Commit 3747e426 authored by Dmitry Osipenko's avatar Dmitry Osipenko Committed by Daniel Lezcano

thermal/drivers/tegra: Add driver for Tegra30 thermal sensor

All NVIDIA Tegra30 SoCs have a two-channel on-chip sensor unit which
monitors temperature and voltage of the SoC. Sensors control CPU frequency
throttling, which is activated by hardware once preprogrammed temperature
level is breached, they also send signal to Power Management controller to
perform emergency shutdown on a critical overheat of the SoC die. Add
driver for the Tegra30 TSENSOR module, exposing it as a thermal sensor.

Tested-by: Andreas Westman Dorcsak <hedmoo@yahoo.com> # Asus TF700T
Tested-by: Maxim Schwalm <maxim.schwalm@gmail.com> # Asus TF700T
Tested-by: Svyatoslav Ryhel <clamor95@gmail.com> # Asus TF201T
Tested-by: Ihor Didenko <tailormoon@rambler.ru> # Asus TF300T
Tested-by: Ion Agorria <ion@agorria.com> # Asus TF201T
Tested-by: Matt Merhar <mattmerhar@protonmail.com> # Ouya
Tested-by: Peter Geis <pgwipeout@gmail.com> # Ouya
Acked-by: default avatarThierry Reding <treding@nvidia.com>
Signed-off-by: default avatarDmitry Osipenko <digetx@gmail.com>
Signed-off-by: default avatarDaniel Lezcano <daniel.lezcano@linaro.org>
Link: https://lore.kernel.org/r/20210616190417.32214-4-digetx@gmail.com
parent e73f0f0e
...@@ -18,4 +18,11 @@ config TEGRA_BPMP_THERMAL ...@@ -18,4 +18,11 @@ config TEGRA_BPMP_THERMAL
Enable this option for support for sensing system temperature of NVIDIA Enable this option for support for sensing system temperature of NVIDIA
Tegra systems-on-chip with the BPMP coprocessor (Tegra186). Tegra systems-on-chip with the BPMP coprocessor (Tegra186).
config TEGRA30_TSENSOR
tristate "Tegra30 Thermal Sensor"
depends on ARCH_TEGRA_3x_SOC || COMPILE_TEST
help
Enable this option to support thermal management of NVIDIA Tegra30
system-on-chip.
endmenu endmenu
# SPDX-License-Identifier: GPL-2.0 # SPDX-License-Identifier: GPL-2.0
obj-$(CONFIG_TEGRA_SOCTHERM) += tegra-soctherm.o obj-$(CONFIG_TEGRA_SOCTHERM) += tegra-soctherm.o
obj-$(CONFIG_TEGRA_BPMP_THERMAL) += tegra-bpmp-thermal.o obj-$(CONFIG_TEGRA_BPMP_THERMAL) += tegra-bpmp-thermal.o
obj-$(CONFIG_TEGRA30_TSENSOR) += tegra30-tsensor.o
tegra-soctherm-y := soctherm.o soctherm-fuse.o tegra-soctherm-y := soctherm.o soctherm-fuse.o
tegra-soctherm-$(CONFIG_ARCH_TEGRA_124_SOC) += tegra124-soctherm.o tegra-soctherm-$(CONFIG_ARCH_TEGRA_124_SOC) += tegra124-soctherm.o
......
// SPDX-License-Identifier: GPL-2.0
/*
* Tegra30 SoC Thermal Sensor driver
*
* Based on downstream HWMON driver from NVIDIA.
* Copyright (C) 2011 NVIDIA Corporation
*
* Author: Dmitry Osipenko <digetx@gmail.com>
* Copyright (C) 2021 GRATE-DRIVER project
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/math.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm.h>
#include <linux/reset.h>
#include <linux/slab.h>
#include <linux/thermal.h>
#include <linux/types.h>
#include <soc/tegra/fuse.h>
#include "../thermal_core.h"
#include "../thermal_hwmon.h"
#define TSENSOR_SENSOR0_CONFIG0 0x0
#define TSENSOR_SENSOR0_CONFIG0_SENSOR_STOP BIT(0)
#define TSENSOR_SENSOR0_CONFIG0_HW_FREQ_DIV_EN BIT(1)
#define TSENSOR_SENSOR0_CONFIG0_THERMAL_RST_EN BIT(2)
#define TSENSOR_SENSOR0_CONFIG0_DVFS_EN BIT(3)
#define TSENSOR_SENSOR0_CONFIG0_INTR_OVERFLOW_EN BIT(4)
#define TSENSOR_SENSOR0_CONFIG0_INTR_HW_FREQ_DIV_EN BIT(5)
#define TSENSOR_SENSOR0_CONFIG0_INTR_THERMAL_RST_EN BIT(6)
#define TSENSOR_SENSOR0_CONFIG0_M GENMASK(23, 8)
#define TSENSOR_SENSOR0_CONFIG0_N GENMASK(31, 24)
#define TSENSOR_SENSOR0_CONFIG1 0x8
#define TSENSOR_SENSOR0_CONFIG1_TH1 GENMASK(15, 0)
#define TSENSOR_SENSOR0_CONFIG1_TH2 GENMASK(31, 16)
#define TSENSOR_SENSOR0_CONFIG2 0xc
#define TSENSOR_SENSOR0_CONFIG2_TH3 GENMASK(15, 0)
#define TSENSOR_SENSOR0_STATUS0 0x18
#define TSENSOR_SENSOR0_STATUS0_STATE GENMASK(2, 0)
#define TSENSOR_SENSOR0_STATUS0_INTR BIT(8)
#define TSENSOR_SENSOR0_STATUS0_CURRENT_VALID BIT(9)
#define TSENSOR_SENSOR0_TS_STATUS1 0x1c
#define TSENSOR_SENSOR0_TS_STATUS1_CURRENT_COUNT GENMASK(31, 16)
#define TEGRA30_FUSE_TEST_PROG_VER 0x28
#define TEGRA30_FUSE_TSENSOR_CALIB 0x98
#define TEGRA30_FUSE_TSENSOR_CALIB_LOW GENMASK(15, 0)
#define TEGRA30_FUSE_TSENSOR_CALIB_HIGH GENMASK(31, 16)
#define TEGRA30_FUSE_SPARE_BIT 0x144
struct tegra_tsensor;
struct tegra_tsensor_calibration_data {
int a, b, m, n, p, r;
};
struct tegra_tsensor_channel {
void __iomem *regs;
unsigned int id;
struct tegra_tsensor *ts;
struct thermal_zone_device *tzd;
};
struct tegra_tsensor {
void __iomem *regs;
bool swap_channels;
struct clk *clk;
struct device *dev;
struct reset_control *rst;
struct tegra_tsensor_channel ch[2];
struct tegra_tsensor_calibration_data calib;
};
static int tegra_tsensor_hw_enable(const struct tegra_tsensor *ts)
{
u32 val;
int err;
err = reset_control_assert(ts->rst);
if (err) {
dev_err(ts->dev, "failed to assert hardware reset: %d\n", err);
return err;
}
err = clk_prepare_enable(ts->clk);
if (err) {
dev_err(ts->dev, "failed to enable clock: %d\n", err);
return err;
}
fsleep(1000);
err = reset_control_deassert(ts->rst);
if (err) {
dev_err(ts->dev, "failed to deassert hardware reset: %d\n", err);
goto disable_clk;
}
/*
* Sensors are enabled after reset by default, but not gauging
* until clock counter is programmed.
*
* M: number of reference clock pulses after which every
* temperature / voltage measurement is made
*
* N: number of reference clock counts for which the counter runs
*/
val = FIELD_PREP(TSENSOR_SENSOR0_CONFIG0_M, 12500);
val |= FIELD_PREP(TSENSOR_SENSOR0_CONFIG0_N, 255);
/* apply the same configuration to both channels */
writel_relaxed(val, ts->regs + 0x40 + TSENSOR_SENSOR0_CONFIG0);
writel_relaxed(val, ts->regs + 0x80 + TSENSOR_SENSOR0_CONFIG0);
return 0;
disable_clk:
clk_disable_unprepare(ts->clk);
return err;
}
static int tegra_tsensor_hw_disable(const struct tegra_tsensor *ts)
{
int err;
err = reset_control_assert(ts->rst);
if (err) {
dev_err(ts->dev, "failed to assert hardware reset: %d\n", err);
return err;
}
clk_disable_unprepare(ts->clk);
return 0;
}
static void devm_tegra_tsensor_hw_disable(void *data)
{
const struct tegra_tsensor *ts = data;
tegra_tsensor_hw_disable(ts);
}
static int tegra_tsensor_get_temp(void *data, int *temp)
{
const struct tegra_tsensor_channel *tsc = data;
const struct tegra_tsensor *ts = tsc->ts;
int err, c1, c2, c3, c4, counter;
u32 val;
/*
* Counter will be invalid if hardware is misprogrammed or not enough
* time passed since the time when sensor was enabled.
*/
err = readl_relaxed_poll_timeout(tsc->regs + TSENSOR_SENSOR0_STATUS0, val,
val & TSENSOR_SENSOR0_STATUS0_CURRENT_VALID,
21 * USEC_PER_MSEC,
21 * USEC_PER_MSEC * 50);
if (err) {
dev_err_once(ts->dev, "ch%u: counter invalid\n", tsc->id);
return err;
}
val = readl_relaxed(tsc->regs + TSENSOR_SENSOR0_TS_STATUS1);
counter = FIELD_GET(TSENSOR_SENSOR0_TS_STATUS1_CURRENT_COUNT, val);
/*
* This shouldn't happen with a valid counter status, nevertheless
* lets verify the value since it's in a separate (from status)
* register.
*/
if (counter == 0xffff) {
dev_err_once(ts->dev, "ch%u: counter overflow\n", tsc->id);
return -EINVAL;
}
/*
* temperature = a * counter + b
* temperature = m * (temperature ^ 2) + n * temperature + p
*/
c1 = DIV_ROUND_CLOSEST(ts->calib.a * counter + ts->calib.b, 1000000);
c1 = c1 ?: 1;
c2 = DIV_ROUND_CLOSEST(ts->calib.p, c1);
c3 = c1 * ts->calib.m;
c4 = ts->calib.n;
*temp = DIV_ROUND_CLOSEST(c1 * (c2 + c3 + c4), 1000);
return 0;
}
static int tegra_tsensor_temp_to_counter(const struct tegra_tsensor *ts, int temp)
{
int c1, c2;
c1 = DIV_ROUND_CLOSEST(ts->calib.p - temp * 1000, ts->calib.m);
c2 = -ts->calib.r - int_sqrt(ts->calib.r * ts->calib.r - c1);
return DIV_ROUND_CLOSEST(c2 * 1000000 - ts->calib.b, ts->calib.a);
}
static int tegra_tsensor_set_trips(void *data, int low, int high)
{
const struct tegra_tsensor_channel *tsc = data;
const struct tegra_tsensor *ts = tsc->ts;
u32 val;
/*
* TSENSOR doesn't trigger interrupt on the "low" temperature breach,
* hence bail out if high temperature is unspecified.
*/
if (high == INT_MAX)
return 0;
val = readl_relaxed(tsc->regs + TSENSOR_SENSOR0_CONFIG1);
val &= ~TSENSOR_SENSOR0_CONFIG1_TH1;
high = tegra_tsensor_temp_to_counter(ts, high);
val |= FIELD_PREP(TSENSOR_SENSOR0_CONFIG1_TH1, high);
writel_relaxed(val, tsc->regs + TSENSOR_SENSOR0_CONFIG1);
return 0;
}
static const struct thermal_zone_of_device_ops ops = {
.get_temp = tegra_tsensor_get_temp,
.set_trips = tegra_tsensor_set_trips,
};
static bool
tegra_tsensor_handle_channel_interrupt(const struct tegra_tsensor *ts,
unsigned int id)
{
const struct tegra_tsensor_channel *tsc = &ts->ch[id];
u32 val;
val = readl_relaxed(tsc->regs + TSENSOR_SENSOR0_STATUS0);
writel_relaxed(val, tsc->regs + TSENSOR_SENSOR0_STATUS0);
if (FIELD_GET(TSENSOR_SENSOR0_STATUS0_STATE, val) == 5)
dev_err_ratelimited(ts->dev, "ch%u: counter overflowed\n", id);
if (!FIELD_GET(TSENSOR_SENSOR0_STATUS0_INTR, val))
return false;
thermal_zone_device_update(tsc->tzd, THERMAL_EVENT_UNSPECIFIED);
return true;
}
static irqreturn_t tegra_tsensor_isr(int irq, void *data)
{
const struct tegra_tsensor *ts = data;
bool handled = false;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(ts->ch); i++)
handled |= tegra_tsensor_handle_channel_interrupt(ts, i);
return handled ? IRQ_HANDLED : IRQ_NONE;
}
static int tegra_tsensor_disable_hw_channel(const struct tegra_tsensor *ts,
unsigned int id)
{
const struct tegra_tsensor_channel *tsc = &ts->ch[id];
struct thermal_zone_device *tzd = tsc->tzd;
u32 val;
int err;
if (!tzd)
goto stop_channel;
err = thermal_zone_device_disable(tzd);
if (err) {
dev_err(ts->dev, "ch%u: failed to disable zone: %d\n", id, err);
return err;
}
stop_channel:
/* stop channel gracefully */
val = readl_relaxed(tsc->regs + TSENSOR_SENSOR0_CONFIG0);
val |= FIELD_PREP(TSENSOR_SENSOR0_CONFIG0_SENSOR_STOP, 1);
writel_relaxed(val, tsc->regs + TSENSOR_SENSOR0_CONFIG0);
return 0;
}
static void tegra_tsensor_get_hw_channel_trips(struct thermal_zone_device *tzd,
int *hot_trip, int *crit_trip)
{
unsigned int i;
/*
* 90C is the maximal critical temperature of all Tegra30 SoC variants,
* use it for the default trip if unspecified in a device-tree.
*/
*hot_trip = 85000;
*crit_trip = 90000;
for (i = 0; i < tzd->trips; i++) {
enum thermal_trip_type type;
int trip_temp;
tzd->ops->get_trip_temp(tzd, i, &trip_temp);
tzd->ops->get_trip_type(tzd, i, &type);
if (type == THERMAL_TRIP_HOT)
*hot_trip = trip_temp;
if (type == THERMAL_TRIP_CRITICAL)
*crit_trip = trip_temp;
}
/* clamp hardware trips to the calibration limits */
*hot_trip = clamp(*hot_trip, 25000, 90000);
/*
* Kernel will perform a normal system shut down if it will
* see that critical temperature is breached, hence set the
* hardware limit by 5C higher in order to allow system to
* shut down gracefully before sending signal to the Power
* Management controller.
*/
*crit_trip = clamp(*crit_trip + 5000, 25000, 90000);
}
static int tegra_tsensor_enable_hw_channel(const struct tegra_tsensor *ts,
unsigned int id)
{
const struct tegra_tsensor_channel *tsc = &ts->ch[id];
struct thermal_zone_device *tzd = tsc->tzd;
int err, hot_trip = 0, crit_trip = 0;
u32 val;
if (!tzd) {
val = readl_relaxed(tsc->regs + TSENSOR_SENSOR0_CONFIG0);
val &= ~TSENSOR_SENSOR0_CONFIG0_SENSOR_STOP;
writel_relaxed(val, tsc->regs + TSENSOR_SENSOR0_CONFIG0);
return 0;
}
tegra_tsensor_get_hw_channel_trips(tzd, &hot_trip, &crit_trip);
/* prevent potential racing with tegra_tsensor_set_trips() */
mutex_lock(&tzd->lock);
dev_info_once(ts->dev, "ch%u: PMC emergency shutdown trip set to %dC\n",
id, DIV_ROUND_CLOSEST(crit_trip, 1000));
hot_trip = tegra_tsensor_temp_to_counter(ts, hot_trip);
crit_trip = tegra_tsensor_temp_to_counter(ts, crit_trip);
/* program LEVEL2 counter threshold */
val = readl_relaxed(tsc->regs + TSENSOR_SENSOR0_CONFIG1);
val &= ~TSENSOR_SENSOR0_CONFIG1_TH2;
val |= FIELD_PREP(TSENSOR_SENSOR0_CONFIG1_TH2, hot_trip);
writel_relaxed(val, tsc->regs + TSENSOR_SENSOR0_CONFIG1);
/* program LEVEL3 counter threshold */
val = readl_relaxed(tsc->regs + TSENSOR_SENSOR0_CONFIG2);
val &= ~TSENSOR_SENSOR0_CONFIG2_TH3;
val |= FIELD_PREP(TSENSOR_SENSOR0_CONFIG2_TH3, crit_trip);
writel_relaxed(val, tsc->regs + TSENSOR_SENSOR0_CONFIG2);
/*
* Enable sensor, emergency shutdown, interrupts for level 1/2/3
* breaches and counter overflow condition.
*
* Disable DIV2 throttle for now since we need to figure out how
* to integrate it properly with the thermal framework.
*
* Thermal levels supported by hardware:
*
* Level 0 = cold
* Level 1 = passive cooling (cpufreq DVFS)
* Level 2 = passive cooling assisted by hardware (DIV2)
* Level 3 = emergency shutdown assisted by hardware (PMC)
*/
val = readl_relaxed(tsc->regs + TSENSOR_SENSOR0_CONFIG0);
val &= ~TSENSOR_SENSOR0_CONFIG0_SENSOR_STOP;
val |= FIELD_PREP(TSENSOR_SENSOR0_CONFIG0_DVFS_EN, 1);
val |= FIELD_PREP(TSENSOR_SENSOR0_CONFIG0_HW_FREQ_DIV_EN, 0);
val |= FIELD_PREP(TSENSOR_SENSOR0_CONFIG0_THERMAL_RST_EN, 1);
val |= FIELD_PREP(TSENSOR_SENSOR0_CONFIG0_INTR_OVERFLOW_EN, 1);
val |= FIELD_PREP(TSENSOR_SENSOR0_CONFIG0_INTR_HW_FREQ_DIV_EN, 1);
val |= FIELD_PREP(TSENSOR_SENSOR0_CONFIG0_INTR_THERMAL_RST_EN, 1);
writel_relaxed(val, tsc->regs + TSENSOR_SENSOR0_CONFIG0);
mutex_unlock(&tzd->lock);
err = thermal_zone_device_enable(tzd);
if (err) {
dev_err(ts->dev, "ch%u: failed to enable zone: %d\n", id, err);
return err;
}
return 0;
}
static bool tegra_tsensor_fuse_read_spare(unsigned int spare)
{
u32 val = 0;
tegra_fuse_readl(TEGRA30_FUSE_SPARE_BIT + spare * 4, &val);
return !!val;
}
static int tegra_tsensor_nvmem_setup(struct tegra_tsensor *ts)
{
u32 i, ate_ver = 0, cal = 0, t1_25C = 0, t2_90C = 0;
int err, c1_25C, c2_90C;
err = tegra_fuse_readl(TEGRA30_FUSE_TEST_PROG_VER, &ate_ver);
if (err) {
dev_err_probe(ts->dev, err, "failed to get ATE version\n");
return err;
}
if (ate_ver < 8) {
dev_info(ts->dev, "unsupported ATE version: %u\n", ate_ver);
return -ENODEV;
}
/*
* We have two TSENSOR channels in a two different spots on SoC.
* Second channel provides more accurate data on older SoC versions,
* use it as a primary channel.
*/
if (ate_ver <= 21) {
dev_info_once(ts->dev,
"older ATE version detected, channels remapped\n");
ts->swap_channels = true;
}
err = tegra_fuse_readl(TEGRA30_FUSE_TSENSOR_CALIB, &cal);
if (err) {
dev_err(ts->dev, "failed to get calibration data: %d\n", err);
return err;
}
/* get calibrated counter values for 25C/90C thresholds */
c1_25C = FIELD_GET(TEGRA30_FUSE_TSENSOR_CALIB_LOW, cal);
c2_90C = FIELD_GET(TEGRA30_FUSE_TSENSOR_CALIB_HIGH, cal);
/* and calibrated temperatures corresponding to the counter values */
for (i = 0; i < 7; i++) {
t1_25C |= tegra_tsensor_fuse_read_spare(14 + i) << i;
t1_25C |= tegra_tsensor_fuse_read_spare(21 + i) << i;
t2_90C |= tegra_tsensor_fuse_read_spare(0 + i) << i;
t2_90C |= tegra_tsensor_fuse_read_spare(7 + i) << i;
}
if (c2_90C - c1_25C <= t2_90C - t1_25C) {
dev_err(ts->dev, "invalid calibration data: %d %d %u %u\n",
c2_90C, c1_25C, t2_90C, t1_25C);
return -EINVAL;
}
/* all calibration coefficients are premultiplied by 1000000 */
ts->calib.a = DIV_ROUND_CLOSEST((t2_90C - t1_25C) * 1000000,
(c2_90C - c1_25C));
ts->calib.b = t1_25C * 1000000 - ts->calib.a * c1_25C;
if (tegra_sku_info.revision == TEGRA_REVISION_A01) {
ts->calib.m = -2775;
ts->calib.n = 1338811;
ts->calib.p = -7300000;
} else {
ts->calib.m = -3512;
ts->calib.n = 1528943;
ts->calib.p = -11100000;
}
/* except the coefficient of a reduced quadratic equation */
ts->calib.r = DIV_ROUND_CLOSEST(ts->calib.n, ts->calib.m * 2);
dev_info_once(ts->dev,
"calibration: %d %d %u %u ATE ver: %u SoC rev: %u\n",
c2_90C, c1_25C, t2_90C, t1_25C, ate_ver,
tegra_sku_info.revision);
return 0;
}
static int tegra_tsensor_register_channel(struct tegra_tsensor *ts,
unsigned int id)
{
struct tegra_tsensor_channel *tsc = &ts->ch[id];
unsigned int hw_id = ts->swap_channels ? !id : id;
tsc->ts = ts;
tsc->id = id;
tsc->regs = ts->regs + 0x40 * (hw_id + 1);
tsc->tzd = devm_thermal_zone_of_sensor_register(ts->dev, id, tsc, &ops);
if (IS_ERR(tsc->tzd)) {
if (PTR_ERR(tsc->tzd) != -ENODEV)
return dev_err_probe(ts->dev, PTR_ERR(tsc->tzd),
"failed to register thermal zone\n");
/*
* It's okay if sensor isn't assigned to any thermal zone
* in a device-tree.
*/
tsc->tzd = NULL;
return 0;
}
if (devm_thermal_add_hwmon_sysfs(tsc->tzd))
dev_warn(ts->dev, "failed to add hwmon sysfs attributes\n");
return 0;
}
static int tegra_tsensor_probe(struct platform_device *pdev)
{
struct tegra_tsensor *ts;
unsigned int i;
int err, irq;
ts = devm_kzalloc(&pdev->dev, sizeof(*ts), GFP_KERNEL);
if (!ts)
return -ENOMEM;
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
ts->dev = &pdev->dev;
platform_set_drvdata(pdev, ts);
ts->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(ts->regs))
return PTR_ERR(ts->regs);
ts->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(ts->clk))
return dev_err_probe(&pdev->dev, PTR_ERR(ts->clk),
"failed to get clock\n");
ts->rst = devm_reset_control_get_exclusive(&pdev->dev, NULL);
if (IS_ERR(ts->rst))
return dev_err_probe(&pdev->dev, PTR_ERR(ts->rst),
"failed to get reset control\n");
err = tegra_tsensor_nvmem_setup(ts);
if (err)
return err;
err = tegra_tsensor_hw_enable(ts);
if (err)
return err;
err = devm_add_action_or_reset(&pdev->dev,
devm_tegra_tsensor_hw_disable,
ts);
if (err)
return err;
for (i = 0; i < ARRAY_SIZE(ts->ch); i++) {
err = tegra_tsensor_register_channel(ts, i);
if (err)
return err;
}
err = devm_request_threaded_irq(&pdev->dev, irq, NULL,
tegra_tsensor_isr, IRQF_ONESHOT,
"tegra_tsensor", ts);
if (err)
return dev_err_probe(&pdev->dev, err,
"failed to request interrupt\n");
for (i = 0; i < ARRAY_SIZE(ts->ch); i++) {
err = tegra_tsensor_enable_hw_channel(ts, i);
if (err)
return err;
}
return 0;
}
static int __maybe_unused tegra_tsensor_suspend(struct device *dev)
{
struct tegra_tsensor *ts = dev_get_drvdata(dev);
unsigned int i;
int err;
for (i = 0; i < ARRAY_SIZE(ts->ch); i++) {
err = tegra_tsensor_disable_hw_channel(ts, i);
if (err)
goto enable_channel;
}
err = tegra_tsensor_hw_disable(ts);
if (err)
goto enable_channel;
return 0;
enable_channel:
while (i--)
tegra_tsensor_enable_hw_channel(ts, i);
return err;
}
static int __maybe_unused tegra_tsensor_resume(struct device *dev)
{
struct tegra_tsensor *ts = dev_get_drvdata(dev);
unsigned int i;
int err;
err = tegra_tsensor_hw_enable(ts);
if (err)
return err;
for (i = 0; i < ARRAY_SIZE(ts->ch); i++) {
err = tegra_tsensor_enable_hw_channel(ts, i);
if (err)
return err;
}
return 0;
}
static const struct dev_pm_ops tegra_tsensor_pm_ops = {
SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(tegra_tsensor_suspend,
tegra_tsensor_resume)
};
static const struct of_device_id tegra_tsensor_of_match[] = {
{ .compatible = "nvidia,tegra30-tsensor", },
{},
};
MODULE_DEVICE_TABLE(of, tegra_tsensor_of_match);
static struct platform_driver tegra_tsensor_driver = {
.probe = tegra_tsensor_probe,
.driver = {
.name = "tegra30-tsensor",
.of_match_table = tegra_tsensor_of_match,
.pm = &tegra_tsensor_pm_ops,
},
};
module_platform_driver(tegra_tsensor_driver);
MODULE_DESCRIPTION("NVIDIA Tegra30 Thermal Sensor driver");
MODULE_AUTHOR("Dmitry Osipenko <digetx@gmail.com>");
MODULE_LICENSE("GPL");
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment