* 8E DAI2 EQ2 */
{ 0xFF, 0xFF, 0 }, /* 8F DAI2 EQ2 */
{ 0xFF, 0xFF, 0 }, /* 90 DAI2 EQ2 */
{ 0xFF, 0xFF, 0 }, /* 91 DAI2 EQ2 */
{ 0xFF, 0xFF, 0 }, /* 92 DAI2 EQ2 */
{ 0xFF, 0xFF, 0 }, /* 93 DAI2 EQ2 */
{ 0xFF, 0xFF, 0 }, /* 94 DAI2 EQ2 */
{ 0xFF, 0xFF, 0 }, /* 95 DAI2 EQ2 */
{ 0xFF, 0xFF, 0 }, /* 96 DAI2 EQ2 */
{ 0xFF, 0xFF, 0 }, /* 97 DAI2 EQ2 */
{ 0xFF, 0xFF, 0 }, /* 98 DAI2 EQ3 */
{ 0xFF, 0xFF, 0 }, /* 99 DAI2 EQ3 */
{ 0xFF, 0xFF, 0 }, /* 9A DAI2 EQ3 */
{ 0xFF, 0xFF, 0 }, /* 9B DAI2 EQ3 */
{ 0xFF, 0xFF, 0 }, /* 9C DAI2 EQ3 */
{ 0xFF, 0xFF, 0 }, /* 9D DAI2 EQ3 */
{ 0xFF, 0xFF, 0 }, /* 9E DAI2 EQ3 */
{ 0xFF, 0xFF, 0 }, /* 9F DAI2 EQ3 */
{ 0xFF, 0xFF, 0 }, /* A0 DAI2 EQ3 */
{ 0xFF, 0xFF, 0 }, /* A1 DAI2 EQ3 */
{ 0xFF, 0xFF, 0 }, /* A2 DAI2 EQ4 */
{ 0xFF, 0xFF, 0 }, /* A3 DAI2 EQ4 */
{ 0xFF, 0xFF, 0 }, /* A4 DAI2 EQ4 */
{ 0xFF, 0xFF, 0 }, /* A5 DAI2 EQ4 */
{ 0xFF, 0xFF, 0 }, /* A6 DAI2 EQ4 */
{ 0xFF, 0xFF, 0 }, /* A7 DAI2 EQ4 */
{ 0xFF, 0xFF, 0 }, /* A8 DAI2 EQ4 */
{ 0xFF, 0xFF, 0 }, /* A9 DAI2 EQ4 */
{ 0xFF, 0xFF, 0 }, /* AA DAI2 EQ4 */
{ 0xFF, 0xFF, 0 }, /* AB DAI2 EQ4 */
{ 0xFF, 0xFF, 0 }, /* AC DAI2 EQ5 */
{ 0xFF, 0xFF, 0 }, /* AD DAI2 EQ5 */
{ 0xFF, 0xFF, 0 }, /* AE DAI2 EQ5 */
{ 0xFF, 0xFF, 0 }, /* AF DAI2 EQ5 */
{ 0xFF, 0xFF, 0 }, /* B0 DAI2 EQ5 */
{ 0xFF, 0xFF, 0 }, /* B1 DAI2 EQ5 */
{ 0xFF, 0xFF, 0 }, /* B2 DAI2 EQ5 */
{ 0xFF, 0xFF, 0 }, /* B3 DAI2 EQ5 */
{ 0xFF, 0xFF, 0 }, /* B4 DAI2 EQ5 */
{ 0xFF, 0xFF, 0 }, /* B5 DAI2 EQ5 */
{ 0xFF, 0xFF, 0 }, /* B6 DAI1 biquad */
{ 0xFF, 0xFF, 0 }, /* B7 DAI1 biquad */
{ 0xFF, 0xFF, 0 }, /* B8 DAI1 biquad */
{ 0xFF, 0xFF, 0 }, /* B9 DAI1 biquad */
{ 0xFF, 0xFF, 0 }, /* BA DAI1 biquad */
{ 0xFF, 0xFF, 0 }, /* BB DAI1 biquad */
{ 0xFF, 0xFF, 0 }, /* BC DAI1 biquad */
{ 0xFF, 0xFF, 0 }, /* BD DAI1 biquad */
{ 0xFF, 0xFF, 0 }, /* BE DAI1 biquad */
{ 0xFF, 0xFF, 0 }, /* BF DAI1 biquad */
{ 0xFF, 0xFF, 0 }, /* C0 DAI2 biquad */
{ 0xFF, 0xFF, 0 }, /* C1 DAI2 biquad */
{ 0xFF, 0xFF, 0 }, /* C2 DAI2 biquad */
{ 0xFF, 0xFF, 0 }, /* C3 DAI2 biquad */
{ 0xFF, 0xFF, 0 }, /* C4 DAI2 biquad */
{ 0xFF, 0xFF, 0 }, /* C5 DAI2 biquad */
{ 0xFF, 0xFF, 0 }, /* C6 DAI2 biquad */
{ 0xFF, 0xFF, 0 }, /* C7 DAI2 biquad */
{ 0xFF, 0xFF, 0 }, /* C8 DAI2 biquad */
{ 0xFF, 0xFF, 0 }, /* C9 DAI2 biquad */
{ 0x00, 0x00, 0 }, /* CA */
{ 0x00, 0x00, 0 }, /* CB */
{ 0x00, 0x00, 0 }, /* CC */
{ 0x00, 0x00, 0 }, /* CD */
{ 0x00, 0x00, 0 }, /* CE */
{ 0x00, 0x00, 0 }, /* CF */
{ 0x00, 0x00, 0 }, /* D0 */
{ 0x00, 0x00, 0 }, /* D1 */
{ 0x00, 0x00, 0 }, /* D2 */
{ 0x00, 0x00, 0 }, /* D3 */
{ 0x00, 0x00, 0 }, /* D4 */
{ 0x00, 0x00, 0 }, /* D5 */
{ 0x00, 0x00, 0 }, /* D6 */
{ 0x00, 0x00, 0 }, /* D7 */
{ 0x00, 0x00, 0 }, /* D8 */
{ 0x00, 0x00, 0 }, /* D9 */
{ 0x00, 0x00, 0 }, /* DA */
{ 0x00, 0x00, 0 }, /* DB */
{ 0x00, 0x00, 0 }, /* DC */
{ 0x00, 0x00, 0 }, /* DD */
{ 0x00, 0x00, 0 }, /* DE */
{ 0x00, 0x00, 0 }, /* DF */
{ 0x00, 0x00, 0 }, /* E0 */
{ 0x00, 0x00, 0 }, /* E1 */
{ 0x00, 0x00, 0 }, /* E2 */
{ 0x00, 0x00, 0 }, /* E3 */
{ 0x00, 0x00, 0 }, /* E4 */
{ 0x00, 0x00, 0 }, /* E5 */
{ 0x00, 0x00, 0 }, /* E6 */
{ 0x00, 0x00, 0 }, /* E7 */
{ 0x00, 0x00, 0 }, /* E8 */
{ 0x00, 0x00, 0 }, /* E9 */
{ 0x00, 0x00, 0 }, /* EA */
{ 0x00, 0x00, 0 }, /* EB */
{ 0x00, 0x00, 0 }, /* EC */
{ 0x00, 0x00, 0 }, /* ED */
{ 0x00, 0x00, 0 }, /* EE */
{ 0x00, 0x00, 0 }, /* EF */
{ 0x00, 0x00, 0 }, /* F0 */
{ 0x00, 0x00, 0 }, /* F1 */
{ 0x00, 0x00, 0 }, /* F2 */
{ 0x00, 0x00, 0 }, /* F3 */
{ 0x00, 0x00, 0 }, /* F4 */
{ 0x00, 0x00, 0 }, /* F5 */
{ 0x00, 0x00, 0 }, /* F6 */
{ 0x00, 0x00, 0 }, /* F7 */
{ 0x00, 0x00, 0 }, /* F8 */
{ 0x00, 0x00, 0 }, /* F9 */
{ 0x00, 0x00, 0 }, /* FA */
{ 0x00, 0x00, 0 }, /* FB */
{ 0x00, 0x00, 0 }, /* FC */
{ 0x00, 0x00, 0 }, /* FD */
{ 0x00, 0x00, 0 }, /* FE */
{ 0xFF, 0x00, 1 }, /* FF */
};
static bool max98088_readable_register(struct device *dev, unsigned int reg) static bool max98088_readable_register(struct device *dev, unsigned int reg)
{ {
return max98088_access[reg].readable; switch (reg) {
case M98088_REG_00_IRQ_STATUS ... 0xC9:
case M98088_REG_FF_REV_ID:
return true;
default:
return false;
}
}
static bool max98088_writeable_register(struct device *dev, unsigned int reg)
{
switch (reg) {
case M98088_REG_03_BATTERY_VOLTAGE ... 0xC9:
return true;
default:
return false;
}
} }
static bool max98088_volatile_register(struct device *dev, unsigned int reg) static bool max98088_volatile_register(struct device *dev, unsigned int reg)
{ {
return max98088_access[reg].vol; switch (reg) {
case M98088_REG_00_IRQ_STATUS ... M98088_REG_03_BATTERY_VOLTAGE:
case M98088_REG_FF_REV_ID:
return true;
default:
return false;
}
} }
static const struct regmap_config max98088_regmap = { static const struct regmap_config max98088_regmap = {
...@@ -551,6 +295,7 @@ static const struct regmap_config max98088_regmap = { ...@@ -551,6 +295,7 @@ static const struct regmap_config max98088_regmap = {
.val_bits = 8, .val_bits = 8,
.readable_reg = max98088_readable_register, .readable_reg = max98088_readable_register,
.writeable_reg = max98088_writeable_register,
.volatile_reg = max98088_volatile_register, .volatile_reg = max98088_volatile_register,
.max_register = 0xff, .max_register = 0xff,
......
...@@ -16,7 +16,7 @@ ...@@ -16,7 +16,7 @@
*/ */
#define M98088_REG_00_IRQ_STATUS 0x00 #define M98088_REG_00_IRQ_STATUS 0x00
#define M98088_REG_01_MIC_STATUS 0x01 #define M98088_REG_01_MIC_STATUS 0x01
#define M98088_REG_02_JACK_STAUS 0x02 #define M98088_REG_02_JACK_STATUS 0x02
#define M98088_REG_03_BATTERY_VOLTAGE 0x03 #define M98088_REG_03_BATTERY_VOLTAGE 0x03
#define M98088_REG_0F_IRQ_ENABLE 0x0F #define M98088_REG_0F_IRQ_ENABLE 0x0F
#define M98088_REG_10_SYS_CLK 0x10 #define M98088_REG_10_SYS_CLK 0x10
......
...@@ -26,14 +26,9 @@ config SND_SST_IPC_ACPI ...@@ -26,14 +26,9 @@ config SND_SST_IPC_ACPI
depends on ACPI depends on ACPI
config SND_SOC_INTEL_SST config SND_SOC_INTEL_SST
tristate "ASoC support for Intel(R) Smart Sound Technology" tristate
select SND_SOC_INTEL_SST_ACPI if ACPI select SND_SOC_INTEL_SST_ACPI if ACPI
depends on (X86 || COMPILE_TEST) depends on (X86 || COMPILE_TEST)
depends on DW_DMAC_CORE
help
This adds support for Intel(R) Smart Sound Technology (SST).
Say Y if you have such a device
If unsure select "N".
config SND_SOC_INTEL_SST_ACPI config SND_SOC_INTEL_SST_ACPI
tristate tristate
...@@ -46,8 +41,9 @@ config SND_SOC_INTEL_BAYTRAIL ...@@ -46,8 +41,9 @@ config SND_SOC_INTEL_BAYTRAIL
config SND_SOC_INTEL_HASWELL_MACH config SND_SOC_INTEL_HASWELL_MACH
tristate "ASoC Audio DSP support for Intel Haswell Lynxpoint" tristate "ASoC Audio DSP support for Intel Haswell Lynxpoint"
depends on SND_SOC_INTEL_SST && X86_INTEL_LPSS && I2C && \ depends on X86_INTEL_LPSS && I2C && I2C_DESIGNWARE_PLATFORM
I2C_DESIGNWARE_PLATFORM depends on DW_DMAC_CORE
select SND_SOC_INTEL_SST
select SND_SOC_INTEL_HASWELL select SND_SOC_INTEL_HASWELL
select SND_SOC_RT5640 select SND_SOC_RT5640
help help
...@@ -58,7 +54,9 @@ config SND_SOC_INTEL_HASWELL_MACH ...@@ -58,7 +54,9 @@ config SND_SOC_INTEL_HASWELL_MACH
config SND_SOC_INTEL_BYT_RT5640_MACH config SND_SOC_INTEL_BYT_RT5640_MACH
tristate "ASoC Audio driver for Intel Baytrail with RT5640 codec" tristate "ASoC Audio driver for Intel Baytrail with RT5640 codec"
depends on SND_SOC_INTEL_SST && X86_INTEL_LPSS && I2C depends on X86_INTEL_LPSS && I2C
depends on DW_DMAC_CORE
select SND_SOC_INTEL_SST
select SND_SOC_INTEL_BAYTRAIL select SND_SOC_INTEL_BAYTRAIL
select SND_SOC_RT5640 select SND_SOC_RT5640
help help
...@@ -67,7 +65,9 @@ config SND_SOC_INTEL_BYT_RT5640_MACH ...@@ -67,7 +65,9 @@ config SND_SOC_INTEL_BYT_RT5640_MACH
config SND_SOC_INTEL_BYT_MAX98090_MACH config SND_SOC_INTEL_BYT_MAX98090_MACH
tristate "ASoC Audio driver for Intel Baytrail with MAX98090 codec" tristate "ASoC Audio driver for Intel Baytrail with MAX98090 codec"
depends on SND_SOC_INTEL_SST && X86_INTEL_LPSS && I2C depends on X86_INTEL_LPSS && I2C
depends on DW_DMAC_CORE
select SND_SOC_INTEL_SST
select SND_SOC_INTEL_BAYTRAIL select SND_SOC_INTEL_BAYTRAIL
select SND_SOC_MAX98090 select SND_SOC_MAX98090
help help
...@@ -76,8 +76,10 @@ config SND_SOC_INTEL_BYT_MAX98090_MACH ...@@ -76,8 +76,10 @@ config SND_SOC_INTEL_BYT_MAX98090_MACH
config SND_SOC_INTEL_BROADWELL_MACH config SND_SOC_INTEL_BROADWELL_MACH
tristate "ASoC Audio DSP support for Intel Broadwell Wildcatpoint" tristate "ASoC Audio DSP support for Intel Broadwell Wildcatpoint"
depends on SND_SOC_INTEL_SST && X86_INTEL_LPSS && DW_DMAC && \ depends on X86_INTEL_LPSS && I2C && DW_DMAC && \
I2C_DESIGNWARE_PLATFORM I2C_DESIGNWARE_PLATFORM
depends on DW_DMAC_CORE
select SND_SOC_INTEL_SST
select SND_SOC_INTEL_HASWELL select SND_SOC_INTEL_HASWELL
select SND_SOC_RT286 select SND_SOC_RT286
help help
...@@ -132,3 +134,8 @@ config SND_SOC_INTEL_CHT_BSW_MAX98090_TI_MACH ...@@ -132,3 +134,8 @@ config SND_SOC_INTEL_CHT_BSW_MAX98090_TI_MACH
This adds support for ASoC machine driver for Intel(R) Cherrytrail & Braswell This adds support for ASoC machine driver for Intel(R) Cherrytrail & Braswell
platforms with MAX98090 audio codec it also can support TI jack chip as aux device. platforms with MAX98090 audio codec it also can support TI jack chip as aux device.
If unsure select "N". If unsure select "N".
config SND_SOC_INTEL_SKYLAKE
tristate
select SND_HDA_EXT_CORE
select SND_SOC_INTEL_SST
...@@ -5,6 +5,7 @@ obj-$(CONFIG_SND_SOC_INTEL_SST) += common/ ...@@ -5,6 +5,7 @@ obj-$(CONFIG_SND_SOC_INTEL_SST) += common/
obj-$(CONFIG_SND_SOC_INTEL_HASWELL) += haswell/ obj-$(CONFIG_SND_SOC_INTEL_HASWELL) += haswell/
obj-$(CONFIG_SND_SOC_INTEL_BAYTRAIL) += baytrail/ obj-$(CONFIG_SND_SOC_INTEL_BAYTRAIL) += baytrail/
obj-$(CONFIG_SND_SST_MFLD_PLATFORM) += atom/ obj-$(CONFIG_SND_SST_MFLD_PLATFORM) += atom/
obj-$(CONFIG_SND_SOC_INTEL_SKYLAKE) += skylake/
# Machine support # Machine support
obj-$(CONFIG_SND_SOC) += boards/ obj-$(CONFIG_SND_SOC) += boards/
...@@ -132,7 +132,7 @@ static int sst_send_slot_map(struct sst_data *drv) ...@@ -132,7 +132,7 @@ static int sst_send_slot_map(struct sst_data *drv)
sizeof(cmd.header) + cmd.header.length); sizeof(cmd.header) + cmd.header.length);
} }
int sst_slot_enum_info(struct snd_kcontrol *kcontrol, static int sst_slot_enum_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo) struct snd_ctl_elem_info *uinfo)
{ {
struct sst_enum *e = (struct sst_enum *)kcontrol->private_value; struct sst_enum *e = (struct sst_enum *)kcontrol->private_value;
......
...@@ -33,7 +33,6 @@ ...@@ -33,7 +33,6 @@
struct sst_device *sst; struct sst_device *sst;
static DEFINE_MUTEX(sst_lock); static DEFINE_MUTEX(sst_lock);
extern struct snd_compr_ops sst_platform_compr_ops;
int sst_register_dsp(struct sst_device *dev) int sst_register_dsp(struct sst_device *dev)
{ {
......
...@@ -25,6 +25,7 @@ ...@@ -25,6 +25,7 @@
#include "sst-atom-controls.h" #include "sst-atom-controls.h"
extern struct sst_device *sst; extern struct sst_device *sst;
extern struct snd_compr_ops sst_platform_compr_ops;
#define SST_MONO 1 #define SST_MONO 1
#define SST_STEREO 2 #define SST_STEREO 2
......
...@@ -151,6 +151,7 @@ static int sst_power_control(struct device *dev, bool state) ...@@ -151,6 +151,7 @@ static int sst_power_control(struct device *dev, bool state)
usage_count = GET_USAGE_COUNT(dev); usage_count = GET_USAGE_COUNT(dev);
dev_dbg(ctx->dev, "Enable: pm usage count: %d\n", usage_count); dev_dbg(ctx->dev, "Enable: pm usage count: %d\n", usage_count);
if (ret < 0) { if (ret < 0) {
pm_runtime_put_sync(dev);
dev_err(ctx->dev, "Runtime get failed with err: %d\n", ret); dev_err(ctx->dev, "Runtime get failed with err: %d\n", ret);
return ret; return ret;
} }
...@@ -204,8 +205,10 @@ static int sst_cdev_open(struct device *dev, ...@@ -204,8 +205,10 @@ static int sst_cdev_open(struct device *dev,
struct intel_sst_drv *ctx = dev_get_drvdata(dev); struct intel_sst_drv *ctx = dev_get_drvdata(dev);
retval = pm_runtime_get_sync(ctx->dev); retval = pm_runtime_get_sync(ctx->dev);
if (retval < 0) if (retval < 0) {
pm_runtime_put_sync(ctx->dev);
return retval; return retval;
}
str_id = sst_get_stream(ctx, str_params); str_id = sst_get_stream(ctx, str_params);
if (str_id > 0) { if (str_id > 0) {
...@@ -672,8 +675,10 @@ static int sst_send_byte_stream(struct device *dev, ...@@ -672,8 +675,10 @@ static int sst_send_byte_stream(struct device *dev,
if (NULL == bytes) if (NULL == bytes)
return -EINVAL; return -EINVAL;
ret_val = pm_runtime_get_sync(ctx->dev); ret_val = pm_runtime_get_sync(ctx->dev);
if (ret_val < 0) if (ret_val < 0) {
pm_runtime_put_sync(ctx->dev);
return ret_val; return ret_val;
}
ret_val = sst_send_byte_stream_mrfld(ctx, bytes); ret_val = sst_send_byte_stream_mrfld(ctx, bytes);
sst_pm_runtime_put(ctx); sst_pm_runtime_put(ctx);
......
...@@ -352,10 +352,9 @@ void sst_process_reply_mrfld(struct intel_sst_drv *sst_drv_ctx, ...@@ -352,10 +352,9 @@ void sst_process_reply_mrfld(struct intel_sst_drv *sst_drv_ctx,
* copy from mailbox * copy from mailbox
**/ **/
if (msg_high.part.large) { if (msg_high.part.large) {
data = kzalloc(msg_low, GFP_KERNEL); data = kmemdup((void *)msg->mailbox_data, msg_low, GFP_KERNEL);
if (!data) if (!data)
return; return;
memcpy(data, (void *) msg->mailbox_data, msg_low);
/* Copy command id so that we can use to put sst to reset */ /* Copy command id so that we can use to put sst to reset */
dsp_hdr = (struct ipc_dsp_hdr *)data; dsp_hdr = (struct ipc_dsp_hdr *)data;
cmd_id = dsp_hdr->cmd_id; cmd_id = dsp_hdr->cmd_id;
......
...@@ -22,6 +22,8 @@ ...@@ -22,6 +22,8 @@
#include <linux/interrupt.h> #include <linux/interrupt.h>
#include <linux/firmware.h> #include <linux/firmware.h>
#include "../skylake/skl-sst-dsp.h"
struct sst_mem_block; struct sst_mem_block;
struct sst_module; struct sst_module;
struct sst_fw; struct sst_fw;
...@@ -258,6 +260,8 @@ struct sst_mem_block { ...@@ -258,6 +260,8 @@ struct sst_mem_block {
*/ */
struct sst_dsp { struct sst_dsp {
/* Shared for all platforms */
/* runtime */ /* runtime */
struct sst_dsp_device *sst_dev; struct sst_dsp_device *sst_dev;
spinlock_t spinlock; /* IPC locking */ spinlock_t spinlock; /* IPC locking */
...@@ -268,10 +272,6 @@ struct sst_dsp { ...@@ -268,10 +272,6 @@ struct sst_dsp {
int irq; int irq;
u32 id; u32 id;
/* list of free and used ADSP memory blocks */
struct list_head used_block_list;
struct list_head free_block_list;
/* operations */ /* operations */
struct sst_ops *ops; struct sst_ops *ops;
...@@ -284,6 +284,12 @@ struct sst_dsp { ...@@ -284,6 +284,12 @@ struct sst_dsp {
/* mailbox */ /* mailbox */
struct sst_mailbox mailbox; struct sst_mailbox mailbox;
/* HSW/Byt data */
/* list of free and used ADSP memory blocks */
struct list_head used_block_list;
struct list_head free_block_list;
/* SST FW files loaded and their modules */ /* SST FW files loaded and their modules */
struct list_head module_list; struct list_head module_list;
struct list_head fw_list; struct list_head fw_list;
...@@ -299,6 +305,15 @@ struct sst_dsp { ...@@ -299,6 +305,15 @@ struct sst_dsp {
/* DMA FW loading */ /* DMA FW loading */
struct sst_dma *dma; struct sst_dma *dma;
bool fw_use_dma; bool fw_use_dma;
/* SKL data */
/* To allocate CL dma buffers */
struct skl_dsp_loader_ops dsp_ops;
struct skl_dsp_fw_ops fw_ops;
int sst_state;
struct skl_cl_dev cl_dev;
u32 intr_status;
}; };
/* Size optimised DRAM/IRAM memcpy */ /* Size optimised DRAM/IRAM memcpy */
......
...@@ -20,6 +20,7 @@ ...@@ -20,6 +20,7 @@
#include <linux/module.h> #include <linux/module.h>
#include <linux/platform_device.h> #include <linux/platform_device.h>
#include <linux/io.h> #include <linux/io.h>
#include <linux/delay.h>
#include "sst-dsp.h" #include "sst-dsp.h"
#include "sst-dsp-priv.h" #include "sst-dsp-priv.h"
...@@ -196,6 +197,22 @@ int sst_dsp_shim_update_bits64_unlocked(struct sst_dsp *sst, u32 offset, ...@@ -196,6 +197,22 @@ int sst_dsp_shim_update_bits64_unlocked(struct sst_dsp *sst, u32 offset,
} }
EXPORT_SYMBOL_GPL(sst_dsp_shim_update_bits64_unlocked); EXPORT_SYMBOL_GPL(sst_dsp_shim_update_bits64_unlocked);
/* This is for registers bits with attribute RWC */
void sst_dsp_shim_update_bits_forced_unlocked(struct sst_dsp *sst, u32 offset,
u32 mask, u32 value)
{
unsigned int old, new;
u32 ret;
ret = sst_dsp_shim_read_unlocked(sst, offset);
old = ret;
new = (old & (~mask)) | (value & mask);
sst_dsp_shim_write_unlocked(sst, offset, new);
}
EXPORT_SYMBOL_GPL(sst_dsp_shim_update_bits_forced_unlocked);
int sst_dsp_shim_update_bits(struct sst_dsp *sst, u32 offset, int sst_dsp_shim_update_bits(struct sst_dsp *sst, u32 offset,
u32 mask, u32 value) u32 mask, u32 value)
{ {
...@@ -222,6 +239,60 @@ int sst_dsp_shim_update_bits64(struct sst_dsp *sst, u32 offset, ...@@ -222,6 +239,60 @@ int sst_dsp_shim_update_bits64(struct sst_dsp *sst, u32 offset,
} }
EXPORT_SYMBOL_GPL(sst_dsp_shim_update_bits64); EXPORT_SYMBOL_GPL(sst_dsp_shim_update_bits64);
/* This is for registers bits with attribute RWC */
void sst_dsp_shim_update_bits_forced(struct sst_dsp *sst, u32 offset,
u32 mask, u32 value)
{
unsigned long flags;
spin_lock_irqsave(&sst->spinlock, flags);
sst_dsp_shim_update_bits_forced_unlocked(sst, offset, mask, value);
spin_unlock_irqrestore(&sst->spinlock, flags);
}
EXPORT_SYMBOL_GPL(sst_dsp_shim_update_bits_forced);
int sst_dsp_register_poll(struct sst_dsp *ctx, u32 offset, u32 mask,
u32 target, u32 timeout, char *operation)
{
int time, ret;
u32 reg;
bool done = false;
/*
* we will poll for couple of ms using mdelay, if not successful
* then go to longer sleep using usleep_range
*/
/* check if set state successful */
for (time = 0; time < 5; time++) {
if ((sst_dsp_shim_read_unlocked(ctx, offset) & mask) == target) {
done = true;
break;
}
mdelay(1);
}
if (done == false) {
/* sleeping in 10ms steps so adjust timeout value */
timeout /= 10;
for (time = 0; time < timeout; time++) {
if ((sst_dsp_shim_read_unlocked(ctx, offset) & mask) == target)
break;
usleep_range(5000, 10000);
}
}
reg = sst_dsp_shim_read_unlocked(ctx, offset);
dev_info(ctx->dev, "FW Poll Status: reg=%#x %s %s\n", reg, operation,
(time < timeout) ? "successful" : "timedout");
ret = time < timeout ? 0 : -ETIME;
return ret;
}
EXPORT_SYMBOL_GPL(sst_dsp_register_poll);
void sst_dsp_dump(struct sst_dsp *sst) void sst_dsp_dump(struct sst_dsp *sst)
{ {
if (sst->ops->dump) if (sst->ops->dump)
......
...@@ -230,6 +230,8 @@ void sst_dsp_shim_write64(struct sst_dsp *sst, u32 offset, u64 value); ...@@ -230,6 +230,8 @@ void sst_dsp_shim_write64(struct sst_dsp *sst, u32 offset, u64 value);
u64 sst_dsp_shim_read64(struct sst_dsp *sst, u32 offset); u64 sst_dsp_shim_read64(struct sst_dsp *sst, u32 offset);
int sst_dsp_shim_update_bits64(struct sst_dsp *sst, u32 offset, int sst_dsp_shim_update_bits64(struct sst_dsp *sst, u32 offset,
u64 mask, u64 value); u64 mask, u64 value);
void sst_dsp_shim_update_bits_forced(struct sst_dsp *sst, u32 offset,
u32 mask, u32 value);
/* SHIM Read / Write Unlocked for callers already holding sst lock */ /* SHIM Read / Write Unlocked for callers already holding sst lock */
void sst_dsp_shim_write_unlocked(struct sst_dsp *sst, u32 offset, u32 value); void sst_dsp_shim_write_unlocked(struct sst_dsp *sst, u32 offset, u32 value);
...@@ -240,6 +242,8 @@ void sst_dsp_shim_write64_unlocked(struct sst_dsp *sst, u32 offset, u64 value); ...@@ -240,6 +242,8 @@ void sst_dsp_shim_write64_unlocked(struct sst_dsp *sst, u32 offset, u64 value);
u64 sst_dsp_shim_read64_unlocked(struct sst_dsp *sst, u32 offset); u64 sst_dsp_shim_read64_unlocked(struct sst_dsp *sst, u32 offset);
int sst_dsp_shim_update_bits64_unlocked(struct sst_dsp *sst, u32 offset, int sst_dsp_shim_update_bits64_unlocked(struct sst_dsp *sst, u32 offset,
u64 mask, u64 value); u64 mask, u64 value);
void sst_dsp_shim_update_bits_forced_unlocked(struct sst_dsp *sst, u32 offset,
u32 mask, u32 value);
/* Internal generic low-level SST IO functions - can be overidden */ /* Internal generic low-level SST IO functions - can be overidden */
void sst_shim32_write(void __iomem *addr, u32 offset, u32 value); void sst_shim32_write(void __iomem *addr, u32 offset, u32 value);
...@@ -278,6 +282,8 @@ void sst_dsp_inbox_read(struct sst_dsp *dsp, void *message, size_t bytes); ...@@ -278,6 +282,8 @@ void sst_dsp_inbox_read(struct sst_dsp *dsp, void *message, size_t bytes);
void sst_dsp_outbox_write(struct sst_dsp *dsp, void *message, size_t bytes); void sst_dsp_outbox_write(struct sst_dsp *dsp, void *message, size_t bytes);
void sst_dsp_outbox_read(struct sst_dsp *dsp, void *message, size_t bytes); void sst_dsp_outbox_read(struct sst_dsp *dsp, void *message, size_t bytes);
void sst_dsp_mailbox_dump(struct sst_dsp *dsp, size_t bytes); void sst_dsp_mailbox_dump(struct sst_dsp *dsp, size_t bytes);
int sst_dsp_register_poll(struct sst_dsp *dsp, u32 offset, u32 mask,
u32 expected_value, u32 timeout, char *operation);
/* Debug */ /* Debug */
void sst_dsp_dump(struct sst_dsp *sst); void sst_dsp_dump(struct sst_dsp *sst);
......
snd-soc-skl-objs := skl.o skl-pcm.o skl-nhlt.o skl-messages.o
obj-$(CONFIG_SND_SOC_INTEL_SKYLAKE) += snd-soc-skl.o
# Skylake IPC Support
snd-soc-skl-ipc-objs := skl-sst-ipc.o skl-sst-dsp.o skl-sst-cldma.o \
skl-sst.o
obj-$(CONFIG_SND_SOC_INTEL_SKYLAKE) += snd-soc-skl-ipc.o
/*
* skl-message.c - HDA DSP interface for FW registration, Pipe and Module
* configurations
*
* Copyright (C) 2015 Intel Corp
* Author:Rafal Redzimski <rafal.f.redzimski@intel.com>
* Jeeja KP <jeeja.kp@intel.com>
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as version 2, as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
#include <linux/slab.h>
#include <linux/pci.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include "skl-sst-dsp.h"
#include "skl-sst-ipc.h"
#include "skl.h"
#include "../common/sst-dsp.h"
#include "../common/sst-dsp-priv.h"
#include "skl-topology.h"
#include "skl-tplg-interface.h"
static int skl_alloc_dma_buf(struct device *dev,
struct snd_dma_buffer *dmab, size_t size)
{
struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
struct hdac_bus *bus = ebus_to_hbus(ebus);
if (!bus)
return -ENODEV;
return bus->io_ops->dma_alloc_pages(bus, SNDRV_DMA_TYPE_DEV, size, dmab);
}
static int skl_free_dma_buf(struct device *dev, struct snd_dma_buffer *dmab)
{
struct hdac_ext_bus *ebus = dev_get_drvdata(dev);
struct hdac_bus *bus = ebus_to_hbus(ebus);
if (!bus)
return -ENODEV;
bus->io_ops->dma_free_pages(bus, dmab);
return 0;
}
int skl_init_dsp(struct skl *skl)
{
void __iomem *mmio_base;
struct hdac_ext_bus *ebus = &skl->ebus;
struct hdac_bus *bus = ebus_to_hbus(ebus);
int irq = bus->irq;
struct skl_dsp_loader_ops loader_ops;
int ret;
loader_ops.alloc_dma_buf = skl_alloc_dma_buf;
loader_ops.free_dma_buf = skl_free_dma_buf;
/* enable ppcap interrupt */
snd_hdac_ext_bus_ppcap_enable(&skl->ebus, true);
snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, true);
/* read the BAR of the ADSP MMIO */
mmio_base = pci_ioremap_bar(skl->pci, 4);
if (mmio_base == NULL) {
dev_err(bus->dev, "ioremap error\n");
return -ENXIO;
}
ret = skl_sst_dsp_init(bus->dev, mmio_base, irq,
loader_ops, &skl->skl_sst);
dev_dbg(bus->dev, "dsp registration status=%d\n", ret);
return ret;
}
void skl_free_dsp(struct skl *skl)
{
struct hdac_ext_bus *ebus = &skl->ebus;
struct hdac_bus *bus = ebus_to_hbus(ebus);
struct skl_sst *ctx = skl->skl_sst;
/* disable ppcap interrupt */
snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, false);
skl_sst_dsp_cleanup(bus->dev, ctx);
if (ctx->dsp->addr.lpe)
iounmap(ctx->dsp->addr.lpe);
}
int skl_suspend_dsp(struct skl *skl)
{
struct skl_sst *ctx = skl->skl_sst;
int ret;
/* if ppcap is not supported return 0 */
if (!skl->ebus.ppcap)
return 0;
ret = skl_dsp_sleep(ctx->dsp);
if (ret < 0)
return ret;
/* disable ppcap interrupt */
snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, false);
snd_hdac_ext_bus_ppcap_enable(&skl->ebus, false);
return 0;
}
int skl_resume_dsp(struct skl *skl)
{
struct skl_sst *ctx = skl->skl_sst;
/* if ppcap is not supported return 0 */
if (!skl->ebus.ppcap)
return 0;
/* enable ppcap interrupt */
snd_hdac_ext_bus_ppcap_enable(&skl->ebus, true);
snd_hdac_ext_bus_ppcap_int_enable(&skl->ebus, true);
return skl_dsp_wake(ctx->dsp);
}
enum skl_bitdepth skl_get_bit_depth(int params)
{
switch (params) {
case 8:
return SKL_DEPTH_8BIT;
case 16:
return SKL_DEPTH_16BIT;
case 24:
return SKL_DEPTH_24BIT;
case 32:
return SKL_DEPTH_32BIT;
default:
return SKL_DEPTH_INVALID;
}
}
static u32 skl_create_channel_map(enum skl_ch_cfg ch_cfg)
{
u32 config;
switch (ch_cfg) {
case SKL_CH_CFG_MONO:
config = (0xFFFFFFF0 | SKL_CHANNEL_LEFT);
break;
case SKL_CH_CFG_STEREO:
config = (0xFFFFFF00 | SKL_CHANNEL_LEFT
| (SKL_CHANNEL_RIGHT << 4));
break;
case SKL_CH_CFG_2_1:
config = (0xFFFFF000 | SKL_CHANNEL_LEFT
| (SKL_CHANNEL_RIGHT << 4)
| (SKL_CHANNEL_LFE << 8));
break;
case SKL_CH_CFG_3_0:
config = (0xFFFFF000 | SKL_CHANNEL_LEFT
| (SKL_CHANNEL_CENTER << 4)
| (SKL_CHANNEL_RIGHT << 8));
break;
case SKL_CH_CFG_3_1:
config = (0xFFFF0000 | SKL_CHANNEL_LEFT
| (SKL_CHANNEL_CENTER << 4)
| (SKL_CHANNEL_RIGHT << 8)
| (SKL_CHANNEL_LFE << 12));
break;
case SKL_CH_CFG_QUATRO:
config = (0xFFFF0000 | SKL_CHANNEL_LEFT
| (SKL_CHANNEL_RIGHT << 4)
| (SKL_CHANNEL_LEFT_SURROUND << 8)
| (SKL_CHANNEL_RIGHT_SURROUND << 12));
break;
case SKL_CH_CFG_4_0:
config = (0xFFFF0000 | SKL_CHANNEL_LEFT
| (SKL_CHANNEL_CENTER << 4)
| (SKL_CHANNEL_RIGHT << 8)
| (SKL_CHANNEL_CENTER_SURROUND << 12));
break;
case SKL_CH_CFG_5_0:
config = (0xFFF00000 | SKL_CHANNEL_LEFT
| (SKL_CHANNEL_CENTER << 4)
| (SKL_CHANNEL_RIGHT << 8)
| (SKL_CHANNEL_LEFT_SURROUND << 12)
| (SKL_CHANNEL_RIGHT_SURROUND << 16));
break;
case SKL_CH_CFG_5_1:
config = (0xFF000000 | SKL_CHANNEL_CENTER
| (SKL_CHANNEL_LEFT << 4)
| (SKL_CHANNEL_RIGHT << 8)
| (SKL_CHANNEL_LEFT_SURROUND << 12)
| (SKL_CHANNEL_RIGHT_SURROUND << 16)
| (SKL_CHANNEL_LFE << 20));
break;
case SKL_CH_CFG_DUAL_MONO:
config = (0xFFFFFF00 | SKL_CHANNEL_LEFT
| (SKL_CHANNEL_LEFT << 4));
break;
case SKL_CH_CFG_I2S_DUAL_STEREO_0:
config = (0xFFFFFF00 | SKL_CHANNEL_LEFT
| (SKL_CHANNEL_RIGHT << 4));
break;
case SKL_CH_CFG_I2S_DUAL_STEREO_1:
config = (0xFFFF00FF | (SKL_CHANNEL_LEFT << 8)
| (SKL_CHANNEL_RIGHT << 12));
break;
default:
config = 0xFFFFFFFF;
break;
}
return config;
}
/*
* Each module in DSP expects a base module configuration, which consists of
* PCM format information, which we calculate in driver and resource values
* which are read from widget information passed through topology binary
* This is send when we create a module with INIT_INSTANCE IPC msg
*/
static void skl_set_base_module_format(struct skl_sst *ctx,
struct skl_module_cfg *mconfig,
struct skl_base_cfg *base_cfg)
{
struct skl_module_fmt *format = &mconfig->in_fmt;
base_cfg->audio_fmt.number_of_channels = (u8)format->channels;
base_cfg->audio_fmt.s_freq = format->s_freq;
base_cfg->audio_fmt.bit_depth = format->bit_depth;
base_cfg->audio_fmt.valid_bit_depth = format->valid_bit_depth;
base_cfg->audio_fmt.ch_cfg = format->ch_cfg;
dev_dbg(ctx->dev, "bit_depth=%x valid_bd=%x ch_config=%x\n",
format->bit_depth, format->valid_bit_depth,
format->ch_cfg);
base_cfg->audio_fmt.channel_map = skl_create_channel_map(
base_cfg->audio_fmt.ch_cfg);
base_cfg->audio_fmt.interleaving = SKL_INTERLEAVING_PER_CHANNEL;
base_cfg->cps = mconfig->mcps;
base_cfg->ibs = mconfig->ibs;
base_cfg->obs = mconfig->obs;
}
/*
* Copies copier capabilities into copier module and updates copier module
* config size.
*/
static void skl_copy_copier_caps(struct skl_module_cfg *mconfig,
struct skl_cpr_cfg *cpr_mconfig)
{
if (mconfig->formats_config.caps_size == 0)
return;
memcpy(cpr_mconfig->gtw_cfg.config_data,
mconfig->formats_config.caps,
mconfig->formats_config.caps_size);
cpr_mconfig->gtw_cfg.config_length =
(mconfig->formats_config.caps_size) / 4;
}
/*
* Calculate the gatewat settings required for copier module, type of
* gateway and index of gateway to use
*/
static void skl_setup_cpr_gateway_cfg(struct skl_sst *ctx,
struct skl_module_cfg *mconfig,
struct skl_cpr_cfg *cpr_mconfig)
{
union skl_connector_node_id node_id = {0};
struct skl_pipe_params *params = mconfig->pipe->p_params;
switch (mconfig->dev_type) {
case SKL_DEVICE_BT:
node_id.node.dma_type =
(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
SKL_DMA_I2S_LINK_OUTPUT_CLASS :
SKL_DMA_I2S_LINK_INPUT_CLASS;
node_id.node.vindex = params->host_dma_id +
(mconfig->vbus_id << 3);
break;
case SKL_DEVICE_I2S:
node_id.node.dma_type =
(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
SKL_DMA_I2S_LINK_OUTPUT_CLASS :
SKL_DMA_I2S_LINK_INPUT_CLASS;
node_id.node.vindex = params->host_dma_id +
(mconfig->time_slot << 1) +
(mconfig->vbus_id << 3);
break;
case SKL_DEVICE_DMIC:
node_id.node.dma_type = SKL_DMA_DMIC_LINK_INPUT_CLASS;
node_id.node.vindex = mconfig->vbus_id +
(mconfig->time_slot);
break;
case SKL_DEVICE_HDALINK:
node_id.node.dma_type =
(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
SKL_DMA_HDA_LINK_OUTPUT_CLASS :
SKL_DMA_HDA_LINK_INPUT_CLASS;
node_id.node.vindex = params->link_dma_id;
break;
default:
node_id.node.dma_type =
(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
SKL_DMA_HDA_HOST_OUTPUT_CLASS :
SKL_DMA_HDA_HOST_INPUT_CLASS;
node_id.node.vindex = params->host_dma_id;
break;
}
cpr_mconfig->gtw_cfg.node_id = node_id.val;
if (SKL_CONN_SOURCE == mconfig->hw_conn_type)
cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * mconfig->obs;
else
cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * mconfig->ibs;
cpr_mconfig->cpr_feature_mask = 0;
cpr_mconfig->gtw_cfg.config_length = 0;
skl_copy_copier_caps(mconfig, cpr_mconfig);
}
static void skl_setup_out_format(struct skl_sst *ctx,
struct skl_module_cfg *mconfig,
struct skl_audio_data_format *out_fmt)
{
struct skl_module_fmt *format = &mconfig->out_fmt;
out_fmt->number_of_channels = (u8)format->channels;
out_fmt->s_freq = format->s_freq;
out_fmt->bit_depth = format->bit_depth;
out_fmt->valid_bit_depth = format->valid_bit_depth;
out_fmt->ch_cfg = format->ch_cfg;
out_fmt->channel_map = skl_create_channel_map(out_fmt->ch_cfg);
out_fmt->interleaving = SKL_INTERLEAVING_PER_CHANNEL;
dev_dbg(ctx->dev, "copier out format chan=%d fre=%d bitdepth=%d\n",
out_fmt->number_of_channels, format->s_freq, format->bit_depth);
}
/*
* DSP needs SRC module for frequency conversion, SRC takes base module
* configuration and the target frequency as extra parameter passed as src
* config
*/
static void skl_set_src_format(struct skl_sst *ctx,
struct skl_module_cfg *mconfig,
struct skl_src_module_cfg *src_mconfig)
{
struct skl_module_fmt *fmt = &mconfig->out_fmt;
skl_set_base_module_format(ctx, mconfig,
(struct skl_base_cfg *)src_mconfig);
src_mconfig->src_cfg = fmt->s_freq;
}
/*
* DSP needs updown module to do channel conversion. updown module take base
* module configuration and channel configuration
* It also take coefficients and now we have defaults applied here
*/
static void skl_set_updown_mixer_format(struct skl_sst *ctx,
struct skl_module_cfg *mconfig,
struct skl_up_down_mixer_cfg *mixer_mconfig)
{
struct skl_module_fmt *fmt = &mconfig->out_fmt;
int i = 0;
skl_set_base_module_format(ctx, mconfig,
(struct skl_base_cfg *)mixer_mconfig);
mixer_mconfig->out_ch_cfg = fmt->ch_cfg;
/* Select F/W default coefficient */
mixer_mconfig->coeff_sel = 0x0;
/* User coeff, don't care since we are selecting F/W defaults */
for (i = 0; i < UP_DOWN_MIXER_MAX_COEFF; i++)
mixer_mconfig->coeff[i] = 0xDEADBEEF;
}
/*
* 'copier' is DSP internal module which copies data from Host DMA (HDA host
* dma) or link (hda link, SSP, PDM)
* Here we calculate the copier module parameters, like PCM format, output
* format, gateway settings
* copier_module_config is sent as input buffer with INIT_INSTANCE IPC msg
*/
static void skl_set_copier_format(struct skl_sst *ctx,
struct skl_module_cfg *mconfig,
struct skl_cpr_cfg *cpr_mconfig)
{
struct skl_audio_data_format *out_fmt = &cpr_mconfig->out_fmt;
struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)cpr_mconfig;
skl_set_base_module_format(ctx, mconfig, base_cfg);
skl_setup_out_format(ctx, mconfig, out_fmt);
skl_setup_cpr_gateway_cfg(ctx, mconfig, cpr_mconfig);
}
static u16 skl_get_module_param_size(struct skl_sst *ctx,
struct skl_module_cfg *mconfig)
{
u16 param_size;
switch (mconfig->m_type) {
case SKL_MODULE_TYPE_COPIER:
param_size = sizeof(struct skl_cpr_cfg);
param_size += mconfig->formats_config.caps_size;
return param_size;
case SKL_MODULE_TYPE_SRCINT:
return sizeof(struct skl_src_module_cfg);
case SKL_MODULE_TYPE_UPDWMIX:
return sizeof(struct skl_up_down_mixer_cfg);
default:
/*
* return only base cfg when no specific module type is
* specified
*/
return sizeof(struct skl_base_cfg);
}
return 0;
}
/*
* DSP firmware supports various modules like copier, SRC, updown etc.
* These modules required various parameters to be calculated and sent for
* the module initialization to DSP. By default a generic module needs only
* base module format configuration
*/
static int skl_set_module_format(struct skl_sst *ctx,
struct skl_module_cfg *module_config,
u16 *module_config_size,
void **param_data)
{
u16 param_size;
param_size = skl_get_module_param_size(ctx, module_config);
*param_data = kzalloc(param_size, GFP_KERNEL);
if (NULL == *param_data)
return -ENOMEM;
*module_config_size = param_size;
switch (module_config->m_type) {
case SKL_MODULE_TYPE_COPIER:
skl_set_copier_format(ctx, module_config, *param_data);
break;
case SKL_MODULE_TYPE_SRCINT:
skl_set_src_format(ctx, module_config, *param_data);
break;
case SKL_MODULE_TYPE_UPDWMIX:
skl_set_updown_mixer_format(ctx, module_config, *param_data);
break;
default:
skl_set_base_module_format(ctx, module_config, *param_data);
break;
}
dev_dbg(ctx->dev, "Module type=%d config size: %d bytes\n",
module_config->id.module_id, param_size);
print_hex_dump(KERN_DEBUG, "Module params:", DUMP_PREFIX_OFFSET, 8, 4,
*param_data, param_size, false);
return 0;
}
static int skl_get_queue_index(struct skl_module_pin *mpin,
struct skl_module_inst_id id, int max)
{
int i;
for (i = 0; i < max; i++) {
if (mpin[i].id.module_id == id.module_id &&
mpin[i].id.instance_id == id.instance_id)
return i;
}
return -EINVAL;
}
/*
* Allocates queue for each module.
* if dynamic, the pin_index is allocated 0 to max_pin.
* In static, the pin_index is fixed based on module_id and instance id
*/
static int skl_alloc_queue(struct skl_module_pin *mpin,
struct skl_module_inst_id id, int max)
{
int i;
/*
* if pin in dynamic, find first free pin
* otherwise find match module and instance id pin as topology will
* ensure a unique pin is assigned to this so no need to
* allocate/free
*/
for (i = 0; i < max; i++) {
if (mpin[i].is_dynamic) {
if (!mpin[i].in_use) {
mpin[i].in_use = true;
mpin[i].id.module_id = id.module_id;
mpin[i].id.instance_id = id.instance_id;
return i;
}
} else {
if (mpin[i].id.module_id == id.module_id &&
mpin[i].id.instance_id == id.instance_id)
return i;
}
}
return -EINVAL;
}
static void skl_free_queue(struct skl_module_pin *mpin, int q_index)
{
if (mpin[q_index].is_dynamic) {
mpin[q_index].in_use = false;
mpin[q_index].id.module_id = 0;
mpin[q_index].id.instance_id = 0;
}
}
/*
* A module needs to be instanataited in DSP. A mdoule is present in a
* collection of module referred as a PIPE.
* We first calculate the module format, based on module type and then
* invoke the DSP by sending IPC INIT_INSTANCE using ipc helper
*/
int skl_init_module(struct skl_sst *ctx,
struct skl_module_cfg *mconfig, char *param)
{
u16 module_config_size = 0;
void *param_data = NULL;
int ret;
struct skl_ipc_init_instance_msg msg;
dev_dbg(ctx->dev, "%s: module_id = %d instance=%d\n", __func__,
mconfig->id.module_id, mconfig->id.instance_id);
if (mconfig->pipe->state != SKL_PIPE_CREATED) {
dev_err(ctx->dev, "Pipe not created state= %d pipe_id= %d\n",
mconfig->pipe->state, mconfig->pipe->ppl_id);
return -EIO;
}
ret = skl_set_module_format(ctx, mconfig,
&module_config_size, &param_data);
if (ret < 0) {
dev_err(ctx->dev, "Failed to set module format ret=%d\n", ret);
return ret;
}
msg.module_id = mconfig->id.module_id;
msg.instance_id = mconfig->id.instance_id;
msg.ppl_instance_id = mconfig->pipe->ppl_id;
msg.param_data_size = module_config_size;
msg.core_id = mconfig->core_id;
ret = skl_ipc_init_instance(&ctx->ipc, &msg, param_data);
if (ret < 0) {
dev_err(ctx->dev, "Failed to init instance ret=%d\n", ret);
kfree(param_data);
return ret;
}
mconfig->m_state = SKL_MODULE_INIT_DONE;
return ret;
}
static void skl_dump_bind_info(struct skl_sst *ctx, struct skl_module_cfg
*src_module, struct skl_module_cfg *dst_module)
{
dev_dbg(ctx->dev, "%s: src module_id = %d src_instance=%d\n",
__func__, src_module->id.module_id, src_module->id.instance_id);
dev_dbg(ctx->dev, "%s: dst_module=%d dst_instacne=%d\n", __func__,
dst_module->id.module_id, dst_module->id.instance_id);
dev_dbg(ctx->dev, "src_module state = %d dst module state = %d\n",
src_module->m_state, dst_module->m_state);
}
/*
* On module freeup, we need to unbind the module with modules
* it is already bind.
* Find the pin allocated and unbind then using bind_unbind IPC
*/
int skl_unbind_modules(struct skl_sst *ctx,
struct skl_module_cfg *src_mcfg,
struct skl_module_cfg *dst_mcfg)
{
int ret;
struct skl_ipc_bind_unbind_msg msg;
struct skl_module_inst_id src_id = src_mcfg->id;
struct skl_module_inst_id dst_id = dst_mcfg->id;
int in_max = dst_mcfg->max_in_queue;
int out_max = src_mcfg->max_out_queue;
int src_index, dst_index;
skl_dump_bind_info(ctx, src_mcfg, dst_mcfg);
if (src_mcfg->m_state != SKL_MODULE_BIND_DONE)
return 0;
/*
* if intra module unbind, check if both modules are BIND,
* then send unbind
*/
if ((src_mcfg->pipe->ppl_id != dst_mcfg->pipe->ppl_id) &&
dst_mcfg->m_state != SKL_MODULE_BIND_DONE)
return 0;
else if (src_mcfg->m_state < SKL_MODULE_INIT_DONE &&
dst_mcfg->m_state < SKL_MODULE_INIT_DONE)
return 0;
/* get src queue index */
src_index = skl_get_queue_index(src_mcfg->m_out_pin, dst_id, out_max);
if (src_index < 0)
return -EINVAL;
msg.src_queue = src_mcfg->m_out_pin[src_index].pin_index;
/* get dst queue index */
dst_index = skl_get_queue_index(dst_mcfg->m_in_pin, src_id, in_max);
if (dst_index < 0)
return -EINVAL;
msg.dst_queue = dst_mcfg->m_in_pin[dst_index].pin_index;
msg.module_id = src_mcfg->id.module_id;
msg.instance_id = src_mcfg->id.instance_id;
msg.dst_module_id = dst_mcfg->id.module_id;
msg.dst_instance_id = dst_mcfg->id.instance_id;
msg.bind = false;
ret = skl_ipc_bind_unbind(&ctx->ipc, &msg);
if (!ret) {
src_mcfg->m_state = SKL_MODULE_UNINIT;
/* free queue only if unbind is success */
skl_free_queue(src_mcfg->m_out_pin, src_index);
skl_free_queue(dst_mcfg->m_in_pin, dst_index);
}
return ret;
}
/*
* Once a module is instantiated it need to be 'bind' with other modules in
* the pipeline. For binding we need to find the module pins which are bind
* together
* This function finds the pins and then sends bund_unbind IPC message to
* DSP using IPC helper
*/
int skl_bind_modules(struct skl_sst *ctx,
struct skl_module_cfg *src_mcfg,
struct skl_module_cfg *dst_mcfg)
{
int ret;
struct skl_ipc_bind_unbind_msg msg;
struct skl_module_inst_id src_id = src_mcfg->id;
struct skl_module_inst_id dst_id = dst_mcfg->id;
int in_max = dst_mcfg->max_in_queue;
int out_max = src_mcfg->max_out_queue;
int src_index, dst_index;
skl_dump_bind_info(ctx, src_mcfg, dst_mcfg);
if (src_mcfg->m_state < SKL_MODULE_INIT_DONE &&
dst_mcfg->m_state < SKL_MODULE_INIT_DONE)
return 0;
src_index = skl_alloc_queue(src_mcfg->m_out_pin, dst_id, out_max);
if (src_index < 0)
return -EINVAL;
msg.src_queue = src_mcfg->m_out_pin[src_index].pin_index;
dst_index = skl_alloc_queue(dst_mcfg->m_in_pin, src_id, in_max);
if (dst_index < 0) {
skl_free_queue(src_mcfg->m_out_pin, src_index);
return -EINVAL;
}
msg.dst_queue = dst_mcfg->m_in_pin[dst_index].pin_index;
dev_dbg(ctx->dev, "src queue = %d dst queue =%d\n",
msg.src_queue, msg.dst_queue);
msg.module_id = src_mcfg->id.module_id;
msg.instance_id = src_mcfg->id.instance_id;
msg.dst_module_id = dst_mcfg->id.module_id;
msg.dst_instance_id = dst_mcfg->id.instance_id;
msg.bind = true;
ret = skl_ipc_bind_unbind(&ctx->ipc, &msg);
if (!ret) {
src_mcfg->m_state = SKL_MODULE_BIND_DONE;
} else {
/* error case , if IPC fails, clear the queue index */
skl_free_queue(src_mcfg->m_out_pin, src_index);
skl_free_queue(dst_mcfg->m_in_pin, dst_index);
}
return ret;
}
static int skl_set_pipe_state(struct skl_sst *ctx, struct skl_pipe *pipe,
enum skl_ipc_pipeline_state state)
{
dev_dbg(ctx->dev, "%s: pipe_satate = %d\n", __func__, state);
return skl_ipc_set_pipeline_state(&ctx->ipc, pipe->ppl_id, state);
}
/*
* A pipeline is a collection of modules. Before a module in instantiated a
* pipeline needs to be created for it.
* This function creates pipeline, by sending create pipeline IPC messages
* to FW
*/
int skl_create_pipeline(struct skl_sst *ctx, struct skl_pipe *pipe)
{
int ret;
dev_dbg(ctx->dev, "%s: pipe_id = %d\n", __func__, pipe->ppl_id);
ret = skl_ipc_create_pipeline(&ctx->ipc, pipe->memory_pages,
pipe->pipe_priority, pipe->ppl_id);
if (ret < 0) {
dev_err(ctx->dev, "Failed to create pipeline\n");
return ret;
}
pipe->state = SKL_PIPE_CREATED;
return 0;
}
/*
* A pipeline needs to be deleted on cleanup. If a pipeline is running, then
* pause the pipeline first and then delete it
* The pipe delete is done by sending delete pipeline IPC. DSP will stop the
* DMA engines and releases resources
*/
int skl_delete_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
{
int ret;
dev_dbg(ctx->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);
/* If pipe is not started, do not try to stop the pipe in FW. */
if (pipe->state > SKL_PIPE_STARTED) {
ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
if (ret < 0) {
dev_err(ctx->dev, "Failed to stop pipeline\n");
return ret;
}
pipe->state = SKL_PIPE_PAUSED;
} else {
/* If pipe was not created in FW, do not try to delete it */
if (pipe->state < SKL_PIPE_CREATED)
return 0;
ret = skl_ipc_delete_pipeline(&ctx->ipc, pipe->ppl_id);
if (ret < 0)
dev_err(ctx->dev, "Failed to delete pipeline\n");
}
return ret;
}
/*
* A pipeline is also a scheduling entity in DSP which can be run, stopped
* For processing data the pipe need to be run by sending IPC set pipe state
* to DSP
*/
int skl_run_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
{
int ret;
dev_dbg(ctx->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);
/* If pipe was not created in FW, do not try to pause or delete */
if (pipe->state < SKL_PIPE_CREATED)
return 0;
/* Pipe has to be paused before it is started */
ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
if (ret < 0) {
dev_err(ctx->dev, "Failed to pause pipe\n");
return ret;
}
pipe->state = SKL_PIPE_PAUSED;
ret = skl_set_pipe_state(ctx, pipe, PPL_RUNNING);
if (ret < 0) {
dev_err(ctx->dev, "Failed to start pipe\n");
return ret;
}
pipe->state = SKL_PIPE_STARTED;
return 0;
}
/*
* Stop the pipeline by sending set pipe state IPC
* DSP doesnt implement stop so we always send pause message
*/
int skl_stop_pipe(struct skl_sst *ctx, struct skl_pipe *pipe)
{
int ret;
dev_dbg(ctx->dev, "In %s pipe=%d\n", __func__, pipe->ppl_id);
/* If pipe was not created in FW, do not try to pause or delete */
if (pipe->state < SKL_PIPE_PAUSED)
return 0;
ret = skl_set_pipe_state(ctx, pipe, PPL_PAUSED);
if (ret < 0) {
dev_dbg(ctx->dev, "Failed to stop pipe\n");
return ret;
}
pipe->state = SKL_PIPE_CREATED;
return 0;
}
/*
* skl-nhlt.c - Intel SKL Platform NHLT parsing
*
* Copyright (C) 2015 Intel Corp
* Author: Sanjiv Kumar <sanjiv.kumar@intel.com>
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
*/
#include "skl.h"
/* Unique identification for getting NHLT blobs */
static u8 OSC_UUID[16] = {0x6E, 0x88, 0x9F, 0xA6, 0xEB, 0x6C, 0x94, 0x45,
0xA4, 0x1F, 0x7B, 0x5D, 0xCE, 0x24, 0xC5, 0x53};
#define DSDT_NHLT_PATH "\\_SB.PCI0.HDAS"
void __iomem *skl_nhlt_init(struct device *dev)
{
acpi_handle handle;
union acpi_object *obj;
struct nhlt_resource_desc *nhlt_ptr = NULL;
if (ACPI_FAILURE(acpi_get_handle(NULL, DSDT_NHLT_PATH, &handle))) {
dev_err(dev, "Requested NHLT device not found\n");
return NULL;
}
obj = acpi_evaluate_dsm(handle, OSC_UUID, 1, 1, NULL);
if (obj && obj->type == ACPI_TYPE_BUFFER) {
nhlt_ptr = (struct nhlt_resource_desc *)obj->buffer.pointer;
return ioremap_cache(nhlt_ptr->min_addr, nhlt_ptr->length);
}
dev_err(dev, "device specific method to extract NHLT blob failed\n");
return NULL;
}
void skl_nhlt_free(void __iomem *addr)
{
iounmap(addr);
addr = NULL;
}
static struct nhlt_specific_cfg *skl_get_specific_cfg(
struct device *dev, struct nhlt_fmt *fmt,
u8 no_ch, u32 rate, u16 bps)
{
struct nhlt_specific_cfg *sp_config;
struct wav_fmt *wfmt;
struct nhlt_fmt_cfg *fmt_config = fmt->fmt_config;
int i;
dev_dbg(dev, "Format count =%d\n", fmt->fmt_count);
for (i = 0; i < fmt->fmt_count; i++) {
wfmt = &fmt_config->fmt_ext.fmt;
dev_dbg(dev, "ch=%d fmt=%d s_rate=%d\n", wfmt->channels,
wfmt->bits_per_sample, wfmt->samples_per_sec);
if (wfmt->channels == no_ch && wfmt->samples_per_sec == rate &&
wfmt->bits_per_sample == bps) {
sp_config = &fmt_config->config;
return sp_config;
}
fmt_config = (struct nhlt_fmt_cfg *)(fmt_config->config.caps +
fmt_config->config.size);
}
return NULL;
}
static void dump_config(struct device *dev, u32 instance_id, u8 linktype,
u8 s_fmt, u8 num_channels, u32 s_rate, u8 dirn, u16 bps)
{
dev_dbg(dev, "Input configuration\n");
dev_dbg(dev, "ch=%d fmt=%d s_rate=%d\n", num_channels, s_fmt, s_rate);
dev_dbg(dev, "vbus_id=%d link_type=%d\n", instance_id, linktype);
dev_dbg(dev, "bits_per_sample=%d\n", bps);
}
static bool skl_check_ep_match(struct device *dev, struct nhlt_endpoint *epnt,
u32 instance_id, u8 link_type, u8 dirn)
{
dev_dbg(dev, "vbus_id=%d link_type=%d dir=%d\n",
epnt->virtual_bus_id, epnt->linktype, epnt->direction);
if ((epnt->virtual_bus_id == instance_id) &&
(epnt->linktype == link_type) &&
(epnt->direction == dirn))
return true;
else
return false;
}
struct nhlt_specific_cfg
*skl_get_ep_blob(struct skl *skl, u32 instance, u8 link_type,
u8 s_fmt, u8 num_ch, u32 s_rate, u8 dirn)
{
struct nhlt_fmt *fmt;
struct nhlt_endpoint *epnt;
struct hdac_bus *bus = ebus_to_hbus(&skl->ebus);
struct device *dev = bus->dev;
struct nhlt_specific_cfg *sp_config;
struct nhlt_acpi_table *nhlt = (struct nhlt_acpi_table *)skl->nhlt;
u16 bps = num_ch * s_fmt;
u8 j;
dump_config(dev, instance, link_type, s_fmt, num_ch, s_rate, dirn, bps);
epnt = (struct nhlt_endpoint *)nhlt->desc;
dev_dbg(dev, "endpoint count =%d\n", nhlt->endpoint_count);
for (j = 0; j < nhlt->endpoint_count; j++) {
if (skl_check_ep_match(dev, epnt, instance, link_type, dirn)) {
fmt = (struct nhlt_fmt *)(epnt->config.caps +
epnt->config.size);
sp_config = skl_get_specific_cfg(dev, fmt, num_ch, s_rate, bps);
if (sp_config)
return sp_config;
}
epnt = (struct nhlt_endpoint *)((u8 *)epnt + epnt->length);
}
return NULL;
}
/*
* skl-nhlt.h - Intel HDA Platform NHLT header
*
* Copyright (C) 2015 Intel Corp
* Author: Sanjiv Kumar <sanjiv.kumar@intel.com>
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
*/
#ifndef __SKL_NHLT_H__
#define __SKL_NHLT_H__
#include <linux/acpi.h>
struct wav_fmt {
u16 fmt_tag;
u16 channels;
u32 samples_per_sec;
u32 avg_bytes_per_sec;
u16 block_align;
u16 bits_per_sample;
u16 cb_size;
} __packed;
struct wav_fmt_ext {
struct wav_fmt fmt;
union samples {
u16 valid_bits_per_sample;
u16 samples_per_block;
u16 reserved;
} sample;
u32 channel_mask;
u8 sub_fmt[16];
} __packed;
enum nhlt_link_type {
NHLT_LINK_HDA = 0,
NHLT_LINK_DSP = 1,
NHLT_LINK_DMIC = 2,
NHLT_LINK_SSP = 3,
NHLT_LINK_INVALID
};
enum nhlt_device_type {
NHLT_DEVICE_BT = 0,
NHLT_DEVICE_DMIC = 1,
NHLT_DEVICE_I2S = 4,
NHLT_DEVICE_INVALID
};
struct nhlt_specific_cfg {
u32 size;
u8 caps[0];
} __packed;
struct nhlt_fmt_cfg {
struct wav_fmt_ext fmt_ext;
struct nhlt_specific_cfg config;
} __packed;
struct nhlt_fmt {
u8 fmt_count;
struct nhlt_fmt_cfg fmt_config[0];
} __packed;
struct nhlt_endpoint {
u32 length;
u8 linktype;
u8 instance_id;
u16 vendor_id;
u16 device_id;
u16 revision_id;
u32 subsystem_id;
u8 device_type;
u8 direction;
u8 virtual_bus_id;
struct nhlt_specific_cfg config;
} __packed;
struct nhlt_acpi_table {
struct acpi_table_header header;
u8 endpoint_count;
struct nhlt_endpoint desc[0];
} __packed;
struct nhlt_resource_desc {
u32 extra;
u16 flags;
u64 addr_spc_gra;
u64 min_addr;
u64 max_addr;
u64 addr_trans_offset;
u64 length;
} __packed;
#endif
/*
* skl-pcm.c -ASoC HDA Platform driver file implementing PCM functionality
*
* Copyright (C) 2014-2015 Intel Corp
* Author: Jeeja KP <jeeja.kp@intel.com>
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
*/
#include <linux/pci.h>
#include <linux/pm_runtime.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include "skl.h"
#define HDA_MONO 1
#define HDA_STEREO 2
static struct snd_pcm_hardware azx_pcm_hw = {
.info = (SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_PAUSE |
SNDRV_PCM_INFO_SYNC_START |
SNDRV_PCM_INFO_HAS_WALL_CLOCK | /* legacy */
SNDRV_PCM_INFO_HAS_LINK_ATIME |
SNDRV_PCM_INFO_NO_PERIOD_WAKEUP),
.formats = SNDRV_PCM_FMTBIT_S16_LE,
.rates = SNDRV_PCM_RATE_48000,
.rate_min = 48000,
.rate_max = 48000,
.channels_min = 2,
.channels_max = 2,
.buffer_bytes_max = AZX_MAX_BUF_SIZE,
.period_bytes_min = 128,
.period_bytes_max = AZX_MAX_BUF_SIZE / 2,
.periods_min = 2,
.periods_max = AZX_MAX_FRAG,
.fifo_size = 0,
};
static inline
struct hdac_ext_stream *get_hdac_ext_stream(struct snd_pcm_substream *substream)
{
return substream->runtime->private_data;
}
static struct hdac_ext_bus *get_bus_ctx(struct snd_pcm_substream *substream)
{
struct hdac_ext_stream *stream = get_hdac_ext_stream(substream);
struct hdac_stream *hstream = hdac_stream(stream);
struct hdac_bus *bus = hstream->bus;
return hbus_to_ebus(bus);
}
static int skl_substream_alloc_pages(struct hdac_ext_bus *ebus,
struct snd_pcm_substream *substream,
size_t size)
{
struct hdac_ext_stream *stream = get_hdac_ext_stream(substream);
hdac_stream(stream)->bufsize = 0;
hdac_stream(stream)->period_bytes = 0;
hdac_stream(stream)->format_val = 0;
return snd_pcm_lib_malloc_pages(substream, size);
}
static int skl_substream_free_pages(struct hdac_bus *bus,
struct snd_pcm_substream *substream)
{
return snd_pcm_lib_free_pages(substream);
}
static void skl_set_pcm_constrains(struct hdac_ext_bus *ebus,
struct snd_pcm_runtime *runtime)
{
snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
/* avoid wrap-around with wall-clock */
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_TIME,
20, 178000000);
}
static enum hdac_ext_stream_type skl_get_host_stream_type(struct hdac_ext_bus *ebus)
{
if (ebus->ppcap)
return HDAC_EXT_STREAM_TYPE_HOST;
else
return HDAC_EXT_STREAM_TYPE_COUPLED;
}
static int skl_pcm_open(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct hdac_ext_bus *ebus = dev_get_drvdata(dai->dev);
struct hdac_ext_stream *stream;
struct snd_pcm_runtime *runtime = substream->runtime;
struct skl_dma_params *dma_params;
int ret;
dev_dbg(dai->dev, "%s: %s\n", __func__, dai->name);
ret = pm_runtime_get_sync(dai->dev);
if (ret)
return ret;
stream = snd_hdac_ext_stream_assign(ebus, substream,
skl_get_host_stream_type(ebus));
if (stream == NULL)
return -EBUSY;
skl_set_pcm_constrains(ebus, runtime);
/*
* disable WALLCLOCK timestamps for capture streams
* until we figure out how to handle digital inputs
*/
if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) {
runtime->hw.info &= ~SNDRV_PCM_INFO_HAS_WALL_CLOCK; /* legacy */
runtime->hw.info &= ~SNDRV_PCM_INFO_HAS_LINK_ATIME;
}
runtime->private_data = stream;
dma_params = kzalloc(sizeof(*dma_params), GFP_KERNEL);
if (!dma_params)
return -ENOMEM;
dma_params->stream_tag = hdac_stream(stream)->stream_tag;
snd_soc_dai_set_dma_data(dai, substream, dma_params);
dev_dbg(dai->dev, "stream tag set in dma params=%d\n",
dma_params->stream_tag);
snd_pcm_set_sync(substream);
return 0;
}
static int skl_get_format(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct snd_soc_pcm_runtime *rtd = snd_pcm_substream_chip(substream);
struct skl_dma_params *dma_params;
struct hdac_ext_bus *ebus = dev_get_drvdata(dai->dev);
int format_val = 0;
if (ebus->ppcap) {
struct snd_pcm_runtime *runtime = substream->runtime;
format_val = snd_hdac_calc_stream_format(runtime->rate,
runtime->channels,
runtime->format,
32, 0);
} else {
struct snd_soc_dai *codec_dai = rtd->codec_dai;
dma_params = snd_soc_dai_get_dma_data(codec_dai, substream);
if (dma_params)
format_val = dma_params->format;
}
return format_val;
}
static int skl_pcm_prepare(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct hdac_ext_stream *stream = get_hdac_ext_stream(substream);
unsigned int format_val;
int err;
dev_dbg(dai->dev, "%s: %s\n", __func__, dai->name);
if (hdac_stream(stream)->prepared) {
dev_dbg(dai->dev, "already stream is prepared - returning\n");
return 0;
}
format_val = skl_get_format(substream, dai);
dev_dbg(dai->dev, "stream_tag=%d formatvalue=%d\n",
hdac_stream(stream)->stream_tag, format_val);
snd_hdac_stream_reset(hdac_stream(stream));
err = snd_hdac_stream_set_params(hdac_stream(stream), format_val);
if (err < 0)
return err;
err = snd_hdac_stream_setup(hdac_stream(stream));
if (err < 0)
return err;
hdac_stream(stream)->prepared = 1;
return err;
}
static int skl_pcm_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct hdac_ext_bus *ebus = dev_get_drvdata(dai->dev);
struct hdac_ext_stream *stream = get_hdac_ext_stream(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
int ret, dma_id;
dev_dbg(dai->dev, "%s: %s\n", __func__, dai->name);
ret = skl_substream_alloc_pages(ebus, substream,
params_buffer_bytes(params));
if (ret < 0)
return ret;
dev_dbg(dai->dev, "format_val, rate=%d, ch=%d, format=%d\n",
runtime->rate, runtime->channels, runtime->format);
dma_id = hdac_stream(stream)->stream_tag - 1;
dev_dbg(dai->dev, "dma_id=%d\n", dma_id);
return 0;
}
static void skl_pcm_close(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct hdac_ext_stream *stream = get_hdac_ext_stream(substream);
struct hdac_ext_bus *ebus = dev_get_drvdata(dai->dev);
struct skl_dma_params *dma_params = NULL;
dev_dbg(dai->dev, "%s: %s\n", __func__, dai->name);
snd_hdac_ext_stream_release(stream, skl_get_host_stream_type(ebus));
dma_params = snd_soc_dai_get_dma_data(dai, substream);
/*
* now we should set this to NULL as we are freeing by the
* dma_params
*/
snd_soc_dai_set_dma_data(dai, substream, NULL);
pm_runtime_mark_last_busy(dai->dev);
pm_runtime_put_autosuspend(dai->dev);
kfree(dma_params);
}
static int skl_pcm_hw_free(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct hdac_ext_bus *ebus = dev_get_drvdata(dai->dev);
struct hdac_ext_stream *stream = get_hdac_ext_stream(substream);
dev_dbg(dai->dev, "%s: %s\n", __func__, dai->name);
snd_hdac_stream_cleanup(hdac_stream(stream));
hdac_stream(stream)->prepared = 0;
return skl_substream_free_pages(ebus_to_hbus(ebus), substream);
}
static int skl_link_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct hdac_ext_bus *ebus = dev_get_drvdata(dai->dev);
struct hdac_ext_stream *link_dev;
struct snd_soc_pcm_runtime *rtd = snd_pcm_substream_chip(substream);
struct skl_dma_params *dma_params;
struct snd_soc_dai *codec_dai = rtd->codec_dai;
int dma_id;
pr_debug("%s\n", __func__);
link_dev = snd_hdac_ext_stream_assign(ebus, substream,
HDAC_EXT_STREAM_TYPE_LINK);
if (!link_dev)
return -EBUSY;
snd_soc_dai_set_dma_data(dai, substream, (void *)link_dev);
/* set the stream tag in the codec dai dma params */
dma_params = (struct skl_dma_params *)
snd_soc_dai_get_dma_data(codec_dai, substream);
if (dma_params)
dma_params->stream_tag = hdac_stream(link_dev)->stream_tag;
snd_soc_dai_set_dma_data(codec_dai, substream, (void *)dma_params);
dma_id = hdac_stream(link_dev)->stream_tag - 1;
return 0;
}
static int skl_link_pcm_prepare(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct snd_soc_pcm_runtime *rtd = snd_pcm_substream_chip(substream);
struct hdac_ext_bus *ebus = dev_get_drvdata(dai->dev);
struct hdac_ext_stream *link_dev =
snd_soc_dai_get_dma_data(dai, substream);
unsigned int format_val = 0;
struct skl_dma_params *dma_params;
struct snd_soc_dai *codec_dai = rtd->codec_dai;
struct snd_pcm_hw_params *params;
struct snd_interval *channels, *rate;
struct hdac_ext_link *link;
dev_dbg(dai->dev, "%s: %s\n", __func__, dai->name);
if (link_dev->link_prepared) {
dev_dbg(dai->dev, "already stream is prepared - returning\n");
return 0;
}
params = devm_kzalloc(dai->dev, sizeof(*params), GFP_KERNEL);
if (params == NULL)
return -ENOMEM;
channels = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
channels->min = channels->max = substream->runtime->channels;
rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
rate->min = rate->max = substream->runtime->rate;
snd_mask_set(&params->masks[SNDRV_PCM_HW_PARAM_FORMAT -
SNDRV_PCM_HW_PARAM_FIRST_MASK],
substream->runtime->format);
dma_params = (struct skl_dma_params *)
snd_soc_dai_get_dma_data(codec_dai, substream);
if (dma_params)
format_val = dma_params->format;
dev_dbg(dai->dev, "stream_tag=%d formatvalue=%d codec_dai_name=%s\n",
hdac_stream(link_dev)->stream_tag, format_val, codec_dai->name);
snd_hdac_ext_link_stream_reset(link_dev);
snd_hdac_ext_link_stream_setup(link_dev, format_val);
link = snd_hdac_ext_bus_get_link(ebus, rtd->codec->component.name);
if (!link)
return -EINVAL;
snd_hdac_ext_link_set_stream_id(link, hdac_stream(link_dev)->stream_tag);
link_dev->link_prepared = 1;
return 0;
}
static int skl_link_pcm_trigger(struct snd_pcm_substream *substream,
int cmd, struct snd_soc_dai *dai)
{
struct hdac_ext_stream *link_dev =
snd_soc_dai_get_dma_data(dai, substream);
dev_dbg(dai->dev, "In %s cmd=%d\n", __func__, cmd);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
case SNDRV_PCM_TRIGGER_RESUME:
snd_hdac_ext_link_stream_start(link_dev);
break;
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_STOP:
snd_hdac_ext_link_stream_clear(link_dev);
break;
default:
return -EINVAL;
}
return 0;
}
static int skl_link_hw_free(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct hdac_ext_bus *ebus = dev_get_drvdata(dai->dev);
struct snd_soc_pcm_runtime *rtd = snd_pcm_substream_chip(substream);
struct hdac_ext_stream *link_dev =
snd_soc_dai_get_dma_data(dai, substream);
struct hdac_ext_link *link;
dev_dbg(dai->dev, "%s: %s\n", __func__, dai->name);
link_dev->link_prepared = 0;
link = snd_hdac_ext_bus_get_link(ebus, rtd->codec->component.name);
if (!link)
return -EINVAL;
snd_hdac_ext_link_clear_stream_id(link, hdac_stream(link_dev)->stream_tag);
snd_hdac_ext_stream_release(link_dev, HDAC_EXT_STREAM_TYPE_LINK);
return 0;
}
static int skl_hda_be_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
return pm_runtime_get_sync(dai->dev);
}
static void skl_hda_be_shutdown(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
pm_runtime_mark_last_busy(dai->dev);
pm_runtime_put_autosuspend(dai->dev);
}
static struct snd_soc_dai_ops skl_pcm_dai_ops = {
.startup = skl_pcm_open,
.shutdown = skl_pcm_close,
.prepare = skl_pcm_prepare,
.hw_params = skl_pcm_hw_params,
.hw_free = skl_pcm_hw_free,
};
static struct snd_soc_dai_ops skl_dmic_dai_ops = {
.startup = skl_hda_be_startup,
.shutdown = skl_hda_be_shutdown,
};
static struct snd_soc_dai_ops skl_link_dai_ops = {
.startup = skl_hda_be_startup,
.prepare = skl_link_pcm_prepare,
.hw_params = skl_link_hw_params,
.hw_free = skl_link_hw_free,
.trigger = skl_link_pcm_trigger,
.shutdown = skl_hda_be_shutdown,
};
static struct snd_soc_dai_driver skl_platform_dai[] = {
{
.name = "System Pin",
.ops = &skl_pcm_dai_ops,
.playback = {
.stream_name = "System Playback",
.channels_min = HDA_MONO,
.channels_max = HDA_STEREO,
.rates = SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_16000 | SNDRV_PCM_RATE_8000,
.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_LE,
},
.capture = {
.stream_name = "System Capture",
.channels_min = HDA_MONO,
.channels_max = HDA_STEREO,
.rates = SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_16000,
.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_LE,
},
},
{
.name = "Reference Pin",
.ops = &skl_pcm_dai_ops,
.capture = {
.stream_name = "Reference Capture",
.channels_min = HDA_MONO,
.channels_max = HDA_STEREO,
.rates = SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_16000,
.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_LE,
},
},
{
.name = "Deepbuffer Pin",
.ops = &skl_pcm_dai_ops,
.playback = {
.stream_name = "Deepbuffer Playback",
.channels_min = HDA_STEREO,
.channels_max = HDA_STEREO,
.rates = SNDRV_PCM_RATE_48000,
.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_LE,
},
},
{
.name = "LowLatency Pin",
.ops = &skl_pcm_dai_ops,
.playback = {
.stream_name = "Low Latency Playback",
.channels_min = HDA_STEREO,
.channels_max = HDA_STEREO,
.rates = SNDRV_PCM_RATE_48000,
.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_LE,
},
},
/* BE CPU Dais */
{
.name = "iDisp Pin",
.ops = &skl_link_dai_ops,
.playback = {
.stream_name = "iDisp Tx",
.channels_min = HDA_STEREO,
.channels_max = HDA_STEREO,
.rates = SNDRV_PCM_RATE_8000|SNDRV_PCM_RATE_16000|SNDRV_PCM_RATE_48000,
.formats = SNDRV_PCM_FMTBIT_S16_LE,
},
},
{
.name = "DMIC01 Pin",
.ops = &skl_dmic_dai_ops,
.capture = {
.stream_name = "DMIC01 Rx",
.channels_min = HDA_STEREO,
.channels_max = HDA_STEREO,
.rates = SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_16000,
.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_LE,
},
},
{
.name = "DMIC23 Pin",
.ops = &skl_dmic_dai_ops,
.capture = {
.stream_name = "DMIC23 Rx",
.channels_min = HDA_STEREO,
.channels_max = HDA_STEREO,
.rates = SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_16000,
.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_LE,
},
},
{
.name = "HD-Codec Pin",
.ops = &skl_link_dai_ops,
.playback = {
.stream_name = "HD-Codec Tx",
.channels_min = HDA_STEREO,
.channels_max = HDA_STEREO,
.rates = SNDRV_PCM_RATE_48000,
.formats = SNDRV_PCM_FMTBIT_S16_LE,
},
.capture = {
.stream_name = "HD-Codec Rx",
.channels_min = HDA_STEREO,
.channels_max = HDA_STEREO,
.rates = SNDRV_PCM_RATE_48000,
.formats = SNDRV_PCM_FMTBIT_S16_LE,
},
},
{
.name = "HD-Codec-SPK Pin",
.ops = &skl_link_dai_ops,
.playback = {
.stream_name = "HD-Codec-SPK Tx",
.channels_min = HDA_STEREO,
.channels_max = HDA_STEREO,
.rates = SNDRV_PCM_RATE_48000,
.formats = SNDRV_PCM_FMTBIT_S16_LE,
},
},
{
.name = "HD-Codec-AMIC Pin",
.ops = &skl_link_dai_ops,
.capture = {
.stream_name = "HD-Codec-AMIC Rx",
.channels_min = HDA_STEREO,
.channels_max = HDA_STEREO,
.rates = SNDRV_PCM_RATE_48000,
.formats = SNDRV_PCM_FMTBIT_S16_LE,
},
},
};
static int skl_platform_open(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime;
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_dai_link *dai_link = rtd->dai_link;
dev_dbg(rtd->cpu_dai->dev, "In %s:%s\n", __func__,
dai_link->cpu_dai_name);
runtime = substream->runtime;
snd_soc_set_runtime_hwparams(substream, &azx_pcm_hw);
return 0;
}
static int skl_pcm_trigger(struct snd_pcm_substream *substream,
int cmd)
{
struct hdac_ext_bus *ebus = get_bus_ctx(substream);
struct hdac_bus *bus = ebus_to_hbus(ebus);
struct hdac_ext_stream *stream;
struct snd_pcm_substream *s;
bool start;
int sbits = 0;
unsigned long cookie;
struct hdac_stream *hstr;
stream = get_hdac_ext_stream(substream);
hstr = hdac_stream(stream);
dev_dbg(bus->dev, "In %s cmd=%d\n", __func__, cmd);
if (!hstr->prepared)
return -EPIPE;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
case SNDRV_PCM_TRIGGER_RESUME:
start = true;
break;
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_STOP:
start = false;
break;
default:
return -EINVAL;
}
snd_pcm_group_for_each_entry(s, substream) {
if (s->pcm->card != substream->pcm->card)
continue;
stream = get_hdac_ext_stream(s);
sbits |= 1 << hdac_stream(stream)->index;
snd_pcm_trigger_done(s, substream);
}
spin_lock_irqsave(&bus->reg_lock, cookie);
/* first, set SYNC bits of corresponding streams */
snd_hdac_stream_sync_trigger(hstr, true, sbits, AZX_REG_SSYNC);
snd_pcm_group_for_each_entry(s, substream) {
if (s->pcm->card != substream->pcm->card)
continue;
stream = get_hdac_ext_stream(s);
if (start)
snd_hdac_stream_start(hdac_stream(stream), true);
else
snd_hdac_stream_stop(hdac_stream(stream));
}
spin_unlock_irqrestore(&bus->reg_lock, cookie);
snd_hdac_stream_sync(hstr, start, sbits);
spin_lock_irqsave(&bus->reg_lock, cookie);
/* reset SYNC bits */
snd_hdac_stream_sync_trigger(hstr, false, sbits, AZX_REG_SSYNC);
if (start)
snd_hdac_stream_timecounter_init(hstr, sbits);
spin_unlock_irqrestore(&bus->reg_lock, cookie);
return 0;
}
static int skl_dsp_trigger(struct snd_pcm_substream *substream,
int cmd)
{
struct hdac_ext_bus *ebus = get_bus_ctx(substream);
struct hdac_bus *bus = ebus_to_hbus(ebus);
struct snd_soc_pcm_runtime *rtd = snd_pcm_substream_chip(substream);
struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
struct hdac_ext_stream *stream;
int start;
unsigned long cookie;
struct hdac_stream *hstr;
dev_dbg(bus->dev, "In %s cmd=%d streamname=%s\n", __func__, cmd, cpu_dai->name);
stream = get_hdac_ext_stream(substream);
hstr = hdac_stream(stream);
if (!hstr->prepared)
return -EPIPE;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
case SNDRV_PCM_TRIGGER_RESUME:
start = 1;
break;
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_STOP:
start = 0;
break;
default:
return -EINVAL;
}
spin_lock_irqsave(&bus->reg_lock, cookie);
if (start)
snd_hdac_stream_start(hdac_stream(stream), true);
else
snd_hdac_stream_stop(hdac_stream(stream));
if (start)
snd_hdac_stream_timecounter_init(hstr, 0);
spin_unlock_irqrestore(&bus->reg_lock, cookie);
return 0;
}
static int skl_platform_pcm_trigger(struct snd_pcm_substream *substream,
int cmd)
{
struct hdac_ext_bus *ebus = get_bus_ctx(substream);
if (ebus->ppcap)
return skl_dsp_trigger(substream, cmd);
else
return skl_pcm_trigger(substream, cmd);
}
/* calculate runtime delay from LPIB */
static int skl_get_delay_from_lpib(struct hdac_ext_bus *ebus,
struct hdac_ext_stream *sstream,
unsigned int pos)
{
struct hdac_bus *bus = ebus_to_hbus(ebus);
struct hdac_stream *hstream = hdac_stream(sstream);
struct snd_pcm_substream *substream = hstream->substream;
int stream = substream->stream;
unsigned int lpib_pos = snd_hdac_stream_get_pos_lpib(hstream);
int delay;
if (stream == SNDRV_PCM_STREAM_PLAYBACK)
delay = pos - lpib_pos;
else
delay = lpib_pos - pos;
if (delay < 0) {
if (delay >= hstream->delay_negative_threshold)
delay = 0;
else
delay += hstream->bufsize;
}
if (delay >= hstream->period_bytes) {
dev_info(bus->dev,
"Unstable LPIB (%d >= %d); disabling LPIB delay counting\n",
delay, hstream->period_bytes);
delay = 0;
}
return bytes_to_frames(substream->runtime, delay);
}
static unsigned int skl_get_position(struct hdac_ext_stream *hstream,
int codec_delay)
{
struct hdac_stream *hstr = hdac_stream(hstream);
struct snd_pcm_substream *substream = hstr->substream;
struct hdac_ext_bus *ebus = get_bus_ctx(substream);
unsigned int pos;
int delay;
/* use the position buffer as default */
pos = snd_hdac_stream_get_pos_posbuf(hdac_stream(hstream));
if (pos >= hdac_stream(hstream)->bufsize)
pos = 0;
if (substream->runtime) {
delay = skl_get_delay_from_lpib(ebus, hstream, pos)
+ codec_delay;
substream->runtime->delay += delay;
}
return pos;
}
static snd_pcm_uframes_t skl_platform_pcm_pointer
(struct snd_pcm_substream *substream)
{
struct hdac_ext_stream *hstream = get_hdac_ext_stream(substream);
return bytes_to_frames(substream->runtime,
skl_get_position(hstream, 0));
}
static u64 skl_adjust_codec_delay(struct snd_pcm_substream *substream,
u64 nsec)
{
struct snd_soc_pcm_runtime *rtd = snd_pcm_substream_chip(substream);
struct snd_soc_dai *codec_dai = rtd->codec_dai;
u64 codec_frames, codec_nsecs;
if (!codec_dai->driver->ops->delay)
return nsec;
codec_frames = codec_dai->driver->ops->delay(substream, codec_dai);
codec_nsecs = div_u64(codec_frames * 1000000000LL,
substream->runtime->rate);
if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
return nsec + codec_nsecs;
return (nsec > codec_nsecs) ? nsec - codec_nsecs : 0;
}
static int skl_get_time_info(struct snd_pcm_substream *substream,
struct timespec *system_ts, struct timespec *audio_ts,
struct snd_pcm_audio_tstamp_config *audio_tstamp_config,
struct snd_pcm_audio_tstamp_report *audio_tstamp_report)
{
struct hdac_ext_stream *sstream = get_hdac_ext_stream(substream);
struct hdac_stream *hstr = hdac_stream(sstream);
u64 nsec;
if ((substream->runtime->hw.info & SNDRV_PCM_INFO_HAS_LINK_ATIME) &&
(audio_tstamp_config->type_requested == SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK)) {
snd_pcm_gettime(substream->runtime, system_ts);
nsec = timecounter_read(&hstr->tc);
nsec = div_u64(nsec, 3); /* can be optimized */
if (audio_tstamp_config->report_delay)
nsec = skl_adjust_codec_delay(substream, nsec);
*audio_ts = ns_to_timespec(nsec);
audio_tstamp_report->actual_type = SNDRV_PCM_AUDIO_TSTAMP_TYPE_LINK;
audio_tstamp_report->accuracy_report = 1; /* rest of struct is valid */
audio_tstamp_report->accuracy = 42; /* 24MHzWallClk == 42ns resolution */
} else {
audio_tstamp_report->actual_type = SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT;
}
return 0;
}
static struct snd_pcm_ops skl_platform_ops = {
.open = skl_platform_open,
.ioctl = snd_pcm_lib_ioctl,
.trigger = skl_platform_pcm_trigger,
.pointer = skl_platform_pcm_pointer,
.get_time_info = skl_get_time_info,
.mmap = snd_pcm_lib_default_mmap,
.page = snd_pcm_sgbuf_ops_page,
};
static void skl_pcm_free(struct snd_pcm *pcm)
{
snd_pcm_lib_preallocate_free_for_all(pcm);
}
#define MAX_PREALLOC_SIZE (32 * 1024 * 1024)
static int skl_pcm_new(struct snd_soc_pcm_runtime *rtd)
{
struct snd_soc_dai *dai = rtd->cpu_dai;
struct hdac_ext_bus *ebus = dev_get_drvdata(dai->dev);
struct snd_pcm *pcm = rtd->pcm;
unsigned int size;
int retval = 0;
struct skl *skl = ebus_to_skl(ebus);
if (dai->driver->playback.channels_min ||
dai->driver->capture.channels_min) {
/* buffer pre-allocation */
size = CONFIG_SND_HDA_PREALLOC_SIZE * 1024;
if (size > MAX_PREALLOC_SIZE)
size = MAX_PREALLOC_SIZE;
retval = snd_pcm_lib_preallocate_pages_for_all(pcm,
SNDRV_DMA_TYPE_DEV_SG,
snd_dma_pci_data(skl->pci),
size, MAX_PREALLOC_SIZE);
if (retval) {
dev_err(dai->dev, "dma buffer allocationf fail\n");
return retval;
}
}
return retval;
}
static struct snd_soc_platform_driver skl_platform_drv = {
.ops = &skl_platform_ops,
.pcm_new = skl_pcm_new,
.pcm_free = skl_pcm_free,
};
static const struct snd_soc_component_driver skl_component = {
.name = "pcm",
};
int skl_platform_register(struct device *dev)
{
int ret;
ret = snd_soc_register_platform(dev, &skl_platform_drv);
if (ret) {
dev_err(dev, "soc platform registration failed %d\n", ret);
return ret;
}
ret = snd_soc_register_component(dev, &skl_component,
skl_platform_dai,
ARRAY_SIZE(skl_platform_dai));
if (ret) {
dev_err(dev, "soc component registration failed %d\n", ret);
snd_soc_unregister_platform(dev);
}
return ret;
}
int skl_platform_unregister(struct device *dev)
{
snd_soc_unregister_component(dev);
snd_soc_unregister_platform(dev);
return 0;
}
/*
* skl-sst-cldma.c - Code Loader DMA handler
*
* Copyright (C) 2015, Intel Corporation.
* Author: Subhransu S. Prusty <subhransu.s.prusty@intel.com>
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as version 2, as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
#include <linux/device.h>
#include <linux/mm.h>
#include <linux/kthread.h>
#include "../common/sst-dsp.h"
#include "../common/sst-dsp-priv.h"
static void skl_cldma_int_enable(struct sst_dsp *ctx)
{
sst_dsp_shim_update_bits_unlocked(ctx, SKL_ADSP_REG_ADSPIC,
SKL_ADSPIC_CL_DMA, SKL_ADSPIC_CL_DMA);
}
void skl_cldma_int_disable(struct sst_dsp *ctx)
{
sst_dsp_shim_update_bits_unlocked(ctx,
SKL_ADSP_REG_ADSPIC, SKL_ADSPIC_CL_DMA, 0);
}
/* Code loader helper APIs */
static void skl_cldma_setup_bdle(struct sst_dsp *ctx,
struct snd_dma_buffer *dmab_data,
u32 **bdlp, int size, int with_ioc)
{
u32 *bdl = *bdlp;
ctx->cl_dev.frags = 0;
while (size > 0) {
phys_addr_t addr = virt_to_phys(dmab_data->area +
(ctx->cl_dev.frags * ctx->cl_dev.bufsize));
bdl[0] = cpu_to_le32(lower_32_bits(addr));
bdl[1] = cpu_to_le32(upper_32_bits(addr));
bdl[2] = cpu_to_le32(ctx->cl_dev.bufsize);
size -= ctx->cl_dev.bufsize;
bdl[3] = (size || !with_ioc) ? 0 : cpu_to_le32(0x01);
bdl += 4;
ctx->cl_dev.frags++;
}
}
/*
* Setup controller
* Configure the registers to update the dma buffer address and
* enable interrupts.
* Note: Using the channel 1 for transfer
*/
static void skl_cldma_setup_controller(struct sst_dsp *ctx,
struct snd_dma_buffer *dmab_bdl, unsigned int max_size,
u32 count)
{
sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_BDLPL,
CL_SD_BDLPLBA(dmab_bdl->addr));
sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_BDLPU,
CL_SD_BDLPUBA(dmab_bdl->addr));
sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_CBL, max_size);
sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_LVI, count - 1);
sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
CL_SD_CTL_IOCE_MASK, CL_SD_CTL_IOCE(1));
sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
CL_SD_CTL_FEIE_MASK, CL_SD_CTL_FEIE(1));
sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
CL_SD_CTL_DEIE_MASK, CL_SD_CTL_DEIE(1));
sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
CL_SD_CTL_STRM_MASK, CL_SD_CTL_STRM(FW_CL_STREAM_NUMBER));
}
static void skl_cldma_setup_spb(struct sst_dsp *ctx,
unsigned int size, bool enable)
{
if (enable)
sst_dsp_shim_update_bits_unlocked(ctx,
SKL_ADSP_REG_CL_SPBFIFO_SPBFCCTL,
CL_SPBFIFO_SPBFCCTL_SPIBE_MASK,
CL_SPBFIFO_SPBFCCTL_SPIBE(1));
sst_dsp_shim_write_unlocked(ctx, SKL_ADSP_REG_CL_SPBFIFO_SPIB, size);
}
static void skl_cldma_cleanup_spb(struct sst_dsp *ctx)
{
sst_dsp_shim_update_bits_unlocked(ctx,
SKL_ADSP_REG_CL_SPBFIFO_SPBFCCTL,
CL_SPBFIFO_SPBFCCTL_SPIBE_MASK,
CL_SPBFIFO_SPBFCCTL_SPIBE(0));
sst_dsp_shim_write_unlocked(ctx, SKL_ADSP_REG_CL_SPBFIFO_SPIB, 0);
}
static void skl_cldma_trigger(struct sst_dsp *ctx, bool enable)
{
if (enable)
sst_dsp_shim_update_bits_unlocked(ctx,
SKL_ADSP_REG_CL_SD_CTL,
CL_SD_CTL_RUN_MASK, CL_SD_CTL_RUN(1));
else
sst_dsp_shim_update_bits_unlocked(ctx,
SKL_ADSP_REG_CL_SD_CTL,
CL_SD_CTL_RUN_MASK, CL_SD_CTL_RUN(0));
}
static void skl_cldma_cleanup(struct sst_dsp *ctx)
{
skl_cldma_cleanup_spb(ctx);
sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
CL_SD_CTL_IOCE_MASK, CL_SD_CTL_IOCE(0));
sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
CL_SD_CTL_FEIE_MASK, CL_SD_CTL_FEIE(0));
sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
CL_SD_CTL_DEIE_MASK, CL_SD_CTL_DEIE(0));
sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_CL_SD_CTL,
CL_SD_CTL_STRM_MASK, CL_SD_CTL_STRM(0));
sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_BDLPL, CL_SD_BDLPLBA(0));
sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_BDLPU, 0);
sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_CBL, 0);
sst_dsp_shim_write(ctx, SKL_ADSP_REG_CL_SD_LVI, 0);
}
static int skl_cldma_wait_interruptible(struct sst_dsp *ctx)
{
int ret = 0;
if (!wait_event_timeout(ctx->cl_dev.wait_queue,
ctx->cl_dev.wait_condition,
msecs_to_jiffies(SKL_WAIT_TIMEOUT))) {
dev_err(ctx->dev, "%s: Wait timeout\n", __func__);
ret = -EIO;
goto cleanup;
}
dev_dbg(ctx->dev, "%s: Event wake\n", __func__);
if (ctx->cl_dev.wake_status != SKL_CL_DMA_BUF_COMPLETE) {
dev_err(ctx->dev, "%s: DMA Error\n", __func__);
ret = -EIO;
}
cleanup:
ctx->cl_dev.wake_status = SKL_CL_DMA_STATUS_NONE;
return ret;
}
static void skl_cldma_stop(struct sst_dsp *ctx)
{
ctx->cl_dev.ops.cl_trigger(ctx, false);
}
static void skl_cldma_fill_buffer(struct sst_dsp *ctx, unsigned int size,
const void *curr_pos, bool intr_enable, bool trigger)
{
dev_dbg(ctx->dev, "Size: %x, intr_enable: %d\n", size, intr_enable);
dev_dbg(ctx->dev, "buf_pos_index:%d, trigger:%d\n",
ctx->cl_dev.dma_buffer_offset, trigger);
dev_dbg(ctx->dev, "spib position: %d\n", ctx->cl_dev.curr_spib_pos);
memcpy(ctx->cl_dev.dmab_data.area + ctx->cl_dev.dma_buffer_offset,
curr_pos, size);
if (ctx->cl_dev.curr_spib_pos == ctx->cl_dev.bufsize)
ctx->cl_dev.dma_buffer_offset = 0;
else
ctx->cl_dev.dma_buffer_offset = ctx->cl_dev.curr_spib_pos;
ctx->cl_dev.wait_condition = false;
if (intr_enable)
skl_cldma_int_enable(ctx);
ctx->cl_dev.ops.cl_setup_spb(ctx, ctx->cl_dev.curr_spib_pos, trigger);
if (trigger)
ctx->cl_dev.ops.cl_trigger(ctx, true);
}
/*
* The CL dma doesn't have any way to update the transfer status until a BDL
* buffer is fully transferred
*
* So Copying is divided in two parts.
* 1. Interrupt on buffer done where the size to be transferred is more than
* ring buffer size.
* 2. Polling on fw register to identify if data left to transferred doesn't
* fill the ring buffer. Caller takes care of polling the required status
* register to identify the transfer status.
*/
static int
skl_cldma_copy_to_buf(struct sst_dsp *ctx, const void *bin, u32 total_size)
{
int ret = 0;
bool start = true;
unsigned int excess_bytes;
u32 size;
unsigned int bytes_left = total_size;
const void *curr_pos = bin;
if (total_size <= 0)
return -EINVAL;
dev_dbg(ctx->dev, "%s: Total binary size: %u\n", __func__, bytes_left);
while (bytes_left) {
if (bytes_left > ctx->cl_dev.bufsize) {
/*
* dma transfers only till the write pointer as
* updated in spib
*/
if (ctx->cl_dev.curr_spib_pos == 0)
ctx->cl_dev.curr_spib_pos = ctx->cl_dev.bufsize;
size = ctx->cl_dev.bufsize;
skl_cldma_fill_buffer(ctx, size, curr_pos, true, start);
start = false;
ret = skl_cldma_wait_interruptible(ctx);
if (ret < 0) {
skl_cldma_stop(ctx);
return ret;
}
} else {
skl_cldma_int_disable(ctx);
if ((ctx->cl_dev.curr_spib_pos + bytes_left)
<= ctx->cl_dev.bufsize) {
ctx->cl_dev.curr_spib_pos += bytes_left;
} else {
excess_bytes = bytes_left -
(ctx->cl_dev.bufsize -
ctx->cl_dev.curr_spib_pos);
ctx->cl_dev.curr_spib_pos = excess_bytes;
}
size = bytes_left;
skl_cldma_fill_buffer(ctx, size,
curr_pos, false, start);
}
bytes_left -= size;
curr_pos = curr_pos + size;
}
return ret;
}
void skl_cldma_process_intr(struct sst_dsp *ctx)
{
u8 cl_dma_intr_status;
cl_dma_intr_status =
sst_dsp_shim_read_unlocked(ctx, SKL_ADSP_REG_CL_SD_STS);
if (!(cl_dma_intr_status & SKL_CL_DMA_SD_INT_COMPLETE))
ctx->cl_dev.wake_status = SKL_CL_DMA_ERR;
else
ctx->cl_dev.wake_status = SKL_CL_DMA_BUF_COMPLETE;
ctx->cl_dev.wait_condition = true;
wake_up(&ctx->cl_dev.wait_queue);
}
int skl_cldma_prepare(struct sst_dsp *ctx)
{
int ret;
u32 *bdl;
ctx->cl_dev.bufsize = SKL_MAX_BUFFER_SIZE;
/* Allocate cl ops */
ctx->cl_dev.ops.cl_setup_bdle = skl_cldma_setup_bdle;
ctx->cl_dev.ops.cl_setup_controller = skl_cldma_setup_controller;
ctx->cl_dev.ops.cl_setup_spb = skl_cldma_setup_spb;
ctx->cl_dev.ops.cl_cleanup_spb = skl_cldma_cleanup_spb;
ctx->cl_dev.ops.cl_trigger = skl_cldma_trigger;
ctx->cl_dev.ops.cl_cleanup_controller = skl_cldma_cleanup;
ctx->cl_dev.ops.cl_copy_to_dmabuf = skl_cldma_copy_to_buf;
ctx->cl_dev.ops.cl_stop_dma = skl_cldma_stop;
/* Allocate buffer*/
ret = ctx->dsp_ops.alloc_dma_buf(ctx->dev,
&ctx->cl_dev.dmab_data, ctx->cl_dev.bufsize);
if (ret < 0) {
dev_err(ctx->dev, "Alloc buffer for base fw failed: %x", ret);
return ret;
}
/* Setup Code loader BDL */
ret = ctx->dsp_ops.alloc_dma_buf(ctx->dev,
&ctx->cl_dev.dmab_bdl, PAGE_SIZE);
if (ret < 0) {
dev_err(ctx->dev, "Alloc buffer for blde failed: %x", ret);
ctx->dsp_ops.free_dma_buf(ctx->dev, &ctx->cl_dev.dmab_data);
return ret;
}
bdl = (u32 *)ctx->cl_dev.dmab_bdl.area;
/* Allocate BDLs */
ctx->cl_dev.ops.cl_setup_bdle(ctx, &ctx->cl_dev.dmab_data,
&bdl, ctx->cl_dev.bufsize, 1);
ctx->cl_dev.ops.cl_setup_controller(ctx, &ctx->cl_dev.dmab_bdl,
ctx->cl_dev.bufsize, ctx->cl_dev.frags);
ctx->cl_dev.curr_spib_pos = 0;
ctx->cl_dev.dma_buffer_offset = 0;
init_waitqueue_head(&ctx->cl_dev.wait_queue);
return ret;
}
/*
* Intel Code Loader DMA support
*
* Copyright (C) 2015, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as version 2, as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
#ifndef SKL_SST_CLDMA_H_
#define SKL_SST_CLDMA_H_
#define FW_CL_STREAM_NUMBER 0x1
#define DMA_ADDRESS_128_BITS_ALIGNMENT 7
#define BDL_ALIGN(x) (x >> DMA_ADDRESS_128_BITS_ALIGNMENT)
#define SKL_ADSPIC_CL_DMA 0x2
#define SKL_ADSPIS_CL_DMA 0x2
#define SKL_CL_DMA_SD_INT_DESC_ERR 0x10 /* Descriptor error interrupt */
#define SKL_CL_DMA_SD_INT_FIFO_ERR 0x08 /* FIFO error interrupt */
#define SKL_CL_DMA_SD_INT_COMPLETE 0x04 /* Buffer completion interrupt */
/* Intel HD Audio Code Loader DMA Registers */
#define HDA_ADSP_LOADER_BASE 0x80
/* Stream Registers */
#define SKL_ADSP_REG_CL_SD_CTL (HDA_ADSP_LOADER_BASE + 0x00)
#define SKL_ADSP_REG_CL_SD_STS (HDA_ADSP_LOADER_BASE + 0x03)
#define SKL_ADSP_REG_CL_SD_LPIB (HDA_ADSP_LOADER_BASE + 0x04)
#define SKL_ADSP_REG_CL_SD_CBL (HDA_ADSP_LOADER_BASE + 0x08)
#define SKL_ADSP_REG_CL_SD_LVI (HDA_ADSP_LOADER_BASE + 0x0c)
#define SKL_ADSP_REG_CL_SD_FIFOW (HDA_ADSP_LOADER_BASE + 0x0e)
#define SKL_ADSP_REG_CL_SD_FIFOSIZE (HDA_ADSP_LOADER_BASE + 0x10)
#define SKL_ADSP_REG_CL_SD_FORMAT (HDA_ADSP_LOADER_BASE + 0x12)
#define SKL_ADSP_REG_CL_SD_FIFOL (HDA_ADSP_LOADER_BASE + 0x14)
#define SKL_ADSP_REG_CL_SD_BDLPL (HDA_ADSP_LOADER_BASE + 0x18)
#define SKL_ADSP_REG_CL_SD_BDLPU (HDA_ADSP_LOADER_BASE + 0x1c)
/* CL: Software Position Based FIFO Capability Registers */
#define SKL_ADSP_REG_CL_SPBFIFO (HDA_ADSP_LOADER_BASE + 0x20)
#define SKL_ADSP_REG_CL_SPBFIFO_SPBFCH (SKL_ADSP_REG_CL_SPBFIFO + 0x0)
#define SKL_ADSP_REG_CL_SPBFIFO_SPBFCCTL (SKL_ADSP_REG_CL_SPBFIFO + 0x4)
#define SKL_ADSP_REG_CL_SPBFIFO_SPIB (SKL_ADSP_REG_CL_SPBFIFO + 0x8)
#define SKL_ADSP_REG_CL_SPBFIFO_MAXFIFOS (SKL_ADSP_REG_CL_SPBFIFO + 0xc)
/* CL: Stream Descriptor x Control */
/* Stream Reset */
#define CL_SD_CTL_SRST_SHIFT 0
#define CL_SD_CTL_SRST_MASK (1 << CL_SD_CTL_SRST_SHIFT)
#define CL_SD_CTL_SRST(x) \
((x << CL_SD_CTL_SRST_SHIFT) & CL_SD_CTL_SRST_MASK)
/* Stream Run */
#define CL_SD_CTL_RUN_SHIFT 1
#define CL_SD_CTL_RUN_MASK (1 << CL_SD_CTL_RUN_SHIFT)
#define CL_SD_CTL_RUN(x) \
((x << CL_SD_CTL_RUN_SHIFT) & CL_SD_CTL_RUN_MASK)
/* Interrupt On Completion Enable */
#define CL_SD_CTL_IOCE_SHIFT 2
#define CL_SD_CTL_IOCE_MASK (1 << CL_SD_CTL_IOCE_SHIFT)
#define CL_SD_CTL_IOCE(x) \
((x << CL_SD_CTL_IOCE_SHIFT) & CL_SD_CTL_IOCE_MASK)
/* FIFO Error Interrupt Enable */
#define CL_SD_CTL_FEIE_SHIFT 3
#define CL_SD_CTL_FEIE_MASK (1 << CL_SD_CTL_FEIE_SHIFT)
#define CL_SD_CTL_FEIE(x) \
((x << CL_SD_CTL_FEIE_SHIFT) & CL_SD_CTL_FEIE_MASK)
/* Descriptor Error Interrupt Enable */
#define CL_SD_CTL_DEIE_SHIFT 4
#define CL_SD_CTL_DEIE_MASK (1 << CL_SD_CTL_DEIE_SHIFT)
#define CL_SD_CTL_DEIE(x) \
((x << CL_SD_CTL_DEIE_SHIFT) & CL_SD_CTL_DEIE_MASK)
/* FIFO Limit Change */
#define CL_SD_CTL_FIFOLC_SHIFT 5
#define CL_SD_CTL_FIFOLC_MASK (1 << CL_SD_CTL_FIFOLC_SHIFT)
#define CL_SD_CTL_FIFOLC(x) \
((x << CL_SD_CTL_FIFOLC_SHIFT) & CL_SD_CTL_FIFOLC_MASK)
/* Stripe Control */
#define CL_SD_CTL_STRIPE_SHIFT 16
#define CL_SD_CTL_STRIPE_MASK (0x3 << CL_SD_CTL_STRIPE_SHIFT)
#define CL_SD_CTL_STRIPE(x) \
((x << CL_SD_CTL_STRIPE_SHIFT) & CL_SD_CTL_STRIPE_MASK)
/* Traffic Priority */
#define CL_SD_CTL_TP_SHIFT 18
#define CL_SD_CTL_TP_MASK (1 << CL_SD_CTL_TP_SHIFT)
#define CL_SD_CTL_TP(x) \
((x << CL_SD_CTL_TP_SHIFT) & CL_SD_CTL_TP_MASK)
/* Bidirectional Direction Control */
#define CL_SD_CTL_DIR_SHIFT 19
#define CL_SD_CTL_DIR_MASK (1 << CL_SD_CTL_DIR_SHIFT)
#define CL_SD_CTL_DIR(x) \
((x << CL_SD_CTL_DIR_SHIFT) & CL_SD_CTL_DIR_MASK)
/* Stream Number */
#define CL_SD_CTL_STRM_SHIFT 20
#define CL_SD_CTL_STRM_MASK (0xf << CL_SD_CTL_STRM_SHIFT)
#define CL_SD_CTL_STRM(x) \
((x << CL_SD_CTL_STRM_SHIFT) & CL_SD_CTL_STRM_MASK)
/* CL: Stream Descriptor x Status */
/* Buffer Completion Interrupt Status */
#define CL_SD_STS_BCIS(x) CL_SD_CTL_IOCE(x)
/* FIFO Error */
#define CL_SD_STS_FIFOE(x) CL_SD_CTL_FEIE(x)
/* Descriptor Error */
#define CL_SD_STS_DESE(x) CL_SD_CTL_DEIE(x)
/* FIFO Ready */
#define CL_SD_STS_FIFORDY(x) CL_SD_CTL_FIFOLC(x)
/* CL: Stream Descriptor x Last Valid Index */
#define CL_SD_LVI_SHIFT 0
#define CL_SD_LVI_MASK (0xff << CL_SD_LVI_SHIFT)
#define CL_SD_LVI(x) ((x << CL_SD_LVI_SHIFT) & CL_SD_LVI_MASK)
/* CL: Stream Descriptor x FIFO Eviction Watermark */
#define CL_SD_FIFOW_SHIFT 0
#define CL_SD_FIFOW_MASK (0x7 << CL_SD_FIFOW_SHIFT)
#define CL_SD_FIFOW(x) \
((x << CL_SD_FIFOW_SHIFT) & CL_SD_FIFOW_MASK)
/* CL: Stream Descriptor x Buffer Descriptor List Pointer Lower Base Address */
/* Protect Bits */
#define CL_SD_BDLPLBA_PROT_SHIFT 0
#define CL_SD_BDLPLBA_PROT_MASK (1 << CL_SD_BDLPLBA_PROT_SHIFT)
#define CL_SD_BDLPLBA_PROT(x) \
((x << CL_SD_BDLPLBA_PROT_SHIFT) & CL_SD_BDLPLBA_PROT_MASK)
/* Buffer Descriptor List Lower Base Address */
#define CL_SD_BDLPLBA_SHIFT 7
#define CL_SD_BDLPLBA_MASK (0x1ffffff << CL_SD_BDLPLBA_SHIFT)
#define CL_SD_BDLPLBA(x) \
((BDL_ALIGN(lower_32_bits(x)) << CL_SD_BDLPLBA_SHIFT) & CL_SD_BDLPLBA_MASK)
/* Buffer Descriptor List Upper Base Address */
#define CL_SD_BDLPUBA_SHIFT 0
#define CL_SD_BDLPUBA_MASK (0xffffffff << CL_SD_BDLPUBA_SHIFT)
#define CL_SD_BDLPUBA(x) \
((upper_32_bits(x) << CL_SD_BDLPUBA_SHIFT) & CL_SD_BDLPUBA_MASK)
/*
* Code Loader - Software Position Based FIFO
* Capability Registers x Software Position Based FIFO Header
*/
/* Next Capability Pointer */
#define CL_SPBFIFO_SPBFCH_PTR_SHIFT 0
#define CL_SPBFIFO_SPBFCH_PTR_MASK (0xff << CL_SPBFIFO_SPBFCH_PTR_SHIFT)
#define CL_SPBFIFO_SPBFCH_PTR(x) \
((x << CL_SPBFIFO_SPBFCH_PTR_SHIFT) & CL_SPBFIFO_SPBFCH_PTR_MASK)
/* Capability Identifier */
#define CL_SPBFIFO_SPBFCH_ID_SHIFT 16
#define CL_SPBFIFO_SPBFCH_ID_MASK (0xfff << CL_SPBFIFO_SPBFCH_ID_SHIFT)
#define CL_SPBFIFO_SPBFCH_ID(x) \
((x << CL_SPBFIFO_SPBFCH_ID_SHIFT) & CL_SPBFIFO_SPBFCH_ID_MASK)
/* Capability Version */
#define CL_SPBFIFO_SPBFCH_VER_SHIFT 28
#define CL_SPBFIFO_SPBFCH_VER_MASK (0xf << CL_SPBFIFO_SPBFCH_VER_SHIFT)
#define CL_SPBFIFO_SPBFCH_VER(x) \
((x << CL_SPBFIFO_SPBFCH_VER_SHIFT) & CL_SPBFIFO_SPBFCH_VER_MASK)
/* Software Position in Buffer Enable */
#define CL_SPBFIFO_SPBFCCTL_SPIBE_SHIFT 0
#define CL_SPBFIFO_SPBFCCTL_SPIBE_MASK (1 << CL_SPBFIFO_SPBFCCTL_SPIBE_SHIFT)
#define CL_SPBFIFO_SPBFCCTL_SPIBE(x) \
((x << CL_SPBFIFO_SPBFCCTL_SPIBE_SHIFT) & CL_SPBFIFO_SPBFCCTL_SPIBE_MASK)
/* SST IPC SKL defines */
#define SKL_WAIT_TIMEOUT 500 /* 500 msec */
#define SKL_MAX_BUFFER_SIZE (32 * PAGE_SIZE)
enum skl_cl_dma_wake_states {
SKL_CL_DMA_STATUS_NONE = 0,
SKL_CL_DMA_BUF_COMPLETE,
SKL_CL_DMA_ERR, /* TODO: Expand the error states */
};
struct sst_dsp;
struct skl_cl_dev_ops {
void (*cl_setup_bdle)(struct sst_dsp *ctx,
struct snd_dma_buffer *dmab_data,
u32 **bdlp, int size, int with_ioc);
void (*cl_setup_controller)(struct sst_dsp *ctx,
struct snd_dma_buffer *dmab_bdl,
unsigned int max_size, u32 page_count);
void (*cl_setup_spb)(struct sst_dsp *ctx,
unsigned int size, bool enable);
void (*cl_cleanup_spb)(struct sst_dsp *ctx);
void (*cl_trigger)(struct sst_dsp *ctx, bool enable);
void (*cl_cleanup_controller)(struct sst_dsp *ctx);
int (*cl_copy_to_dmabuf)(struct sst_dsp *ctx,
const void *bin, u32 size);
void (*cl_stop_dma)(struct sst_dsp *ctx);
};
/**
* skl_cl_dev - holds information for code loader dma transfer
*
* @dmab_data: buffer pointer
* @dmab_bdl: buffer descriptor list
* @bufsize: ring buffer size
* @frags: Last valid buffer descriptor index in the BDL
* @curr_spib_pos: Current position in ring buffer
* @dma_buffer_offset: dma buffer offset
* @ops: operations supported on CL dma
* @wait_queue: wait queue to wake for wake event
* @wake_status: DMA wake status
* @wait_condition: condition to wait on wait queue
* @cl_dma_lock: for synchronized access to cldma
*/
struct skl_cl_dev {
struct snd_dma_buffer dmab_data;
struct snd_dma_buffer dmab_bdl;
unsigned int bufsize;
unsigned int frags;
unsigned int curr_spib_pos;
unsigned int dma_buffer_offset;
struct skl_cl_dev_ops ops;
wait_queue_head_t wait_queue;
int wake_status;
bool wait_condition;
};
#endif /* SKL_SST_CLDMA_H_ */
/*
* skl-sst-dsp.c - SKL SST library generic function
*
* Copyright (C) 2014-15, Intel Corporation.
* Author:Rafal Redzimski <rafal.f.redzimski@intel.com>
* Jeeja KP <jeeja.kp@intel.com>
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as version 2, as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
#include <sound/pcm.h>
#include "../common/sst-dsp.h"
#include "../common/sst-ipc.h"
#include "../common/sst-dsp-priv.h"
#include "skl-sst-ipc.h"
/* various timeout values */
#define SKL_DSP_PU_TO 50
#define SKL_DSP_PD_TO 50
#define SKL_DSP_RESET_TO 50
void skl_dsp_set_state_locked(struct sst_dsp *ctx, int state)
{
mutex_lock(&ctx->mutex);
ctx->sst_state = state;
mutex_unlock(&ctx->mutex);
}
static int skl_dsp_core_set_reset_state(struct sst_dsp *ctx)
{
int ret;
/* update bits */
sst_dsp_shim_update_bits_unlocked(ctx,
SKL_ADSP_REG_ADSPCS, SKL_ADSPCS_CRST_MASK,
SKL_ADSPCS_CRST(SKL_DSP_CORES_MASK));
/* poll with timeout to check if operation successful */
ret = sst_dsp_register_poll(ctx,
SKL_ADSP_REG_ADSPCS,
SKL_ADSPCS_CRST_MASK,
SKL_ADSPCS_CRST(SKL_DSP_CORES_MASK),
SKL_DSP_RESET_TO,
"Set reset");
if ((sst_dsp_shim_read_unlocked(ctx, SKL_ADSP_REG_ADSPCS) &
SKL_ADSPCS_CRST(SKL_DSP_CORES_MASK)) !=
SKL_ADSPCS_CRST(SKL_DSP_CORES_MASK)) {
dev_err(ctx->dev, "Set reset state failed\n");
ret = -EIO;
}
return ret;
}
static int skl_dsp_core_unset_reset_state(struct sst_dsp *ctx)
{
int ret;
dev_dbg(ctx->dev, "In %s\n", __func__);
/* update bits */
sst_dsp_shim_update_bits_unlocked(ctx, SKL_ADSP_REG_ADSPCS,
SKL_ADSPCS_CRST_MASK, 0);
/* poll with timeout to check if operation successful */
ret = sst_dsp_register_poll(ctx,
SKL_ADSP_REG_ADSPCS,
SKL_ADSPCS_CRST_MASK,
0,
SKL_DSP_RESET_TO,
"Unset reset");
if ((sst_dsp_shim_read_unlocked(ctx, SKL_ADSP_REG_ADSPCS) &
SKL_ADSPCS_CRST(SKL_DSP_CORES_MASK)) != 0) {
dev_err(ctx->dev, "Unset reset state failed\n");
ret = -EIO;
}
return ret;
}
static bool is_skl_dsp_core_enable(struct sst_dsp *ctx)
{
int val;
bool is_enable;
val = sst_dsp_shim_read_unlocked(ctx, SKL_ADSP_REG_ADSPCS);
is_enable = ((val & SKL_ADSPCS_CPA(SKL_DSP_CORES_MASK)) &&
(val & SKL_ADSPCS_SPA(SKL_DSP_CORES_MASK)) &&
!(val & SKL_ADSPCS_CRST(SKL_DSP_CORES_MASK)) &&
!(val & SKL_ADSPCS_CSTALL(SKL_DSP_CORES_MASK)));
dev_dbg(ctx->dev, "DSP core is enabled=%d\n", is_enable);
return is_enable;
}
static int skl_dsp_reset_core(struct sst_dsp *ctx)
{
/* stall core */
sst_dsp_shim_write_unlocked(ctx, SKL_ADSP_REG_ADSPCS,
sst_dsp_shim_read_unlocked(ctx, SKL_ADSP_REG_ADSPCS) &
SKL_ADSPCS_CSTALL(SKL_DSP_CORES_MASK));
/* set reset state */
return skl_dsp_core_set_reset_state(ctx);
}
static int skl_dsp_start_core(struct sst_dsp *ctx)
{
int ret;
/* unset reset state */
ret = skl_dsp_core_unset_reset_state(ctx);
if (ret < 0) {
dev_dbg(ctx->dev, "dsp unset reset fails\n");
return ret;
}
/* run core */
dev_dbg(ctx->dev, "run core...\n");
sst_dsp_shim_write_unlocked(ctx, SKL_ADSP_REG_ADSPCS,
sst_dsp_shim_read_unlocked(ctx, SKL_ADSP_REG_ADSPCS) &
~SKL_ADSPCS_CSTALL(SKL_DSP_CORES_MASK));
if (!is_skl_dsp_core_enable(ctx)) {
skl_dsp_reset_core(ctx);
dev_err(ctx->dev, "DSP core enable failed\n");
ret = -EIO;
}
return ret;
}
static int skl_dsp_core_power_up(struct sst_dsp *ctx)
{
int ret;
/* update bits */
sst_dsp_shim_update_bits_unlocked(ctx, SKL_ADSP_REG_ADSPCS,
SKL_ADSPCS_SPA_MASK, SKL_ADSPCS_SPA(SKL_DSP_CORES_MASK));
/* poll with timeout to check if operation successful */
ret = sst_dsp_register_poll(ctx,
SKL_ADSP_REG_ADSPCS,
SKL_ADSPCS_CPA_MASK,
SKL_ADSPCS_CPA(SKL_DSP_CORES_MASK),
SKL_DSP_PU_TO,
"Power up");
if ((sst_dsp_shim_read_unlocked(ctx, SKL_ADSP_REG_ADSPCS) &
SKL_ADSPCS_CPA(SKL_DSP_CORES_MASK)) !=
SKL_ADSPCS_CPA(SKL_DSP_CORES_MASK)) {
dev_err(ctx->dev, "DSP core power up failed\n");
ret = -EIO;
}
return ret;
}
static int skl_dsp_core_power_down(struct sst_dsp *ctx)
{
/* update bits */
sst_dsp_shim_update_bits_unlocked(ctx, SKL_ADSP_REG_ADSPCS,
SKL_ADSPCS_SPA_MASK, 0);
/* poll with timeout to check if operation successful */
return sst_dsp_register_poll(ctx,
SKL_ADSP_REG_ADSPCS,
SKL_ADSPCS_SPA_MASK,
0,
SKL_DSP_PD_TO,
"Power down");
}
static int skl_dsp_enable_core(struct sst_dsp *ctx)
{
int ret;
/* power up */
ret = skl_dsp_core_power_up(ctx);
if (ret < 0) {
dev_dbg(ctx->dev, "dsp core power up failed\n");
return ret;
}
return skl_dsp_start_core(ctx);
}
int skl_dsp_disable_core(struct sst_dsp *ctx)
{
int ret;
ret = skl_dsp_reset_core(ctx);
if (ret < 0) {
dev_err(ctx->dev, "dsp core reset failed\n");
return ret;
}
/* power down core*/
ret = skl_dsp_core_power_down(ctx);
if (ret < 0) {
dev_err(ctx->dev, "dsp core power down failed\n");
return ret;
}
if (is_skl_dsp_core_enable(ctx)) {
dev_err(ctx->dev, "DSP core disable failed\n");
ret = -EIO;
}
return ret;
}
int skl_dsp_boot(struct sst_dsp *ctx)
{
int ret;
if (is_skl_dsp_core_enable(ctx)) {
dev_dbg(ctx->dev, "dsp core is already enabled, so reset the dap core\n");
ret = skl_dsp_reset_core(ctx);
if (ret < 0) {
dev_err(ctx->dev, "dsp reset failed\n");
return ret;
}
ret = skl_dsp_start_core(ctx);
if (ret < 0) {
dev_err(ctx->dev, "dsp start failed\n");
return ret;
}
} else {
dev_dbg(ctx->dev, "disable and enable to make sure DSP is invalid state\n");
ret = skl_dsp_disable_core(ctx);
if (ret < 0) {
dev_err(ctx->dev, "dsp disable core failes\n");
return ret;
}
ret = skl_dsp_enable_core(ctx);
}
return ret;
}
irqreturn_t skl_dsp_sst_interrupt(int irq, void *dev_id)
{
struct sst_dsp *ctx = dev_id;
u32 val;
irqreturn_t result = IRQ_NONE;
spin_lock(&ctx->spinlock);
val = sst_dsp_shim_read_unlocked(ctx, SKL_ADSP_REG_ADSPIS);
ctx->intr_status = val;
if (val & SKL_ADSPIS_IPC) {
skl_ipc_int_disable(ctx);
result = IRQ_WAKE_THREAD;
}
if (val & SKL_ADSPIS_CL_DMA) {
skl_cldma_int_disable(ctx);
result = IRQ_WAKE_THREAD;
}
spin_unlock(&ctx->spinlock);
return result;
}
int skl_dsp_wake(struct sst_dsp *ctx)
{
return ctx->fw_ops.set_state_D0(ctx);
}
EXPORT_SYMBOL_GPL(skl_dsp_wake);
int skl_dsp_sleep(struct sst_dsp *ctx)
{
return ctx->fw_ops.set_state_D3(ctx);
}
EXPORT_SYMBOL_GPL(skl_dsp_sleep);
struct sst_dsp *skl_dsp_ctx_init(struct device *dev,
struct sst_dsp_device *sst_dev, int irq)
{
int ret;
struct sst_dsp *sst;
sst = devm_kzalloc(dev, sizeof(*sst), GFP_KERNEL);
if (sst == NULL)
return NULL;
spin_lock_init(&sst->spinlock);
mutex_init(&sst->mutex);
sst->dev = dev;
sst->sst_dev = sst_dev;
sst->irq = irq;
sst->ops = sst_dev->ops;
sst->thread_context = sst_dev->thread_context;
/* Initialise SST Audio DSP */
if (sst->ops->init) {
ret = sst->ops->init(sst, NULL);
if (ret < 0)
return NULL;
}
/* Register the ISR */
ret = request_threaded_irq(sst->irq, sst->ops->irq_handler,
sst_dev->thread, IRQF_SHARED, "AudioDSP", sst);
if (ret) {
dev_err(sst->dev, "unable to grab threaded IRQ %d, disabling device\n",
sst->irq);
return NULL;
}
return sst;
}
void skl_dsp_free(struct sst_dsp *dsp)
{
skl_ipc_int_disable(dsp);
free_irq(dsp->irq, dsp);
skl_dsp_disable_core(dsp);
}
EXPORT_SYMBOL_GPL(skl_dsp_free);
bool is_skl_dsp_running(struct sst_dsp *ctx)
{
return (ctx->sst_state == SKL_DSP_RUNNING);
}
EXPORT_SYMBOL_GPL(is_skl_dsp_running);
/*
* Skylake SST DSP Support
*
* Copyright (C) 2014-15, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as version 2, as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
#ifndef __SKL_SST_DSP_H__
#define __SKL_SST_DSP_H__
#include <linux/interrupt.h>
#include <sound/memalloc.h>
#include "skl-sst-cldma.h"
struct sst_dsp;
struct skl_sst;
struct sst_dsp_device;
/* Intel HD Audio General DSP Registers */
#define SKL_ADSP_GEN_BASE 0x0
#define SKL_ADSP_REG_ADSPCS (SKL_ADSP_GEN_BASE + 0x04)
#define SKL_ADSP_REG_ADSPIC (SKL_ADSP_GEN_BASE + 0x08)
#define SKL_ADSP_REG_ADSPIS (SKL_ADSP_GEN_BASE + 0x0C)
#define SKL_ADSP_REG_ADSPIC2 (SKL_ADSP_GEN_BASE + 0x10)
#define SKL_ADSP_REG_ADSPIS2 (SKL_ADSP_GEN_BASE + 0x14)
/* Intel HD Audio Inter-Processor Communication Registers */
#define SKL_ADSP_IPC_BASE 0x40
#define SKL_ADSP_REG_HIPCT (SKL_ADSP_IPC_BASE + 0x00)
#define SKL_ADSP_REG_HIPCTE (SKL_ADSP_IPC_BASE + 0x04)
#define SKL_ADSP_REG_HIPCI (SKL_ADSP_IPC_BASE + 0x08)
#define SKL_ADSP_REG_HIPCIE (SKL_ADSP_IPC_BASE + 0x0C)
#define SKL_ADSP_REG_HIPCCTL (SKL_ADSP_IPC_BASE + 0x10)
/* HIPCI */
#define SKL_ADSP_REG_HIPCI_BUSY BIT(31)
/* HIPCIE */
#define SKL_ADSP_REG_HIPCIE_DONE BIT(30)
/* HIPCCTL */
#define SKL_ADSP_REG_HIPCCTL_DONE BIT(1)
#define SKL_ADSP_REG_HIPCCTL_BUSY BIT(0)
/* HIPCT */
#define SKL_ADSP_REG_HIPCT_BUSY BIT(31)
/* Intel HD Audio SRAM Window 1 */
#define SKL_ADSP_SRAM1_BASE 0xA000
#define SKL_ADSP_MMIO_LEN 0x10000
#define SKL_ADSP_W0_STAT_SZ 0x800
#define SKL_ADSP_W0_UP_SZ 0x800
#define SKL_ADSP_W1_SZ 0x1000
#define SKL_FW_STS_MASK 0xf
#define SKL_FW_INIT 0x1
#define SKL_FW_RFW_START 0xf
#define SKL_ADSPIC_IPC 1
#define SKL_ADSPIS_IPC 1
/* ADSPCS - Audio DSP Control & Status */
#define SKL_DSP_CORES 1
#define SKL_DSP_CORE0_MASK 1
#define SKL_DSP_CORES_MASK ((1 << SKL_DSP_CORES) - 1)
/* Core Reset - asserted high */
#define SKL_ADSPCS_CRST_SHIFT 0
#define SKL_ADSPCS_CRST_MASK (SKL_DSP_CORES_MASK << SKL_ADSPCS_CRST_SHIFT)
#define SKL_ADSPCS_CRST(x) ((x << SKL_ADSPCS_CRST_SHIFT) & SKL_ADSPCS_CRST_MASK)
/* Core run/stall - when set to '1' core is stalled */
#define SKL_ADSPCS_CSTALL_SHIFT 8
#define SKL_ADSPCS_CSTALL_MASK (SKL_DSP_CORES_MASK << \
SKL_ADSPCS_CSTALL_SHIFT)
#define SKL_ADSPCS_CSTALL(x) ((x << SKL_ADSPCS_CSTALL_SHIFT) & \
SKL_ADSPCS_CSTALL_MASK)
/* Set Power Active - when set to '1' turn cores on */
#define SKL_ADSPCS_SPA_SHIFT 16
#define SKL_ADSPCS_SPA_MASK (SKL_DSP_CORES_MASK << SKL_ADSPCS_SPA_SHIFT)
#define SKL_ADSPCS_SPA(x) ((x << SKL_ADSPCS_SPA_SHIFT) & SKL_ADSPCS_SPA_MASK)
/* Current Power Active - power status of cores, set by hardware */
#define SKL_ADSPCS_CPA_SHIFT 24
#define SKL_ADSPCS_CPA_MASK (SKL_DSP_CORES_MASK << SKL_ADSPCS_CPA_SHIFT)
#define SKL_ADSPCS_CPA(x) ((x << SKL_ADSPCS_CPA_SHIFT) & SKL_ADSPCS_CPA_MASK)
#define SST_DSP_POWER_D0 0x0 /* full On */
#define SST_DSP_POWER_D3 0x3 /* Off */
enum skl_dsp_states {
SKL_DSP_RUNNING = 1,
SKL_DSP_RESET,
};
struct skl_dsp_fw_ops {
int (*load_fw)(struct sst_dsp *ctx);
/* FW module parser/loader */
int (*parse_fw)(struct sst_dsp *ctx);
int (*set_state_D0)(struct sst_dsp *ctx);
int (*set_state_D3)(struct sst_dsp *ctx);
unsigned int (*get_fw_errcode)(struct sst_dsp *ctx);
};
struct skl_dsp_loader_ops {
int (*alloc_dma_buf)(struct device *dev,
struct snd_dma_buffer *dmab, size_t size);
int (*free_dma_buf)(struct device *dev,
struct snd_dma_buffer *dmab);
};
void skl_cldma_process_intr(struct sst_dsp *ctx);
void skl_cldma_int_disable(struct sst_dsp *ctx);
int skl_cldma_prepare(struct sst_dsp *ctx);
void skl_dsp_set_state_locked(struct sst_dsp *ctx, int state);
struct sst_dsp *skl_dsp_ctx_init(struct device *dev,
struct sst_dsp_device *sst_dev, int irq);
int skl_dsp_disable_core(struct sst_dsp *ctx);
bool is_skl_dsp_running(struct sst_dsp *ctx);
irqreturn_t skl_dsp_sst_interrupt(int irq, void *dev_id);
int skl_dsp_wake(struct sst_dsp *ctx);
int skl_dsp_sleep(struct sst_dsp *ctx);
void skl_dsp_free(struct sst_dsp *dsp);
int skl_dsp_boot(struct sst_dsp *ctx);
int skl_sst_dsp_init(struct device *dev, void __iomem *mmio_base, int irq,
struct skl_dsp_loader_ops dsp_ops, struct skl_sst **dsp);
void skl_sst_dsp_cleanup(struct device *dev, struct skl_sst *ctx);
#endif /*__SKL_SST_DSP_H__*/
/*
* skl-sst-ipc.c - Intel skl IPC Support
*
* Copyright (C) 2014-15, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as version 2, as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
#include <linux/device.h>
#include "../common/sst-dsp.h"
#include "../common/sst-dsp-priv.h"
#include "skl-sst-dsp.h"
#include "skl-sst-ipc.h"
#define IPC_IXC_STATUS_BITS 24
/* Global Message - Generic */
#define IPC_GLB_TYPE_SHIFT 24
#define IPC_GLB_TYPE_MASK (0xf << IPC_GLB_TYPE_SHIFT)
#define IPC_GLB_TYPE(x) ((x) << IPC_GLB_TYPE_SHIFT)
/* Global Message - Reply */
#define IPC_GLB_REPLY_STATUS_SHIFT 24
#define IPC_GLB_REPLY_STATUS_MASK ((0x1 << IPC_GLB_REPLY_STATUS_SHIFT) - 1)
#define IPC_GLB_REPLY_STATUS(x) ((x) << IPC_GLB_REPLY_STATUS_SHIFT)
#define IPC_TIMEOUT_MSECS 3000
#define IPC_EMPTY_LIST_SIZE 8
#define IPC_MSG_TARGET_SHIFT 30
#define IPC_MSG_TARGET_MASK 0x1
#define IPC_MSG_TARGET(x) (((x) & IPC_MSG_TARGET_MASK) \
<< IPC_MSG_TARGET_SHIFT)
#define IPC_MSG_DIR_SHIFT 29
#define IPC_MSG_DIR_MASK 0x1
#define IPC_MSG_DIR(x) (((x) & IPC_MSG_DIR_MASK) \
<< IPC_MSG_DIR_SHIFT)
/* Global Notification Message */
#define IPC_GLB_NOTIFY_TYPE_SHIFT 16
#define IPC_GLB_NOTIFY_TYPE_MASK 0xFF
#define IPC_GLB_NOTIFY_TYPE(x) (((x) >> IPC_GLB_NOTIFY_TYPE_SHIFT) \
& IPC_GLB_NOTIFY_TYPE_MASK)
#define IPC_GLB_NOTIFY_MSG_TYPE_SHIFT 24
#define IPC_GLB_NOTIFY_MSG_TYPE_MASK 0x1F
#define IPC_GLB_NOTIFY_MSG_TYPE(x) (((x) >> IPC_GLB_NOTIFY_MSG_TYPE_SHIFT) \
& IPC_GLB_NOTIFY_MSG_TYPE_MASK)
#define IPC_GLB_NOTIFY_RSP_SHIFT 29
#define IPC_GLB_NOTIFY_RSP_MASK 0x1
#define IPC_GLB_NOTIFY_RSP_TYPE(x) (((x) >> IPC_GLB_NOTIFY_RSP_SHIFT) \
& IPC_GLB_NOTIFY_RSP_MASK)
/* Pipeline operations */
/* Create pipeline message */
#define IPC_PPL_MEM_SIZE_SHIFT 0
#define IPC_PPL_MEM_SIZE_MASK 0x7FF
#define IPC_PPL_MEM_SIZE(x) (((x) & IPC_PPL_MEM_SIZE_MASK) \
<< IPC_PPL_MEM_SIZE_SHIFT)
#define IPC_PPL_TYPE_SHIFT 11
#define IPC_PPL_TYPE_MASK 0x1F
#define IPC_PPL_TYPE(x) (((x) & IPC_PPL_TYPE_MASK) \
<< IPC_PPL_TYPE_SHIFT)
#define IPC_INSTANCE_ID_SHIFT 16
#define IPC_INSTANCE_ID_MASK 0xFF
#define IPC_INSTANCE_ID(x) (((x) & IPC_INSTANCE_ID_MASK) \
<< IPC_INSTANCE_ID_SHIFT)
/* Set pipeline state message */
#define IPC_PPL_STATE_SHIFT 0
#define IPC_PPL_STATE_MASK 0x1F
#define IPC_PPL_STATE(x) (((x) & IPC_PPL_STATE_MASK) \
<< IPC_PPL_STATE_SHIFT)
/* Module operations primary register */
#define IPC_MOD_ID_SHIFT 0
#define IPC_MOD_ID_MASK 0xFFFF
#define IPC_MOD_ID(x) (((x) & IPC_MOD_ID_MASK) \
<< IPC_MOD_ID_SHIFT)
#define IPC_MOD_INSTANCE_ID_SHIFT 16
#define IPC_MOD_INSTANCE_ID_MASK 0xFF
#define IPC_MOD_INSTANCE_ID(x) (((x) & IPC_MOD_INSTANCE_ID_MASK) \
<< IPC_MOD_INSTANCE_ID_SHIFT)
/* Init instance message extension register */
#define IPC_PARAM_BLOCK_SIZE_SHIFT 0
#define IPC_PARAM_BLOCK_SIZE_MASK 0xFFFF
#define IPC_PARAM_BLOCK_SIZE(x) (((x) & IPC_PARAM_BLOCK_SIZE_MASK) \
<< IPC_PARAM_BLOCK_SIZE_SHIFT)
#define IPC_PPL_INSTANCE_ID_SHIFT 16
#define IPC_PPL_INSTANCE_ID_MASK 0xFF
#define IPC_PPL_INSTANCE_ID(x) (((x) & IPC_PPL_INSTANCE_ID_MASK) \
<< IPC_PPL_INSTANCE_ID_SHIFT)
#define IPC_CORE_ID_SHIFT 24
#define IPC_CORE_ID_MASK 0x1F
#define IPC_CORE_ID(x) (((x) & IPC_CORE_ID_MASK) \
<< IPC_CORE_ID_SHIFT)
/* Bind/Unbind message extension register */
#define IPC_DST_MOD_ID_SHIFT 0
#define IPC_DST_MOD_ID(x) (((x) & IPC_MOD_ID_MASK) \
<< IPC_DST_MOD_ID_SHIFT)
#define IPC_DST_MOD_INSTANCE_ID_SHIFT 16
#define IPC_DST_MOD_INSTANCE_ID(x) (((x) & IPC_MOD_INSTANCE_ID_MASK) \
<< IPC_DST_MOD_INSTANCE_ID_SHIFT)
#define IPC_DST_QUEUE_SHIFT 24
#define IPC_DST_QUEUE_MASK 0x7
#define IPC_DST_QUEUE(x) (((x) & IPC_DST_QUEUE_MASK) \
<< IPC_DST_QUEUE_SHIFT)
#define IPC_SRC_QUEUE_SHIFT 27
#define IPC_SRC_QUEUE_MASK 0x7
#define IPC_SRC_QUEUE(x) (((x) & IPC_SRC_QUEUE_MASK) \
<< IPC_SRC_QUEUE_SHIFT)
/* Save pipeline messgae extension register */
#define IPC_DMA_ID_SHIFT 0
#define IPC_DMA_ID_MASK 0x1F
#define IPC_DMA_ID(x) (((x) & IPC_DMA_ID_MASK) \
<< IPC_DMA_ID_SHIFT)
/* Large Config message extension register */
#define IPC_DATA_OFFSET_SZ_SHIFT 0
#define IPC_DATA_OFFSET_SZ_MASK 0xFFFFF
#define IPC_DATA_OFFSET_SZ(x) (((x) & IPC_DATA_OFFSET_SZ_MASK) \
<< IPC_DATA_OFFSET_SZ_SHIFT)
#define IPC_DATA_OFFSET_SZ_CLEAR ~(IPC_DATA_OFFSET_SZ_MASK \
<< IPC_DATA_OFFSET_SZ_SHIFT)
#define IPC_LARGE_PARAM_ID_SHIFT 20
#define IPC_LARGE_PARAM_ID_MASK 0xFF
#define IPC_LARGE_PARAM_ID(x) (((x) & IPC_LARGE_PARAM_ID_MASK) \
<< IPC_LARGE_PARAM_ID_SHIFT)
#define IPC_FINAL_BLOCK_SHIFT 28
#define IPC_FINAL_BLOCK_MASK 0x1
#define IPC_FINAL_BLOCK(x) (((x) & IPC_FINAL_BLOCK_MASK) \
<< IPC_FINAL_BLOCK_SHIFT)
#define IPC_INITIAL_BLOCK_SHIFT 29
#define IPC_INITIAL_BLOCK_MASK 0x1
#define IPC_INITIAL_BLOCK(x) (((x) & IPC_INITIAL_BLOCK_MASK) \
<< IPC_INITIAL_BLOCK_SHIFT)
#define IPC_INITIAL_BLOCK_CLEAR ~(IPC_INITIAL_BLOCK_MASK \
<< IPC_INITIAL_BLOCK_SHIFT)
enum skl_ipc_msg_target {
IPC_FW_GEN_MSG = 0,
IPC_MOD_MSG = 1
};
enum skl_ipc_msg_direction {
IPC_MSG_REQUEST = 0,
IPC_MSG_REPLY = 1
};
/* Global Message Types */
enum skl_ipc_glb_type {
IPC_GLB_GET_FW_VERSION = 0, /* Retrieves firmware version */
IPC_GLB_LOAD_MULTIPLE_MODS = 15,
IPC_GLB_UNLOAD_MULTIPLE_MODS = 16,
IPC_GLB_CREATE_PPL = 17,
IPC_GLB_DELETE_PPL = 18,
IPC_GLB_SET_PPL_STATE = 19,
IPC_GLB_GET_PPL_STATE = 20,
IPC_GLB_GET_PPL_CONTEXT_SIZE = 21,
IPC_GLB_SAVE_PPL = 22,
IPC_GLB_RESTORE_PPL = 23,
IPC_GLB_NOTIFY = 26,
IPC_GLB_MAX_IPC_MSG_NUMBER = 31 /* Maximum message number */
};
enum skl_ipc_glb_reply {
IPC_GLB_REPLY_SUCCESS = 0,
IPC_GLB_REPLY_UNKNOWN_MSG_TYPE = 1,
IPC_GLB_REPLY_ERROR_INVALID_PARAM = 2,
IPC_GLB_REPLY_BUSY = 3,
IPC_GLB_REPLY_PENDING = 4,
IPC_GLB_REPLY_FAILURE = 5,
IPC_GLB_REPLY_INVALID_REQUEST = 6,
IPC_GLB_REPLY_OUT_OF_MEMORY = 7,
IPC_GLB_REPLY_OUT_OF_MIPS = 8,
IPC_GLB_REPLY_INVALID_RESOURCE_ID = 9,
IPC_GLB_REPLY_INVALID_RESOURCE_STATE = 10,
IPC_GLB_REPLY_MOD_MGMT_ERROR = 100,
IPC_GLB_REPLY_MOD_LOAD_CL_FAILED = 101,
IPC_GLB_REPLY_MOD_LOAD_INVALID_HASH = 102,
IPC_GLB_REPLY_MOD_UNLOAD_INST_EXIST = 103,
IPC_GLB_REPLY_MOD_NOT_INITIALIZED = 104,
IPC_GLB_REPLY_INVALID_CONFIG_PARAM_ID = 120,
IPC_GLB_REPLY_INVALID_CONFIG_DATA_LEN = 121,
IPC_GLB_REPLY_GATEWAY_NOT_INITIALIZED = 140,
IPC_GLB_REPLY_GATEWAY_NOT_EXIST = 141,
IPC_GLB_REPLY_PPL_NOT_INITIALIZED = 160,
IPC_GLB_REPLY_PPL_NOT_EXIST = 161,
IPC_GLB_REPLY_PPL_SAVE_FAILED = 162,
IPC_GLB_REPLY_PPL_RESTORE_FAILED = 163,
IPC_MAX_STATUS = ((1<<IPC_IXC_STATUS_BITS)-1)
};
enum skl_ipc_notification_type {
IPC_GLB_NOTIFY_GLITCH = 0,
IPC_GLB_NOTIFY_OVERRUN = 1,
IPC_GLB_NOTIFY_UNDERRUN = 2,
IPC_GLB_NOTIFY_END_STREAM = 3,
IPC_GLB_NOTIFY_PHRASE_DETECTED = 4,
IPC_GLB_NOTIFY_RESOURCE_EVENT = 5,
IPC_GLB_NOTIFY_LOG_BUFFER_STATUS = 6,
IPC_GLB_NOTIFY_TIMESTAMP_CAPTURED = 7,
IPC_GLB_NOTIFY_FW_READY = 8
};
/* Module Message Types */
enum skl_ipc_module_msg {
IPC_MOD_INIT_INSTANCE = 0,
IPC_MOD_CONFIG_GET = 1,
IPC_MOD_CONFIG_SET = 2,
IPC_MOD_LARGE_CONFIG_GET = 3,
IPC_MOD_LARGE_CONFIG_SET = 4,
IPC_MOD_BIND = 5,
IPC_MOD_UNBIND = 6,
IPC_MOD_SET_DX = 7
};
static void skl_ipc_tx_data_copy(struct ipc_message *msg, char *tx_data,
size_t tx_size)
{
if (tx_size)
memcpy(msg->tx_data, tx_data, tx_size);
}
static bool skl_ipc_is_dsp_busy(struct sst_dsp *dsp)
{
u32 hipci;
hipci = sst_dsp_shim_read_unlocked(dsp, SKL_ADSP_REG_HIPCI);
return (hipci & SKL_ADSP_REG_HIPCI_BUSY);
}
/* Lock to be held by caller */
static void skl_ipc_tx_msg(struct sst_generic_ipc *ipc, struct ipc_message *msg)
{
struct skl_ipc_header *header = (struct skl_ipc_header *)(&msg->header);
if (msg->tx_size)
sst_dsp_outbox_write(ipc->dsp, msg->tx_data, msg->tx_size);
sst_dsp_shim_write_unlocked(ipc->dsp, SKL_ADSP_REG_HIPCIE,
header->extension);
sst_dsp_shim_write_unlocked(ipc->dsp, SKL_ADSP_REG_HIPCI,
header->primary | SKL_ADSP_REG_HIPCI_BUSY);
}
static struct ipc_message *skl_ipc_reply_get_msg(struct sst_generic_ipc *ipc,
u64 ipc_header)
{
struct ipc_message *msg = NULL;
struct skl_ipc_header *header = (struct skl_ipc_header *)(&ipc_header);
if (list_empty(&ipc->rx_list)) {
dev_err(ipc->dev, "ipc: rx list is empty but received 0x%x\n",
header->primary);
goto out;
}
msg = list_first_entry(&ipc->rx_list, struct ipc_message, list);
out:
return msg;
}
static int skl_ipc_process_notification(struct sst_generic_ipc *ipc,
struct skl_ipc_header header)
{
struct skl_sst *skl = container_of(ipc, struct skl_sst, ipc);
if (IPC_GLB_NOTIFY_MSG_TYPE(header.primary)) {
switch (IPC_GLB_NOTIFY_TYPE(header.primary)) {
case IPC_GLB_NOTIFY_UNDERRUN:
dev_err(ipc->dev, "FW Underrun %x\n", header.primary);
break;
case IPC_GLB_NOTIFY_RESOURCE_EVENT:
dev_err(ipc->dev, "MCPS Budget Violation: %x\n",
header.primary);
break;
case IPC_GLB_NOTIFY_FW_READY:
skl->boot_complete = true;
wake_up(&skl->boot_wait);
break;
default:
dev_err(ipc->dev, "ipc: Unhandled error msg=%x",
header.primary);
break;
}
}
return 0;
}
static void skl_ipc_process_reply(struct sst_generic_ipc *ipc,
struct skl_ipc_header header)
{
struct ipc_message *msg;
u32 reply = header.primary & IPC_GLB_REPLY_STATUS_MASK;
u64 *ipc_header = (u64 *)(&header);
msg = skl_ipc_reply_get_msg(ipc, *ipc_header);
if (msg == NULL) {
dev_dbg(ipc->dev, "ipc: rx list is empty\n");
return;
}
/* first process the header */
switch (reply) {
case IPC_GLB_REPLY_SUCCESS:
dev_info(ipc->dev, "ipc FW reply %x: success\n", header.primary);
break;
case IPC_GLB_REPLY_OUT_OF_MEMORY:
dev_err(ipc->dev, "ipc fw reply: %x: no memory\n", header.primary);
msg->errno = -ENOMEM;
break;
case IPC_GLB_REPLY_BUSY:
dev_err(ipc->dev, "ipc fw reply: %x: Busy\n", header.primary);
msg->errno = -EBUSY;
break;
default:
dev_err(ipc->dev, "Unknown ipc reply: 0x%x", reply);
msg->errno = -EINVAL;
break;
}
if (reply != IPC_GLB_REPLY_SUCCESS) {
dev_err(ipc->dev, "ipc FW reply: reply=%d", reply);
dev_err(ipc->dev, "FW Error Code: %u\n",
ipc->dsp->fw_ops.get_fw_errcode(ipc->dsp));
}
list_del(&msg->list);
sst_ipc_tx_msg_reply_complete(ipc, msg);
}
irqreturn_t skl_dsp_irq_thread_handler(int irq, void *context)
{
struct sst_dsp *dsp = context;
struct skl_sst *skl = sst_dsp_get_thread_context(dsp);
struct sst_generic_ipc *ipc = &skl->ipc;
struct skl_ipc_header header = {0};
u32 hipcie, hipct, hipcte;
int ipc_irq = 0;
if (dsp->intr_status & SKL_ADSPIS_CL_DMA)
skl_cldma_process_intr(dsp);
/* Here we handle IPC interrupts only */
if (!(dsp->intr_status & SKL_ADSPIS_IPC))
return IRQ_NONE;
hipcie = sst_dsp_shim_read_unlocked(dsp, SKL_ADSP_REG_HIPCIE);
hipct = sst_dsp_shim_read_unlocked(dsp, SKL_ADSP_REG_HIPCT);
/* reply message from DSP */
if (hipcie & SKL_ADSP_REG_HIPCIE_DONE) {
sst_dsp_shim_update_bits(dsp, SKL_ADSP_REG_HIPCCTL,
SKL_ADSP_REG_HIPCCTL_DONE, 0);
/* clear DONE bit - tell DSP we have completed the operation */
sst_dsp_shim_update_bits_forced(dsp, SKL_ADSP_REG_HIPCIE,
SKL_ADSP_REG_HIPCIE_DONE, SKL_ADSP_REG_HIPCIE_DONE);
ipc_irq = 1;
/* unmask Done interrupt */
sst_dsp_shim_update_bits(dsp, SKL_ADSP_REG_HIPCCTL,
SKL_ADSP_REG_HIPCCTL_DONE, SKL_ADSP_REG_HIPCCTL_DONE);
}
/* New message from DSP */
if (hipct & SKL_ADSP_REG_HIPCT_BUSY) {
hipcte = sst_dsp_shim_read_unlocked(dsp, SKL_ADSP_REG_HIPCTE);
header.primary = hipct;
header.extension = hipcte;
dev_dbg(dsp->dev, "IPC irq: Firmware respond primary:%x",
header.primary);
dev_dbg(dsp->dev, "IPC irq: Firmware respond extension:%x",
header.extension);
if (IPC_GLB_NOTIFY_RSP_TYPE(header.primary)) {
/* Handle Immediate reply from DSP Core */
skl_ipc_process_reply(ipc, header);
} else {
dev_dbg(dsp->dev, "IPC irq: Notification from firmware\n");
skl_ipc_process_notification(ipc, header);
}
/* clear busy interrupt */
sst_dsp_shim_update_bits_forced(dsp, SKL_ADSP_REG_HIPCT,
SKL_ADSP_REG_HIPCT_BUSY, SKL_ADSP_REG_HIPCT_BUSY);
ipc_irq = 1;
}
if (ipc_irq == 0)
return IRQ_NONE;
skl_ipc_int_enable(dsp);
/* continue to send any remaining messages... */
queue_kthread_work(&ipc->kworker, &ipc->kwork);
return IRQ_HANDLED;
}
void skl_ipc_int_enable(struct sst_dsp *ctx)
{
sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_ADSPIC,
SKL_ADSPIC_IPC, SKL_ADSPIC_IPC);
}
void skl_ipc_int_disable(struct sst_dsp *ctx)
{
sst_dsp_shim_update_bits_unlocked(ctx, SKL_ADSP_REG_ADSPIC,
SKL_ADSPIC_IPC, 0);
}
void skl_ipc_op_int_enable(struct sst_dsp *ctx)
{
/* enable IPC DONE interrupt */
sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_HIPCCTL,
SKL_ADSP_REG_HIPCCTL_DONE, SKL_ADSP_REG_HIPCCTL_DONE);
/* Enable IPC BUSY interrupt */
sst_dsp_shim_update_bits(ctx, SKL_ADSP_REG_HIPCCTL,
SKL_ADSP_REG_HIPCCTL_BUSY, SKL_ADSP_REG_HIPCCTL_BUSY);
}
bool skl_ipc_int_status(struct sst_dsp *ctx)
{
return sst_dsp_shim_read_unlocked(ctx,
SKL_ADSP_REG_ADSPIS) & SKL_ADSPIS_IPC;
}
int skl_ipc_init(struct device *dev, struct skl_sst *skl)
{
struct sst_generic_ipc *ipc;
int err;
ipc = &skl->ipc;
ipc->dsp = skl->dsp;
ipc->dev = dev;
ipc->tx_data_max_size = SKL_ADSP_W1_SZ;
ipc->rx_data_max_size = SKL_ADSP_W0_UP_SZ;
err = sst_ipc_init(ipc);
if (err)
return err;
ipc->ops.tx_msg = skl_ipc_tx_msg;
ipc->ops.tx_data_copy = skl_ipc_tx_data_copy;
ipc->ops.is_dsp_busy = skl_ipc_is_dsp_busy;
return 0;
}
void skl_ipc_free(struct sst_generic_ipc *ipc)
{
/* Disable IPC DONE interrupt */
sst_dsp_shim_update_bits(ipc->dsp, SKL_ADSP_REG_HIPCCTL,
SKL_ADSP_REG_HIPCCTL_DONE, 0);
/* Disable IPC BUSY interrupt */
sst_dsp_shim_update_bits(ipc->dsp, SKL_ADSP_REG_HIPCCTL,
SKL_ADSP_REG_HIPCCTL_BUSY, 0);
sst_ipc_fini(ipc);
}
int skl_ipc_create_pipeline(struct sst_generic_ipc *ipc,
u16 ppl_mem_size, u8 ppl_type, u8 instance_id)
{
struct skl_ipc_header header = {0};
u64 *ipc_header = (u64 *)(&header);
int ret;
header.primary = IPC_MSG_TARGET(IPC_FW_GEN_MSG);
header.primary |= IPC_MSG_DIR(IPC_MSG_REQUEST);
header.primary |= IPC_GLB_TYPE(IPC_GLB_CREATE_PPL);
header.primary |= IPC_INSTANCE_ID(instance_id);
header.primary |= IPC_PPL_TYPE(ppl_type);
header.primary |= IPC_PPL_MEM_SIZE(ppl_mem_size);
dev_dbg(ipc->dev, "In %s header=%d\n", __func__, header.primary);
ret = sst_ipc_tx_message_wait(ipc, *ipc_header, NULL, 0, NULL, 0);
if (ret < 0) {
dev_err(ipc->dev, "ipc: create pipeline fail, err: %d\n", ret);
return ret;
}
return ret;
}
EXPORT_SYMBOL_GPL(skl_ipc_create_pipeline);
int skl_ipc_delete_pipeline(struct sst_generic_ipc *ipc, u8 instance_id)
{
struct skl_ipc_header header = {0};
u64 *ipc_header = (u64 *)(&header);
int ret;
header.primary = IPC_MSG_TARGET(IPC_FW_GEN_MSG);
header.primary |= IPC_MSG_DIR(IPC_MSG_REQUEST);
header.primary |= IPC_GLB_TYPE(IPC_GLB_DELETE_PPL);
header.primary |= IPC_INSTANCE_ID(instance_id);
dev_dbg(ipc->dev, "In %s header=%d\n", __func__, header.primary);
ret = sst_ipc_tx_message_wait(ipc, *ipc_header, NULL, 0, NULL, 0);
if (ret < 0) {
dev_err(ipc->dev, "ipc: delete pipeline failed, err %d\n", ret);
return ret;
}
return 0;
}
EXPORT_SYMBOL_GPL(skl_ipc_delete_pipeline);
int skl_ipc_set_pipeline_state(struct sst_generic_ipc *ipc,
u8 instance_id, enum skl_ipc_pipeline_state state)
{
struct skl_ipc_header header = {0};
u64 *ipc_header = (u64 *)(&header);
int ret;
header.primary = IPC_MSG_TARGET(IPC_FW_GEN_MSG);
header.primary |= IPC_MSG_DIR(IPC_MSG_REQUEST);
header.primary |= IPC_GLB_TYPE(IPC_GLB_SET_PPL_STATE);
header.primary |= IPC_INSTANCE_ID(instance_id);
header.primary |= IPC_PPL_STATE(state);
dev_dbg(ipc->dev, "In %s header=%d\n", __func__, header.primary);
ret = sst_ipc_tx_message_wait(ipc, *ipc_header, NULL, 0, NULL, 0);
if (ret < 0) {
dev_err(ipc->dev, "ipc: set pipeline state failed, err: %d\n", ret);
return ret;
}
return ret;
}
EXPORT_SYMBOL_GPL(skl_ipc_set_pipeline_state);
int
skl_ipc_save_pipeline(struct sst_generic_ipc *ipc, u8 instance_id, int dma_id)
{
struct skl_ipc_header header = {0};
u64 *ipc_header = (u64 *)(&header);
int ret;
header.primary = IPC_MSG_TARGET(IPC_FW_GEN_MSG);
header.primary |= IPC_MSG_DIR(IPC_MSG_REQUEST);
header.primary |= IPC_GLB_TYPE(IPC_GLB_SAVE_PPL);
header.primary |= IPC_INSTANCE_ID(instance_id);
header.extension = IPC_DMA_ID(dma_id);
dev_dbg(ipc->dev, "In %s header=%d\n", __func__, header.primary);
ret = sst_ipc_tx_message_wait(ipc, *ipc_header, NULL, 0, NULL, 0);
if (ret < 0) {
dev_err(ipc->dev, "ipc: save pipeline failed, err: %d\n", ret);
return ret;
}
return ret;
}
EXPORT_SYMBOL_GPL(skl_ipc_save_pipeline);
int skl_ipc_restore_pipeline(struct sst_generic_ipc *ipc, u8 instance_id)
{
struct skl_ipc_header header = {0};
u64 *ipc_header = (u64 *)(&header);
int ret;
header.primary = IPC_MSG_TARGET(IPC_FW_GEN_MSG);
header.primary |= IPC_MSG_DIR(IPC_MSG_REQUEST);
header.primary |= IPC_GLB_TYPE(IPC_GLB_RESTORE_PPL);
header.primary |= IPC_INSTANCE_ID(instance_id);
dev_dbg(ipc->dev, "In %s header=%d\n", __func__, header.primary);
ret = sst_ipc_tx_message_wait(ipc, *ipc_header, NULL, 0, NULL, 0);
if (ret < 0) {
dev_err(ipc->dev, "ipc: restore pipeline failed, err: %d\n", ret);
return ret;
}
return ret;
}
EXPORT_SYMBOL_GPL(skl_ipc_restore_pipeline);
int skl_ipc_set_dx(struct sst_generic_ipc *ipc, u8 instance_id,
u16 module_id, struct skl_ipc_dxstate_info *dx)
{
struct skl_ipc_header header = {0};
u64 *ipc_header = (u64 *)(&header);
int ret;
header.primary = IPC_MSG_TARGET(IPC_MOD_MSG);
header.primary |= IPC_MSG_DIR(IPC_MSG_REQUEST);
header.primary |= IPC_GLB_TYPE(IPC_MOD_SET_DX);
header.primary |= IPC_MOD_INSTANCE_ID(instance_id);
header.primary |= IPC_MOD_ID(module_id);
dev_dbg(ipc->dev, "In %s primary =%x ext=%x\n", __func__,
header.primary, header.extension);
ret = sst_ipc_tx_message_wait(ipc, *ipc_header,
dx, sizeof(dx), NULL, 0);
if (ret < 0) {
dev_err(ipc->dev, "ipc: set dx failed, err %d\n", ret);
return ret;
}
return ret;
}
EXPORT_SYMBOL_GPL(skl_ipc_set_dx);
int skl_ipc_init_instance(struct sst_generic_ipc *ipc,
struct skl_ipc_init_instance_msg *msg, void *param_data)
{
struct skl_ipc_header header = {0};
u64 *ipc_header = (u64 *)(&header);
int ret;
u32 *buffer = (u32 *)param_data;
/* param_block_size must be in dwords */
u16 param_block_size = msg->param_data_size / sizeof(u32);
print_hex_dump(KERN_DEBUG, NULL, DUMP_PREFIX_NONE,
16, 4, buffer, param_block_size, false);
header.primary = IPC_MSG_TARGET(IPC_MOD_MSG);
header.primary |= IPC_MSG_DIR(IPC_MSG_REQUEST);
header.primary |= IPC_GLB_TYPE(IPC_MOD_INIT_INSTANCE);
header.primary |= IPC_MOD_INSTANCE_ID(msg->instance_id);
header.primary |= IPC_MOD_ID(msg->module_id);
header.extension = IPC_CORE_ID(msg->core_id);
header.extension |= IPC_PPL_INSTANCE_ID(msg->ppl_instance_id);
header.extension |= IPC_PARAM_BLOCK_SIZE(param_block_size);
dev_dbg(ipc->dev, "In %s primary =%x ext=%x\n", __func__,
header.primary, header.extension);
ret = sst_ipc_tx_message_wait(ipc, *ipc_header, param_data,
msg->param_data_size, NULL, 0);
if (ret < 0) {
dev_err(ipc->dev, "ipc: init instance failed\n");
return ret;
}
return ret;
}
EXPORT_SYMBOL_GPL(skl_ipc_init_instance);
int skl_ipc_bind_unbind(struct sst_generic_ipc *ipc,
struct skl_ipc_bind_unbind_msg *msg)
{
struct skl_ipc_header header = {0};
u64 *ipc_header = (u64 *)(&header);
u8 bind_unbind = msg->bind ? IPC_MOD_BIND : IPC_MOD_UNBIND;
int ret;
header.primary = IPC_MSG_TARGET(IPC_MOD_MSG);
header.primary |= IPC_MSG_DIR(IPC_MSG_REQUEST);
header.primary |= IPC_GLB_TYPE(bind_unbind);
header.primary |= IPC_MOD_INSTANCE_ID(msg->instance_id);
header.primary |= IPC_MOD_ID(msg->module_id);
header.extension = IPC_DST_MOD_ID(msg->dst_module_id);
header.extension |= IPC_DST_MOD_INSTANCE_ID(msg->dst_instance_id);
header.extension |= IPC_DST_QUEUE(msg->dst_queue);
header.extension |= IPC_SRC_QUEUE(msg->src_queue);
dev_dbg(ipc->dev, "In %s hdr=%x ext=%x\n", __func__, header.primary,
header.extension);
ret = sst_ipc_tx_message_wait(ipc, *ipc_header, NULL, 0, NULL, 0);
if (ret < 0) {
dev_err(ipc->dev, "ipc: bind/unbind faileden");
return ret;
}
return ret;
}
EXPORT_SYMBOL_GPL(skl_ipc_bind_unbind);
int skl_ipc_set_large_config(struct sst_generic_ipc *ipc,
struct skl_ipc_large_config_msg *msg, u32 *param)
{
struct skl_ipc_header header = {0};
u64 *ipc_header = (u64 *)(&header);
int ret = 0;
size_t sz_remaining, tx_size, data_offset;
header.primary = IPC_MSG_TARGET(IPC_MOD_MSG);
header.primary |= IPC_MSG_DIR(IPC_MSG_REQUEST);
header.primary |= IPC_GLB_TYPE(IPC_MOD_LARGE_CONFIG_SET);
header.primary |= IPC_MOD_INSTANCE_ID(msg->instance_id);
header.primary |= IPC_MOD_ID(msg->module_id);
header.extension = IPC_DATA_OFFSET_SZ(msg->param_data_size);
header.extension |= IPC_LARGE_PARAM_ID(msg->large_param_id);
header.extension |= IPC_FINAL_BLOCK(0);
header.extension |= IPC_INITIAL_BLOCK(1);
sz_remaining = msg->param_data_size;
data_offset = 0;
while (sz_remaining != 0) {
tx_size = sz_remaining > SKL_ADSP_W1_SZ
? SKL_ADSP_W1_SZ : sz_remaining;
if (tx_size == sz_remaining)
header.extension |= IPC_FINAL_BLOCK(1);
dev_dbg(ipc->dev, "In %s primary=%#x ext=%#x\n", __func__,
header.primary, header.extension);
dev_dbg(ipc->dev, "transmitting offset: %#x, size: %#x\n",
(unsigned)data_offset, (unsigned)tx_size);
ret = sst_ipc_tx_message_wait(ipc, *ipc_header,
((char *)param) + data_offset,
tx_size, NULL, 0);
if (ret < 0) {
dev_err(ipc->dev,
"ipc: set large config fail, err: %d\n", ret);
return ret;
}
sz_remaining -= tx_size;
data_offset = msg->param_data_size - sz_remaining;
/* clear the fields */
header.extension &= IPC_INITIAL_BLOCK_CLEAR;
header.extension &= IPC_DATA_OFFSET_SZ_CLEAR;
/* fill the fields */
header.extension |= IPC_INITIAL_BLOCK(0);
header.extension |= IPC_DATA_OFFSET_SZ(data_offset);
}
return ret;
}
EXPORT_SYMBOL_GPL(skl_ipc_set_large_config);
/*
* Intel SKL IPC Support
*
* Copyright (C) 2014-15, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as version 2, as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
#ifndef __SKL_IPC_H
#define __SKL_IPC_H
#include <linux/kthread.h>
#include <linux/irqreturn.h>
#include "../common/sst-ipc.h"
struct sst_dsp;
struct skl_sst;
struct sst_generic_ipc;
enum skl_ipc_pipeline_state {
PPL_INVALID_STATE = 0,
PPL_UNINITIALIZED = 1,
PPL_RESET = 2,
PPL_PAUSED = 3,
PPL_RUNNING = 4,
PPL_ERROR_STOP = 5,
PPL_SAVED = 6,
PPL_RESTORED = 7
};
struct skl_ipc_dxstate_info {
u32 core_mask;
u32 dx_mask;
};
struct skl_ipc_header {
u32 primary;
u32 extension;
};
struct skl_sst {
struct device *dev;
struct sst_dsp *dsp;
/* boot */
wait_queue_head_t boot_wait;
bool boot_complete;
/* IPC messaging */
struct sst_generic_ipc ipc;
};
struct skl_ipc_init_instance_msg {
u32 module_id;
u32 instance_id;
u16 param_data_size;
u8 ppl_instance_id;
u8 core_id;
};
struct skl_ipc_bind_unbind_msg {
u32 module_id;
u32 instance_id;
u32 dst_module_id;
u32 dst_instance_id;
u8 src_queue;
u8 dst_queue;
bool bind;
};
struct skl_ipc_large_config_msg {
u32 module_id;
u32 instance_id;
u32 large_param_id;
u32 param_data_size;
};
#define SKL_IPC_BOOT_MSECS 3000
#define SKL_IPC_D3_MASK 0
#define SKL_IPC_D0_MASK 3
irqreturn_t skl_dsp_irq_thread_handler(int irq, void *context);
int skl_ipc_create_pipeline(struct sst_generic_ipc *sst_ipc,
u16 ppl_mem_size, u8 ppl_type, u8 instance_id);
int skl_ipc_delete_pipeline(struct sst_generic_ipc *sst_ipc, u8 instance_id);
int skl_ipc_set_pipeline_state(struct sst_generic_ipc *sst_ipc,
u8 instance_id, enum skl_ipc_pipeline_state state);
int skl_ipc_save_pipeline(struct sst_generic_ipc *ipc,
u8 instance_id, int dma_id);
int skl_ipc_restore_pipeline(struct sst_generic_ipc *ipc, u8 instance_id);
int skl_ipc_init_instance(struct sst_generic_ipc *sst_ipc,
struct skl_ipc_init_instance_msg *msg, void *param_data);
int skl_ipc_bind_unbind(struct sst_generic_ipc *sst_ipc,
struct skl_ipc_bind_unbind_msg *msg);
int skl_ipc_set_dx(struct sst_generic_ipc *ipc,
u8 instance_id, u16 module_id, struct skl_ipc_dxstate_info *dx);
int skl_ipc_set_large_config(struct sst_generic_ipc *ipc,
struct skl_ipc_large_config_msg *msg, u32 *param);
void skl_ipc_int_enable(struct sst_dsp *dsp);
void skl_ipc_op_int_enable(struct sst_dsp *ctx);
void skl_ipc_int_disable(struct sst_dsp *dsp);
bool skl_ipc_int_status(struct sst_dsp *dsp);
void skl_ipc_free(struct sst_generic_ipc *ipc);
int skl_ipc_init(struct device *dev, struct skl_sst *skl);
#endif /* __SKL_IPC_H */
/*
* skl-sst.c - HDA DSP library functions for SKL platform
*
* Copyright (C) 2014-15, Intel Corporation.
* Author:Rafal Redzimski <rafal.f.redzimski@intel.com>
* Jeeja KP <jeeja.kp@intel.com>
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as version 2, as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/device.h>
#include "../common/sst-dsp.h"
#include "../common/sst-dsp-priv.h"
#include "../common/sst-ipc.h"
#include "skl-sst-ipc.h"
#define SKL_BASEFW_TIMEOUT 300
#define SKL_INIT_TIMEOUT 1000
/* Intel HD Audio SRAM Window 0*/
#define SKL_ADSP_SRAM0_BASE 0x8000
/* Firmware status window */
#define SKL_ADSP_FW_STATUS SKL_ADSP_SRAM0_BASE
#define SKL_ADSP_ERROR_CODE (SKL_ADSP_FW_STATUS + 0x4)
#define SKL_INSTANCE_ID 0
#define SKL_BASE_FW_MODULE_ID 0
static bool skl_check_fw_status(struct sst_dsp *ctx, u32 status)
{
u32 cur_sts;
cur_sts = sst_dsp_shim_read(ctx, SKL_ADSP_FW_STATUS) & SKL_FW_STS_MASK;
return (cur_sts == status);
}
static int skl_transfer_firmware(struct sst_dsp *ctx,
const void *basefw, u32 base_fw_size)
{
int ret = 0;
ret = ctx->cl_dev.ops.cl_copy_to_dmabuf(ctx, basefw, base_fw_size);
if (ret < 0)
return ret;
ret = sst_dsp_register_poll(ctx,
SKL_ADSP_FW_STATUS,
SKL_FW_STS_MASK,
SKL_FW_RFW_START,
SKL_BASEFW_TIMEOUT,
"Firmware boot");
ctx->cl_dev.ops.cl_stop_dma(ctx);
return ret;
}
static int skl_load_base_firmware(struct sst_dsp *ctx)
{
int ret = 0, i;
const struct firmware *fw = NULL;
struct skl_sst *skl = ctx->thread_context;
u32 reg;
ret = request_firmware(&fw, "dsp_fw_release.bin", ctx->dev);
if (ret < 0) {
dev_err(ctx->dev, "Request firmware failed %d\n", ret);
skl_dsp_disable_core(ctx);
return -EIO;
}
/* enable Interrupt */
skl_ipc_int_enable(ctx);
skl_ipc_op_int_enable(ctx);
/* check ROM Status */
for (i = SKL_INIT_TIMEOUT; i > 0; --i) {
if (skl_check_fw_status(ctx, SKL_FW_INIT)) {
dev_dbg(ctx->dev,
"ROM loaded, we can continue with FW loading\n");
break;
}
mdelay(1);
}
if (!i) {
reg = sst_dsp_shim_read(ctx, SKL_ADSP_FW_STATUS);
dev_err(ctx->dev,
"Timeout waiting for ROM init done, reg:0x%x\n", reg);
ret = -EIO;
goto skl_load_base_firmware_failed;
}
ret = skl_transfer_firmware(ctx, fw->data, fw->size);
if (ret < 0) {
dev_err(ctx->dev, "Transfer firmware failed%d\n", ret);
goto skl_load_base_firmware_failed;
} else {
ret = wait_event_timeout(skl->boot_wait, skl->boot_complete,
msecs_to_jiffies(SKL_IPC_BOOT_MSECS));
if (ret == 0) {
dev_err(ctx->dev, "DSP boot failed, FW Ready timed-out\n");
ret = -EIO;
goto skl_load_base_firmware_failed;
}
dev_dbg(ctx->dev, "Download firmware successful%d\n", ret);
skl_dsp_set_state_locked(ctx, SKL_DSP_RUNNING);
}
release_firmware(fw);
return 0;
skl_load_base_firmware_failed:
skl_dsp_disable_core(ctx);
release_firmware(fw);
return ret;
}
static int skl_set_dsp_D0(struct sst_dsp *ctx)
{
int ret;
ret = skl_load_base_firmware(ctx);
if (ret < 0) {
dev_err(ctx->dev, "unable to load firmware\n");
return ret;
}
skl_dsp_set_state_locked(ctx, SKL_DSP_RUNNING);
return ret;
}
static int skl_set_dsp_D3(struct sst_dsp *ctx)
{
int ret;
struct skl_ipc_dxstate_info dx;
struct skl_sst *skl = ctx->thread_context;
dev_dbg(ctx->dev, "In %s:\n", __func__);
mutex_lock(&ctx->mutex);
if (!is_skl_dsp_running(ctx)) {
mutex_unlock(&ctx->mutex);
return 0;
}
mutex_unlock(&ctx->mutex);
dx.core_mask = SKL_DSP_CORE0_MASK;
dx.dx_mask = SKL_IPC_D3_MASK;
ret = skl_ipc_set_dx(&skl->ipc, SKL_INSTANCE_ID, SKL_BASE_FW_MODULE_ID, &dx);
if (ret < 0) {
dev_err(ctx->dev, "Failed to set DSP to D3 state\n");
return ret;
}
ret = skl_dsp_disable_core(ctx);
if (ret < 0) {
dev_err(ctx->dev, "disable dsp core failed ret: %d\n", ret);
ret = -EIO;
}
skl_dsp_set_state_locked(ctx, SKL_DSP_RESET);
return ret;
}
static unsigned int skl_get_errorcode(struct sst_dsp *ctx)
{
return sst_dsp_shim_read(ctx, SKL_ADSP_ERROR_CODE);
}
static struct skl_dsp_fw_ops skl_fw_ops = {
.set_state_D0 = skl_set_dsp_D0,
.set_state_D3 = skl_set_dsp_D3,
.load_fw = skl_load_base_firmware,
.get_fw_errcode = skl_get_errorcode,
};
static struct sst_ops skl_ops = {
.irq_handler = skl_dsp_sst_interrupt,
.write = sst_shim32_write,
.read = sst_shim32_read,
.ram_read = sst_memcpy_fromio_32,
.ram_write = sst_memcpy_toio_32,
.free = skl_dsp_free,
};
static struct sst_dsp_device skl_dev = {
.thread = skl_dsp_irq_thread_handler,
.ops = &skl_ops,
};
int skl_sst_dsp_init(struct device *dev, void __iomem *mmio_base, int irq,
struct skl_dsp_loader_ops dsp_ops, struct skl_sst **dsp)
{
struct skl_sst *skl;
struct sst_dsp *sst;
int ret;
skl = devm_kzalloc(dev, sizeof(*skl), GFP_KERNEL);
if (skl == NULL)
return -ENOMEM;
skl->dev = dev;
skl_dev.thread_context = skl;
skl->dsp = skl_dsp_ctx_init(dev, &skl_dev, irq);
if (!skl->dsp) {
dev_err(skl->dev, "%s: no device\n", __func__);
return -ENODEV;
}
sst = skl->dsp;
sst->addr.lpe = mmio_base;
sst->addr.shim = mmio_base;
sst_dsp_mailbox_init(sst, (SKL_ADSP_SRAM0_BASE + SKL_ADSP_W0_STAT_SZ),
SKL_ADSP_W0_UP_SZ, SKL_ADSP_SRAM1_BASE, SKL_ADSP_W1_SZ);
sst->dsp_ops = dsp_ops;
sst->fw_ops = skl_fw_ops;
ret = skl_ipc_init(dev, skl);
if (ret)
return ret;
skl->boot_complete = false;
init_waitqueue_head(&skl->boot_wait);
ret = skl_dsp_boot(sst);
if (ret < 0) {
dev_err(skl->dev, "Boot dsp core failed ret: %d", ret);
goto free_ipc;
}
ret = skl_cldma_prepare(sst);
if (ret < 0) {
dev_err(dev, "CL dma prepare failed : %d", ret);
goto free_ipc;
}
ret = sst->fw_ops.load_fw(sst);
if (ret < 0) {
dev_err(dev, "Load base fw failed : %d", ret);
return ret;
}
if (dsp)
*dsp = skl;
return 0;
free_ipc:
skl_ipc_free(&skl->ipc);
return ret;
}
EXPORT_SYMBOL_GPL(skl_sst_dsp_init);
void skl_sst_dsp_cleanup(struct device *dev, struct skl_sst *ctx)
{
skl_ipc_free(&ctx->ipc);
ctx->dsp->cl_dev.ops.cl_cleanup_controller(ctx->dsp);
ctx->dsp->ops->free(ctx->dsp);
}
EXPORT_SYMBOL_GPL(skl_sst_dsp_cleanup);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Intel Skylake IPC driver");
/*
* skl_topology.h - Intel HDA Platform topology header file
*
* Copyright (C) 2014-15 Intel Corp
* Author: Jeeja KP <jeeja.kp@intel.com>
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
*/
#ifndef __SKL_TOPOLOGY_H__
#define __SKL_TOPOLOGY_H__
#include <linux/types.h>
#include <sound/hdaudio_ext.h>
#include <sound/soc.h>
#include "skl.h"
#include "skl-tplg-interface.h"
#define BITS_PER_BYTE 8
#define MAX_TS_GROUPS 8
#define MAX_DMIC_TS_GROUPS 4
#define MAX_FIXED_DMIC_PARAMS_SIZE 727
/* Maximum number of coefficients up down mixer module */
#define UP_DOWN_MIXER_MAX_COEFF 6
enum skl_channel_index {
SKL_CHANNEL_LEFT = 0,
SKL_CHANNEL_RIGHT = 1,
SKL_CHANNEL_CENTER = 2,
SKL_CHANNEL_LEFT_SURROUND = 3,
SKL_CHANNEL_CENTER_SURROUND = 3,
SKL_CHANNEL_RIGHT_SURROUND = 4,
SKL_CHANNEL_LFE = 7,
SKL_CHANNEL_INVALID = 0xF,
};
enum skl_bitdepth {
SKL_DEPTH_8BIT = 8,
SKL_DEPTH_16BIT = 16,
SKL_DEPTH_24BIT = 24,
SKL_DEPTH_32BIT = 32,
SKL_DEPTH_INVALID
};
enum skl_interleaving {
/* [s1_ch1...s1_chN,...,sM_ch1...sM_chN] */
SKL_INTERLEAVING_PER_CHANNEL = 0,
/* [s1_ch1...sM_ch1,...,s1_chN...sM_chN] */
SKL_INTERLEAVING_PER_SAMPLE = 1,
};
enum skl_s_freq {
SKL_FS_8000 = 8000,
SKL_FS_11025 = 11025,
SKL_FS_12000 = 12000,
SKL_FS_16000 = 16000,
SKL_FS_22050 = 22050,
SKL_FS_24000 = 24000,
SKL_FS_32000 = 32000,
SKL_FS_44100 = 44100,
SKL_FS_48000 = 48000,
SKL_FS_64000 = 64000,
SKL_FS_88200 = 88200,
SKL_FS_96000 = 96000,
SKL_FS_128000 = 128000,
SKL_FS_176400 = 176400,
SKL_FS_192000 = 192000,
SKL_FS_INVALID
};
enum skl_widget_type {
SKL_WIDGET_VMIXER = 1,
SKL_WIDGET_MIXER = 2,
SKL_WIDGET_PGA = 3,
SKL_WIDGET_MUX = 4
};
struct skl_audio_data_format {
enum skl_s_freq s_freq;
enum skl_bitdepth bit_depth;
u32 channel_map;
enum skl_ch_cfg ch_cfg;
enum skl_interleaving interleaving;
u8 number_of_channels;
u8 valid_bit_depth;
u8 sample_type;
u8 reserved[1];
} __packed;
struct skl_base_cfg {
u32 cps;
u32 ibs;
u32 obs;
u32 is_pages;
struct skl_audio_data_format audio_fmt;
};
struct skl_cpr_gtw_cfg {
u32 node_id;
u32 dma_buffer_size;
u32 config_length;
/* not mandatory; required only for DMIC/I2S */
u32 config_data[1];
} __packed;
struct skl_cpr_cfg {
struct skl_base_cfg base_cfg;
struct skl_audio_data_format out_fmt;
u32 cpr_feature_mask;
struct skl_cpr_gtw_cfg gtw_cfg;
} __packed;
struct skl_src_module_cfg {
struct skl_base_cfg base_cfg;
enum skl_s_freq src_cfg;
} __packed;
struct skl_up_down_mixer_cfg {
struct skl_base_cfg base_cfg;
enum skl_ch_cfg out_ch_cfg;
/* This should be set to 1 if user coefficients are required */
u32 coeff_sel;
/* Pass the user coeff in this array */
s32 coeff[UP_DOWN_MIXER_MAX_COEFF];
} __packed;
enum skl_dma_type {
SKL_DMA_HDA_HOST_OUTPUT_CLASS = 0,
SKL_DMA_HDA_HOST_INPUT_CLASS = 1,
SKL_DMA_HDA_HOST_INOUT_CLASS = 2,
SKL_DMA_HDA_LINK_OUTPUT_CLASS = 8,
SKL_DMA_HDA_LINK_INPUT_CLASS = 9,
SKL_DMA_HDA_LINK_INOUT_CLASS = 0xA,
SKL_DMA_DMIC_LINK_INPUT_CLASS = 0xB,
SKL_DMA_I2S_LINK_OUTPUT_CLASS = 0xC,
SKL_DMA_I2S_LINK_INPUT_CLASS = 0xD,
};
union skl_ssp_dma_node {
u8 val;
struct {
u8 dual_mono:1;
u8 time_slot:3;
u8 i2s_instance:4;
} dma_node;
};
union skl_connector_node_id {
u32 val;
struct {
u32 vindex:8;
u32 dma_type:4;
u32 rsvd:20;
} node;
};
struct skl_module_fmt {
u32 channels;
u32 s_freq;
u32 bit_depth;
u32 valid_bit_depth;
u32 ch_cfg;
};
struct skl_module_inst_id {
u32 module_id;
u32 instance_id;
};
struct skl_module_pin {
struct skl_module_inst_id id;
u8 pin_index;
bool is_dynamic;
bool in_use;
};
struct skl_specific_cfg {
u32 caps_size;
u32 *caps;
};
enum skl_pipe_state {
SKL_PIPE_INVALID = 0,
SKL_PIPE_CREATED = 1,
SKL_PIPE_PAUSED = 2,
SKL_PIPE_STARTED = 3
};
struct skl_pipe_module {
struct snd_soc_dapm_widget *w;
struct list_head node;
};
struct skl_pipe_params {
u8 host_dma_id;
u8 link_dma_id;
u32 ch;
u32 s_freq;
u32 s_fmt;
u8 linktype;
int stream;
};
struct skl_pipe {
u8 ppl_id;
u8 pipe_priority;
u16 conn_type;
u32 memory_pages;
struct skl_pipe_params *p_params;
enum skl_pipe_state state;
struct list_head w_list;
};
enum skl_module_state {
SKL_MODULE_UNINIT = 0,
SKL_MODULE_INIT_DONE = 1,
SKL_MODULE_LOADED = 2,
SKL_MODULE_UNLOADED = 3,
SKL_MODULE_BIND_DONE = 4
};
struct skl_module_cfg {
struct skl_module_inst_id id;
struct skl_module_fmt in_fmt;
struct skl_module_fmt out_fmt;
u8 max_in_queue;
u8 max_out_queue;
u8 in_queue_mask;
u8 out_queue_mask;
u8 in_queue;
u8 out_queue;
u32 mcps;
u32 ibs;
u32 obs;
u8 is_loadable;
u8 core_id;
u8 dev_type;
u8 dma_id;
u8 time_slot;
u32 params_fixup;
u32 converter;
u32 vbus_id;
struct skl_module_pin *m_in_pin;
struct skl_module_pin *m_out_pin;
enum skl_module_type m_type;
enum skl_hw_conn_type hw_conn_type;
enum skl_module_state m_state;
struct skl_pipe *pipe;
struct skl_specific_cfg formats_config;
};
int skl_create_pipeline(struct skl_sst *ctx, struct skl_pipe *pipe);
int skl_run_pipe(struct skl_sst *ctx, struct skl_pipe *pipe);
int skl_pause_pipe(struct skl_sst *ctx, struct skl_pipe *pipe);
int skl_delete_pipe(struct skl_sst *ctx, struct skl_pipe *pipe);
int skl_stop_pipe(struct skl_sst *ctx, struct skl_pipe *pipe);
int skl_init_module(struct skl_sst *ctx, struct skl_module_cfg *module_config,
char *param);
int skl_bind_modules(struct skl_sst *ctx, struct skl_module_cfg
*src_module, struct skl_module_cfg *dst_module);
int skl_unbind_modules(struct skl_sst *ctx, struct skl_module_cfg
*src_module, struct skl_module_cfg *dst_module);
enum skl_bitdepth skl_get_bit_depth(int params);
#endif
/*
* skl-tplg-interface.h - Intel DSP FW private data interface
*
* Copyright (C) 2015 Intel Corp
* Author: Jeeja KP <jeeja.kp@intel.com>
* Nilofer, Samreen <samreen.nilofer@intel.com>
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as version 2, as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
#ifndef __HDA_TPLG_INTERFACE_H__
#define __HDA_TPLG_INTERFACE_H__
/**
* enum skl_ch_cfg - channel configuration
*
* @SKL_CH_CFG_MONO: One channel only
* @SKL_CH_CFG_STEREO: L & R
* @SKL_CH_CFG_2_1: L, R & LFE
* @SKL_CH_CFG_3_0: L, C & R
* @SKL_CH_CFG_3_1: L, C, R & LFE
* @SKL_CH_CFG_QUATRO: L, R, Ls & Rs
* @SKL_CH_CFG_4_0: L, C, R & Cs
* @SKL_CH_CFG_5_0: L, C, R, Ls & Rs
* @SKL_CH_CFG_5_1: L, C, R, Ls, Rs & LFE
* @SKL_CH_CFG_DUAL_MONO: One channel replicated in two
* @SKL_CH_CFG_I2S_DUAL_STEREO_0: Stereo(L,R) in 4 slots, 1st stream:[ L, R, -, - ]
* @SKL_CH_CFG_I2S_DUAL_STEREO_1: Stereo(L,R) in 4 slots, 2nd stream:[ -, -, L, R ]
* @SKL_CH_CFG_INVALID: Invalid
*/
enum skl_ch_cfg {
SKL_CH_CFG_MONO = 0,
SKL_CH_CFG_STEREO = 1,
SKL_CH_CFG_2_1 = 2,
SKL_CH_CFG_3_0 = 3,
SKL_CH_CFG_3_1 = 4,
SKL_CH_CFG_QUATRO = 5,
SKL_CH_CFG_4_0 = 6,
SKL_CH_CFG_5_0 = 7,
SKL_CH_CFG_5_1 = 8,
SKL_CH_CFG_DUAL_MONO = 9,
SKL_CH_CFG_I2S_DUAL_STEREO_0 = 10,
SKL_CH_CFG_I2S_DUAL_STEREO_1 = 11,
SKL_CH_CFG_INVALID
};
enum skl_module_type {
SKL_MODULE_TYPE_MIXER = 0,
SKL_MODULE_TYPE_COPIER,
SKL_MODULE_TYPE_UPDWMIX,
SKL_MODULE_TYPE_SRCINT
};
enum skl_core_affinity {
SKL_AFFINITY_CORE_0 = 0,
SKL_AFFINITY_CORE_1,
SKL_AFFINITY_CORE_MAX
};
enum skl_pipe_conn_type {
SKL_PIPE_CONN_TYPE_NONE = 0,
SKL_PIPE_CONN_TYPE_FE,
SKL_PIPE_CONN_TYPE_BE
};
enum skl_hw_conn_type {
SKL_CONN_NONE = 0,
SKL_CONN_SOURCE = 1,
SKL_CONN_SINK = 2
};
enum skl_dev_type {
SKL_DEVICE_BT = 0x0,
SKL_DEVICE_DMIC = 0x1,
SKL_DEVICE_I2S = 0x2,
SKL_DEVICE_SLIMBUS = 0x3,
SKL_DEVICE_HDALINK = 0x4,
SKL_DEVICE_NONE
};
#endif
/*
* skl.c - Implementation of ASoC Intel SKL HD Audio driver
*
* Copyright (C) 2014-2015 Intel Corp
* Author: Jeeja KP <jeeja.kp@intel.com>
*
* Derived mostly from Intel HDA driver with following copyrights:
* Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
* PeiSen Hou <pshou@realtek.com.tw>
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*/
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/pm_runtime.h>
#include <linux/platform_device.h>
#include <sound/pcm.h>
#include "skl.h"
/*
* initialize the PCI registers
*/
static void skl_update_pci_byte(struct pci_dev *pci, unsigned int reg,
unsigned char mask, unsigned char val)
{
unsigned char data;
pci_read_config_byte(pci, reg, &data);
data &= ~mask;
data |= (val & mask);
pci_write_config_byte(pci, reg, data);
}
static void skl_init_pci(struct skl *skl)
{
struct hdac_ext_bus *ebus = &skl->ebus;
/*
* Clear bits 0-2 of PCI register TCSEL (at offset 0x44)
* TCSEL == Traffic Class Select Register, which sets PCI express QOS
* Ensuring these bits are 0 clears playback static on some HD Audio
* codecs.
* The PCI register TCSEL is defined in the Intel manuals.
*/
dev_dbg(ebus_to_hbus(ebus)->dev, "Clearing TCSEL\n");
skl_update_pci_byte(skl->pci, AZX_PCIREG_TCSEL, 0x07, 0);
}
/* called from IRQ */
static void skl_stream_update(struct hdac_bus *bus, struct hdac_stream *hstr)
{
snd_pcm_period_elapsed(hstr->substream);
}
static irqreturn_t skl_interrupt(int irq, void *dev_id)
{
struct hdac_ext_bus *ebus = dev_id;
struct hdac_bus *bus = ebus_to_hbus(ebus);
u32 status;
if (!pm_runtime_active(bus->dev))
return IRQ_NONE;
spin_lock(&bus->reg_lock);
status = snd_hdac_chip_readl(bus, INTSTS);
if (status == 0 || status == 0xffffffff) {
spin_unlock(&bus->reg_lock);
return IRQ_NONE;
}
/* clear rirb int */
status = snd_hdac_chip_readb(bus, RIRBSTS);
if (status & RIRB_INT_MASK) {
if (status & RIRB_INT_RESPONSE)
snd_hdac_bus_update_rirb(bus);
snd_hdac_chip_writeb(bus, RIRBSTS, RIRB_INT_MASK);
}
spin_unlock(&bus->reg_lock);
return snd_hdac_chip_readl(bus, INTSTS) ? IRQ_WAKE_THREAD : IRQ_HANDLED;
}
static irqreturn_t skl_threaded_handler(int irq, void *dev_id)
{
struct hdac_ext_bus *ebus = dev_id;
struct hdac_bus *bus = ebus_to_hbus(ebus);
u32 status;
status = snd_hdac_chip_readl(bus, INTSTS);
snd_hdac_bus_handle_stream_irq(bus, status, skl_stream_update);
return IRQ_HANDLED;
}
static int skl_acquire_irq(struct hdac_ext_bus *ebus, int do_disconnect)
{
struct skl *skl = ebus_to_skl(ebus);
struct hdac_bus *bus = ebus_to_hbus(ebus);
int ret;
ret = request_threaded_irq(skl->pci->irq, skl_interrupt,
skl_threaded_handler,
IRQF_SHARED,
KBUILD_MODNAME, ebus);
if (ret) {
dev_err(bus->dev,
"unable to grab IRQ %d, disabling device\n",
skl->pci->irq);
return ret;
}
bus->irq = skl->pci->irq;
pci_intx(skl->pci, 1);
return 0;
}
#ifdef CONFIG_PM_SLEEP
/*
* power management
*/
static int skl_suspend(struct device *dev)
{
struct pci_dev *pci = to_pci_dev(dev);
struct hdac_ext_bus *ebus = pci_get_drvdata(pci);
struct hdac_bus *bus = ebus_to_hbus(ebus);
snd_hdac_bus_stop_chip(bus);
snd_hdac_bus_enter_link_reset(bus);
return 0;
}
static int skl_resume(struct device *dev)
{
struct pci_dev *pci = to_pci_dev(dev);
struct hdac_ext_bus *ebus = pci_get_drvdata(pci);
struct hdac_bus *bus = ebus_to_hbus(ebus);
struct skl *hda = ebus_to_skl(ebus);
skl_init_pci(hda);
snd_hdac_bus_init_chip(bus, 1);
return 0;
}
#endif /* CONFIG_PM_SLEEP */
#ifdef CONFIG_PM
static int skl_runtime_suspend(struct device *dev)
{
struct pci_dev *pci = to_pci_dev(dev);
struct hdac_ext_bus *ebus = pci_get_drvdata(pci);
struct hdac_bus *bus = ebus_to_hbus(ebus);
dev_dbg(bus->dev, "in %s\n", __func__);
/* enable controller wake up event */
snd_hdac_chip_updatew(bus, WAKEEN, 0, STATESTS_INT_MASK);
snd_hdac_bus_stop_chip(bus);
snd_hdac_bus_enter_link_reset(bus);
return 0;
}
static int skl_runtime_resume(struct device *dev)
{
struct pci_dev *pci = to_pci_dev(dev);
struct hdac_ext_bus *ebus = pci_get_drvdata(pci);
struct hdac_bus *bus = ebus_to_hbus(ebus);
struct skl *hda = ebus_to_skl(ebus);
int status;
dev_dbg(bus->dev, "in %s\n", __func__);
/* Read STATESTS before controller reset */
status = snd_hdac_chip_readw(bus, STATESTS);
skl_init_pci(hda);
snd_hdac_bus_init_chip(bus, true);
/* disable controller Wake Up event */
snd_hdac_chip_updatew(bus, WAKEEN, STATESTS_INT_MASK, 0);
return 0;
}
#endif /* CONFIG_PM */
static const struct dev_pm_ops skl_pm = {
SET_SYSTEM_SLEEP_PM_OPS(skl_suspend, skl_resume)
SET_RUNTIME_PM_OPS(skl_runtime_suspend, skl_runtime_resume, NULL)
};
/*
* destructor
*/
static int skl_free(struct hdac_ext_bus *ebus)
{
struct skl *skl = ebus_to_skl(ebus);
struct hdac_bus *bus = ebus_to_hbus(ebus);
skl->init_failed = 1; /* to be sure */
snd_hdac_ext_stop_streams(ebus);
if (bus->irq >= 0)
free_irq(bus->irq, (void *)bus);
if (bus->remap_addr)
iounmap(bus->remap_addr);
snd_hdac_bus_free_stream_pages(bus);
snd_hdac_stream_free_all(ebus);
snd_hdac_link_free_all(ebus);
pci_release_regions(skl->pci);
pci_disable_device(skl->pci);
snd_hdac_ext_bus_exit(ebus);
return 0;
}
static int skl_dmic_device_register(struct skl *skl)
{
struct hdac_bus *bus = ebus_to_hbus(&skl->ebus);
struct platform_device *pdev;
int ret;
/* SKL has one dmic port, so allocate dmic device for this */
pdev = platform_device_alloc("dmic-codec", -1);
if (!pdev) {
dev_err(bus->dev, "failed to allocate dmic device\n");
return -ENOMEM;
}
ret = platform_device_add(pdev);
if (ret) {
dev_err(bus->dev, "failed to add dmic device: %d\n", ret);
platform_device_put(pdev);
return ret;
}
skl->dmic_dev = pdev;
return 0;
}
static void skl_dmic_device_unregister(struct skl *skl)
{
if (skl->dmic_dev)
platform_device_unregister(skl->dmic_dev);
}
/*
* Probe the given codec address
*/
static int probe_codec(struct hdac_ext_bus *ebus, int addr)
{
struct hdac_bus *bus = ebus_to_hbus(ebus);
unsigned int cmd = (addr << 28) | (AC_NODE_ROOT << 20) |
(AC_VERB_PARAMETERS << 8) | AC_PAR_VENDOR_ID;
unsigned int res;
mutex_lock(&bus->cmd_mutex);
snd_hdac_bus_send_cmd(bus, cmd);
snd_hdac_bus_get_response(bus, addr, &res);
mutex_unlock(&bus->cmd_mutex);
if (res == -1)
return -EIO;
dev_dbg(bus->dev, "codec #%d probed OK\n", addr);
return snd_hdac_ext_bus_device_init(ebus, addr);
}
/* Codec initialization */
static int skl_codec_create(struct hdac_ext_bus *ebus)
{
struct hdac_bus *bus = ebus_to_hbus(ebus);
int c, max_slots;
max_slots = HDA_MAX_CODECS;
/* First try to probe all given codec slots */
for (c = 0; c < max_slots; c++) {
if ((bus->codec_mask & (1 << c))) {
if (probe_codec(ebus, c) < 0) {
/*
* Some BIOSen give you wrong codec addresses
* that don't exist
*/
dev_warn(bus->dev,
"Codec #%d probe error; disabling it...\n", c);
bus->codec_mask &= ~(1 << c);
/*
* More badly, accessing to a non-existing
* codec often screws up the controller bus,
* and disturbs the further communications.
* Thus if an error occurs during probing,
* better to reset the controller bus to get
* back to the sanity state.
*/
snd_hdac_bus_stop_chip(bus);
snd_hdac_bus_init_chip(bus, true);
}
}
}
return 0;
}
static const struct hdac_bus_ops bus_core_ops = {
.command = snd_hdac_bus_send_cmd,
.get_response = snd_hdac_bus_get_response,
};
/*
* constructor
*/
static int skl_create(struct pci_dev *pci,
const struct hdac_io_ops *io_ops,
struct skl **rskl)
{
struct skl *skl;
struct hdac_ext_bus *ebus;
int err;
*rskl = NULL;
err = pci_enable_device(pci);
if (err < 0)
return err;
skl = devm_kzalloc(&pci->dev, sizeof(*skl), GFP_KERNEL);
if (!skl) {
pci_disable_device(pci);
return -ENOMEM;
}
ebus = &skl->ebus;
snd_hdac_ext_bus_init(ebus, &pci->dev, &bus_core_ops, io_ops);
ebus->bus.use_posbuf = 1;
skl->pci = pci;
ebus->bus.bdl_pos_adj = 0;
*rskl = skl;
return 0;
}
static int skl_first_init(struct hdac_ext_bus *ebus)
{
struct skl *skl = ebus_to_skl(ebus);
struct hdac_bus *bus = ebus_to_hbus(ebus);
struct pci_dev *pci = skl->pci;
int err;
unsigned short gcap;
int cp_streams, pb_streams, start_idx;
err = pci_request_regions(pci, "Skylake HD audio");
if (err < 0)
return err;
bus->addr = pci_resource_start(pci, 0);
bus->remap_addr = pci_ioremap_bar(pci, 0);
if (bus->remap_addr == NULL) {
dev_err(bus->dev, "ioremap error\n");
return -ENXIO;
}
snd_hdac_ext_bus_parse_capabilities(ebus);
if (skl_acquire_irq(ebus, 0) < 0)
return -EBUSY;
pci_set_master(pci);
synchronize_irq(bus->irq);
gcap = snd_hdac_chip_readw(bus, GCAP);
dev_dbg(bus->dev, "chipset global capabilities = 0x%x\n", gcap);
/* allow 64bit DMA address if supported by H/W */
if (!dma_set_mask(bus->dev, DMA_BIT_MASK(64))) {
dma_set_coherent_mask(bus->dev, DMA_BIT_MASK(64));
} else {
dma_set_mask(bus->dev, DMA_BIT_MASK(32));
dma_set_coherent_mask(bus->dev, DMA_BIT_MASK(32));
}
/* read number of streams from GCAP register */
cp_streams = (gcap >> 8) & 0x0f;
pb_streams = (gcap >> 12) & 0x0f;
if (!pb_streams && !cp_streams)
return -EIO;
ebus->num_streams = cp_streams + pb_streams;
/* initialize streams */
snd_hdac_ext_stream_init_all
(ebus, 0, cp_streams, SNDRV_PCM_STREAM_CAPTURE);
start_idx = cp_streams;
snd_hdac_ext_stream_init_all
(ebus, start_idx, pb_streams, SNDRV_PCM_STREAM_PLAYBACK);
err = snd_hdac_bus_alloc_stream_pages(bus);
if (err < 0)
return err;
/* initialize chip */
skl_init_pci(skl);
snd_hdac_bus_init_chip(bus, true);
/* codec detection */
if (!bus->codec_mask) {
dev_err(bus->dev, "no codecs found!\n");
return -ENODEV;
}
return 0;
}
static int skl_probe(struct pci_dev *pci,
const struct pci_device_id *pci_id)
{
struct skl *skl;
struct hdac_ext_bus *ebus = NULL;
struct hdac_bus *bus = NULL;
int err;
/* we use ext core ops, so provide NULL for ops here */
err = skl_create(pci, NULL, &skl);
if (err < 0)
return err;
ebus = &skl->ebus;
bus = ebus_to_hbus(ebus);
err = skl_first_init(ebus);
if (err < 0)
goto out_free;
pci_set_drvdata(skl->pci, ebus);
/* check if dsp is there */
if (ebus->ppcap) {
/* TODO register with dsp IPC */
dev_dbg(bus->dev, "Register dsp\n");
}
if (ebus->mlcap)
snd_hdac_ext_bus_get_ml_capabilities(ebus);
/* create device for soc dmic */
err = skl_dmic_device_register(skl);
if (err < 0)
goto out_free;
/* register platform dai and controls */
err = skl_platform_register(bus->dev);
if (err < 0)
goto out_dmic_free;
/* create codec instances */
err = skl_codec_create(ebus);
if (err < 0)
goto out_unregister;
/*configure PM */
pm_runtime_set_autosuspend_delay(bus->dev, SKL_SUSPEND_DELAY);
pm_runtime_use_autosuspend(bus->dev);
pm_runtime_put_noidle(bus->dev);
pm_runtime_allow(bus->dev);
return 0;
out_unregister:
skl_platform_unregister(bus->dev);
out_dmic_free:
skl_dmic_device_unregister(skl);
out_free:
skl->init_failed = 1;
skl_free(ebus);
return err;
}
static void skl_remove(struct pci_dev *pci)
{
struct hdac_ext_bus *ebus = pci_get_drvdata(pci);
struct skl *skl = ebus_to_skl(ebus);
if (pci_dev_run_wake(pci))
pm_runtime_get_noresume(&pci->dev);
pci_dev_put(pci);
skl_platform_unregister(&pci->dev);
skl_dmic_device_unregister(skl);
skl_free(ebus);
dev_set_drvdata(&pci->dev, NULL);
}
/* PCI IDs */
static const struct pci_device_id skl_ids[] = {
/* Sunrise Point-LP */
{ PCI_DEVICE(0x8086, 0x9d70), 0},
{ 0, }
};
MODULE_DEVICE_TABLE(pci, skl_ids);
/* pci_driver definition */
static struct pci_driver skl_driver = {
.name = KBUILD_MODNAME,
.id_table = skl_ids,
.probe = skl_probe,
.remove = skl_remove,
.driver = {
.pm = &skl_pm,
},
};
module_pci_driver(skl_driver);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Intel Skylake ASoC HDA driver");
/*
* skl.h - HD Audio skylake defintions.
*
* Copyright (C) 2015 Intel Corp
* Author: Jeeja KP <jeeja.kp@intel.com>
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
*/
#ifndef __SOUND_SOC_SKL_H
#define __SOUND_SOC_SKL_H
#include <sound/hda_register.h>
#include <sound/hdaudio_ext.h>
#include "skl-nhlt.h"
#define SKL_SUSPEND_DELAY 2000
/* Vendor Specific Registers */
#define AZX_REG_VS_EM1 0x1000
#define AZX_REG_VS_INRC 0x1004
#define AZX_REG_VS_OUTRC 0x1008
#define AZX_REG_VS_FIFOTRK 0x100C
#define AZX_REG_VS_FIFOTRK2 0x1010
#define AZX_REG_VS_EM2 0x1030
#define AZX_REG_VS_EM3L 0x1038
#define AZX_REG_VS_EM3U 0x103C
#define AZX_REG_VS_EM4L 0x1040
#define AZX_REG_VS_EM4U 0x1044
#define AZX_REG_VS_LTRC 0x1048
#define AZX_REG_VS_D0I3C 0x104A
#define AZX_REG_VS_PCE 0x104B
#define AZX_REG_VS_L2MAGC 0x1050
#define AZX_REG_VS_L2LAHPT 0x1054
#define AZX_REG_VS_SDXDPIB_XBASE 0x1084
#define AZX_REG_VS_SDXDPIB_XINTERVAL 0x20
#define AZX_REG_VS_SDXEFIFOS_XBASE 0x1094
#define AZX_REG_VS_SDXEFIFOS_XINTERVAL 0x20
struct skl {
struct hdac_ext_bus ebus;
struct pci_dev *pci;
unsigned int init_failed:1; /* delayed init failed */
struct platform_device *dmic_dev;
void __iomem *nhlt; /* nhlt ptr */
struct skl_sst *skl_sst; /* sst skl ctx */
};
#define skl_to_ebus(s) (&(s)->ebus)
#define ebus_to_skl(sbus) \
container_of(sbus, struct skl, sbus)
/* to pass dai dma data */
struct skl_dma_params {
u32 format;
u8 stream_tag;
};
int skl_platform_unregister(struct device *dev);
int skl_platform_register(struct device *dev);
void __iomem *skl_nhlt_init(struct device *dev);
void skl_nhlt_free(void __iomem *addr);
struct nhlt_specific_cfg *skl_get_ep_blob(struct skl *skl, u32 instance,
u8 link_type, u8 s_fmt, u8 no_ch, u32 s_rate, u8 dirn);
int skl_init_dsp(struct skl *skl);
void skl_free_dsp(struct skl *skl);
int skl_suspend_dsp(struct skl *skl);
int skl_resume_dsp(struct skl *skl);
#endif /* __SOUND_SOC_SKL_H */
...@@ -148,10 +148,14 @@ static int kirkwood_dma_open(struct snd_pcm_substream *substream) ...@@ -148,10 +148,14 @@ static int kirkwood_dma_open(struct snd_pcm_substream *substream)
dram = mv_mbus_dram_info(); dram = mv_mbus_dram_info();
addr = substream->dma_buffer.addr; addr = substream->dma_buffer.addr;
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
if (priv->substream_play)
return -EBUSY;
priv->substream_play = substream; priv->substream_play = substream;
kirkwood_dma_conf_mbus_windows(priv->io, kirkwood_dma_conf_mbus_windows(priv->io,
KIRKWOOD_PLAYBACK_WIN, addr, dram); KIRKWOOD_PLAYBACK_WIN, addr, dram);
} else { } else {
if (priv->substream_rec)
return -EBUSY;
priv->substream_rec = substream; priv->substream_rec = substream;
kirkwood_dma_conf_mbus_windows(priv->io, kirkwood_dma_conf_mbus_windows(priv->io,
KIRKWOOD_RECORD_WIN, addr, dram); KIRKWOOD_RECORD_WIN, addr, dram);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment